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1. Introduction

In this paper it is shown that the location and direction of a diode in the interior of a
rectangular network can be determined by measurements of boundary output currents
generated by internal current sources. The boundary measurements will also be used to
determine the conductors (and conductances) in the network.

II. Preliminaries for all rectangular networks
We consider a rectangular network of conductors in R2, as in the following figure:
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Figure 2.1

Such a network Q with m-horizontal lines and n-vertical lines will be called a
rectangular network of type T(m,n). Figure 2.1 shows a rectangular network of type
T(5,5). For this paper, only square networks with r vertical & horizontal lines will be
examined. However, the arguments presented will be applicable to any rectangular
networks as well.
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1. Network Definitions
2.1.1 The nodes of S, called €, are the end points of the line segments in the network.
2.1.2 The boundary of Q, called 9, consists of all nodes numbered from 1 to 4n. Each
boundary node is connected to exactly one line segment.
Boundary nodes are numbered as follows:  top row, left to right
- right side, top to bottom
bottom row, right to left
left side, bottom to top.
2.1.3 The interior of Q, called int<Y;, consists of all nodes which are not boundary
nodes, numbered from 4n+1 to n2+4n. Each interior node is connected to more than one
line segment. Let m equal the number of interior nodes, where m = .
Interior nodes are numbered left to right, from the top row to the bottom row.
2.1.4 The edges of Q, called Q,, consists of all conductors which connect two adjacent
nodes. There exist 2n(n+1) edges in a square network with 4n boundary edges.. We
assume each edge (pq) has a conductance value ypg>0.
2.1.5 The neighbors for each node pe Qg are defined as the adjacent nodes which are
connected to it by a conductor. (For each boundary node, there is exactly 1 neighbor,
which is an interior node. For each interior node, there are exactly 4 neighbors.) Let
N(p) be the set of all neighbors of node p. :
Figure 2.1 shows a rectangular network with the following:
Qq, 45 - total nodes
9y, 20 - boundary nodes (numbered 1 to 20)
intQYy, 25 - interior nodes (numbered 21 to 45)
€}y, 60 - edges (conductors)
2.1.6 The term I-deep will be used to describe the first “ring" of interior nodes in a
network. This ring will consist of all interior nodes connected to boundary nodes.
(Figure 2.2) The 2-deep nodes will be the collection of nodes in the second ring of the

network. (Figure 2.3) These nodes are connected to the 1-deep nodes. This notation will
continue for n-deep nodes.
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2.1.7 Let u be a real valued function on the network, called potential.

Ohm’s Law states that the current from node p to an adjacent node q will equal the
conductance from node p to node q multiplied by the potential difference from node p to
node q, or simply Ipg = Tpg( up(p)-up(q)).

2.1.8 Kirchhoff's Law states that the total current flow into an interior node must equal
the total current flow out of that node.

2.1.9 The Maximum Principle states that if a current is input at an interior node, and

boundary nodes have potential of 0, then the potential at the source node rnust be larger
than at any other node.

B. Network Properﬁés
2.2.1 From the network, we construct a Kirchhoff matrix which has the form

Gl -'Yl,z ...... —’Yu ...... _‘Yl.n
-?3,1 0'2 ...... -’Yu ...... _‘YZ.II
_Tl,l —'Yu ...... G' ...... _’YLII
_Yn.l —‘Ym ...... —’}'M ...... Oll

- Each ciisthesumofall'rﬁ for nodes j connected to node i. For all je N(i), the i,j
entry of K will be the negative conductance along the edge (ij), i.e. -Yjj- All other non-
diagonal entries will be 0, This matrix has a block structure,

K']CT'
C|A
where

K’ consists of boundary node to boundary node connections
C and CT consist of boundary node to interior node connections, and
A consists of interior node to interior node connections.

K=

2.2.2 The symmetry of A-l is required in later sections of this paper, so the proof that
A1 is symmetric is as follows:




A is symmetric since v = ;i for every ij in a network.
So, A=AT
= Al=s(AT)yl
= Al=(a-lHT
Therefore, = A-l is symmetric.

s For a complete understanding of the inverse diode problem, we must first investigate
the characteristics of the forward problem without a diode. To do so, we have simulated
experiments which produce the required information needed for the inverse problem.
This process of simulating physical experiments is detailed below.

III. Forward problem without a diode

In a forward problem without a diode we are given Ypgr where Tpq is the value of the
conductor between nodes p and q for all p,q € Q. We then assume that the potential at
all boundary nodes is 0. For each interior node i we will conduct a separate experiment
to determine the potentials at every interior node. These experiments will be recorded in
a vector of potentials, called u;. We can then determine the current flows out of each
boundary node.

¢ The potential at node q due to an input current of +1 at node p will be represented as
up(q). The potential at node q due to an input current of -1 at node p will be represented
as u_p(q).

To solve for u;, the vector of the potentials due to an input current of 1 at an interior
node i, we will use the following system of equations: Au; = e, where
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The vectors u; will be
[ u (D] [ ugD)] [ u(D)]
u1(2) u2(2) u ::(12)
lll = ’ u2 = y . - umz
ul(4n) u2(4n)| 1] :8411}
- - L - - ot

L

where uj(j) is the potential at node j due to a source current ati. If we construct a matrix
U by using the u;'s as column vectors we get U=[u;, uy , ..., uy ). Now U satisfies
the equation AU = I. Therefore, U = A-1,

« The following definitions are used to describe the notation for current flow across edges

in the network.

Definition 3.1 Let node r be a boundary node. Input a source current of 1 at node s.
Then f(r) is the current flow out of node r from its interior neighbor.

Definition 3.2 Let node r be an interior node, and node q be one of its interior neighbors.
Input a source current of 1 at node s.
Then ¢4(rq) is the current flow from node r to node q.

« For the next two definitions, the following holds: When two input sources are used, the
first subscript always represents the node with an input current of 1. The second subscript
always represents the node with an input current of .
Definition 3.3 Let node r be a2 boundary node. Input a source current of 1 at node s, and
a source current of ¢ at node t.
Then gg (1) is the current flow out of node r from its interior neighbor. ,
Definition 3.4 Let node r be an interior node, and node q be one of its interior neighbors.
Input a source current of 1 at node s, and a source current of o at node t.
Then yg ¢(rq) is the current flow from node r to node g.

Recall definition 3.1. Let f; be the vector of currents flowing out of the boundary nodes,
due to uj. Next let F be the (4n x m) matrix of outflow vectors whose columns are
) fl' fz, ek g fm.

_ We can calculate the matrix F by
F=CTa-l,

This is because fy(r) = Yqr(ug(Q) - us().




IV. Inverse problem without a diode

The matrix F is a collection of vectors fj, which are the outflows at each boundary
node due to a current of 1 at node i. The diagonal entries of A-! are the potentials at
each intenior node due to a current at that node. In the inverse problem without a diode
we are given the matrix F and the diagonal entries of A-!. We will begin recovering the
conductors in the network at the boundaries and we will work our way in to the middle.

To recover the boundary conductors, recall definition 3.1 . To solve for yqp, where r
is a boundary node and q is its interior node, we use the information fy(r), ug(q), and
ug(r) = 0 in the following equation:

£5(0) = Yqr(us(Q) - ug(D))

Ygr = f5(r) / ug(g).

The above procedure holds for all boundary conductors.

Therefore,

¢ In later sections of this paper, we will input a current of 1 at one interior node and a
current of & at an adjacent interior node. This will create a current flow of zero over a
desired conductor, The method for calculating ¢ is as follows:
Method 4.1
The value of y; j(hk) is the flow from node h to node k due to a current of 1 at
node i and an input current of ¢ at node j. To calculate the flows out of the
boundary nodes when using two input sources, 1 and a, we begin by constructing
X, & vector of source inputs. The entry in row i is 1 when we input a current of 1
at node i. The entry in row j is 0. when we are inputting a current of o at node j.
All other entries are 0. The vector x will look like

_9-
3
1 | <== ith row
i

x=|0
:
Q.| <== jthrow
3
| 0

Then, we multiply x by A-1 to get y where y is a vector of potentials at each
interior node due to input currents of 1 at node i and ¢ at node j. So,

y=A’1x.

Then for each interior node h in the 1-deep ring with neighboring boundary node
k, we use the following equation to calculate g; ;(k)

Wi, j(K) = hk[(uj(h) + cu(h)) - (uj(k) + (k).



Since the potential at any boundary node is 0, this equation can be simplified to
Vi j(K) = Yhk(ui(h) + awj(b).

» The above argument can be used not only to calculate the flows out of boundary
nodes, but also for calculating the flows across interior conductors. ®

Now we will recover the conductors on the 1-deep ring. Begin by recovering the
conductors closest to the corners. Referring to figure 4.2 below, we will begin by
recovering ‘hp.

Figure 4.2 Currently Recovered Conductors

We need 1o find up(p) and up(i). We will also need to find uj(h), which will in fact be
the same as uy(i), recalling that A-! is symmetric.

We can calculate these potentials by dividing the current out of the adjacent boundary
node by the value of the conductor between the interior node and the boundary node.

Using the information fh(b), up(b) =0and yhp, we will solve for up(p) in the equation
fh(b) = Yhb(uh(P) - up(b))
Similarly, we can solve for up(i).

To solve for'yhpwe must use two input currents, as described in method 4.1. Let the
two source nodes be node h and node i (figure 4.2). Let the input current at node h be 1
and at node i be some variable ¢ The object is to find the value of o s0 that there is zero
- current flow between h and i. This occurs when the potentials of node h and node i are
- equal, as calculated in the equation
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up(h) + aujth) = up() + o).

By Kirchhoff's Law the current flowing into a node is equal to the current flowing out
of anode. Recalling the notation used in definition 3.2 (describing current ﬂow between
interior nodes), it is true for node h that _

1= gni(®)+ 8ni(c) + Vi,i(hp) +hj(hi)
1= ghj®)+gpilc) + Wh,i(hp) .

Solving for fp, j(hp), we have
: Wh,i(hp} = 1 - (8pi(®) + ghi(c))-

Now we can solve for pp from the equation

Wh,i(hp) = Wpl(upth) + aui(h)) - (up(p) + cui(p))]-

Similarly, we can solve for y; by letting the input cusrent at h be 1 and the input current at
p be a different ¢..

» From here we will continue using the method of inputting 1 and ¢ into neighboring
nodes, as described in method 4.1. If we know two of the currents out of an interior
node, then we can create a current of zero across one of the node’s remaining conductors.
Then we can solve for the fourth current and ultimately, that conductor. We have shown
how to do this for interior nodes on the 1-deep ring. We will use the same process for
interior nodes on the deeper rings. However, it is a lengthier process to calculate the
potentials of these nodes.

Now, we will solve for the conductors on the 2-deep ring. This procedure will also
recover the conductors between the 1-deep and 2-deep rings. Refer to figure 4.3 below.
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First, we need to calculate uq(i), uq(j), and uq(k).
ug(d) = fq(d) ! Yid
ug) =fg(e) / vie
uq(k) = fo(f) / vief

From these potentials we can calculate g, fq(e) and ¢q(jk) using the following
equations.

g0 = 1ji(ugQ) - ug@)
fq(®) = Yjelug()
dq(k) = 1jk(ug() - ug(k))

Now that we have three of the four currents out of node j, we can calculate the current
flow between node j and node r by Kirchhoff's Law using the equation below.

0= ¢'q(.ii) + fq(e) + ¢'q(jk) + ¢q(il')

Solve this for ¢q(jr). Then we use this result in the following equation and solve for uq(r).
0qlin) = Yr(ugQ) - ug(e).

Recall that A-! is symmetric. Therefore, by finding ug(r) we have also found ug(q).
Since we know these potentials we can now use the method of inputting 1 at node q and o
at node r to recover the conductors in the 2-deep ring.

¢ The above process (for calculating the potentials and current flows at interior nodes)

can be extended up to an n-deep ring. Ultimately, all of the conductors for the network
will be recovered.

Y. Preliminaries for a network with a diode

Definition 5.1, A diode is a nonlinear electrical device which allows current to flow
tirough it in only one direction. The dipde allows current to flow between its base and tip
if the potential at its base is greater than the potential at its tip. In the case where the
. potentiai at the base is less than the potential at the tip, the diode becomes an open circuit,
and the current flow is 0.

_ Remark 5.2. ¢Assume now that there is exactly one diode in the network, and that
for each experiment we perform that the potentials on the boundary are 0. We will also
assume that the diode is between interior nodes x and y and conducts with Yxy When the
diode is on, and O when the diode is off. For each interior node in the network, the term
ON will be used to represent normal current flow over the conductor with the diode
{diode does not block current flow). The term OFF will be used to represent zero (0)
current flow over the conductor with the diode (diode blocks current flow). The term




NEUTRAL will be used to represent a node which creates a current flow of zero (0) over
the conductor with the diode (base and tip potentials are equal). Since a neutral node
creates a current flow of zero, all neutral nodes will be included in the set of OFF nodes.

Definition 5.3 Let P be the set of all interior nodes that turn the diode on, and Q be
the set of all nodes that turn the diode off. It is clear that PLQ is the set of all nodes.

¢ In order to simulate a network I with a diode, we will now create two auxiliary
networks which we will call 'y and [, I'; will be the network " with the diode removed

and the conductor ¥y

in its place. Ty will be the network I with the diode and its

conductor removed. (see Figures below)

Remark 5.4 o We will get A;-! and Ayl in the same manner that we obtained

Definition 5.5

Remark 5.6. =

A-1 for the network € in the forward problem without a diode. We
also know that since neither I’y nor [’y have a diode. This implies
that A and Ag are symmetric. Therefore A;~! and Ag™! are
symmetric. We will also define G to be the matrix of potentials for
the network I'.

Let r be an boundary node, and let p be any interior node. When
we are in . Let fp(r) denote the flows out of t due to a current of
1atnodep When we are in I'y we will denote the flows out of the
boundary to be fp(l)(r). When we are in [y we will denote the
outflows to be f(0)(r). And similarly if we input a source of -1 at
p the flows would be f_p(r), . (D(r), and £, OXD).

In I we will now assume that yyy is the conductor with the diode.
We will also assume matmedicﬁ’e allows flow from x to y, and
creates zero flow from y to x.
mrl.yxywinbeinmesameposiﬁonasitisinr,exceptmefewiu
be a flow from x to y, and a flow from y to x.
Inl'g.yxywillberemoved,andtherewﬂlbezeroﬂowﬁomxtoy
andy to x.
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Definition 5.7. Let up, be the vector of potentials due to a current of 1 at node p in
T'1. Let vp be the vector of potentials due to a current of 1 at node pin I'y. Let wp be the
vector of potentials due to a currentof 1 atnode pin I".

Theorem 5.8, Let I' be any rectangular network with a diode. Then there is at least

one interior node in the network that turns the diode on, and one interior node that turns
the diode off.

Proof;

Let node p € int(€2y). Then by the maximum principle, we know that then ux(x) > ux(p)
for any p € int(€p). Therefore uy(x) > uy(y). Hence node x turns the diode on.
Similarly, ug:y) > uy(p) for all p € int(€2g). Therefore uy(y) > u(x). Hence node y turns

the diode otf. Therefore for rectangular network with a diode is at least one node
that tens it on and one that turns it off, &

Theorem 5.9. (Refer to Figures 5.2 & 5.3) Let up, be the potentials due to a current of
latnodepin Iy, andvpbctheponentialsduetoacunentoflatnodepinl“l. ‘
InF'; Letj be the flow from x to y due to a current of 1 at node p. _

Let § be the flow from x to y due to a current of 1 at x. Let € be the flow from x to y due
wacumentof 1 aty. Let = f/(1-8—¢). Then Vp = Up + Quy -0y,

Proof;

Now in the 'y, we want to calculate the currents at x.

At node x, the the currents due to potential up, total -
Atnode x, the the currents due to potential uy total 1 - §
At node x, the the currents due to potential uy total -¢

11




Then,

up + Guy -y = Up+ (B/(1-0-¢€))uy — (BI(l—S-s))uy
-B + (B/(1-8-€)X(1-8) - (B/(1-6-E)X-E)
(-B+ 8 + B +5 — B5 -Bey(1-B-1)
0/(1-8y

0

Hence up + (g - Wy satisfies Kirchhoff's Law at all nodes in the ['y.
Therefote vp = up + Wity -0y, a

Theorem 5.10. Ixtpbeanodethmmmsthediodéon, and let q be a node that turns
the diode off. Thenwp= upandwq=vq.

Proof:

We have already assumed that I'y will have the appearance that all of the interior nodes
turn the diode on. We have also assumed that [y will have the appearance that all of the
interior nodes turn the diode off. Therefore in the forward problem if a node p turns the
diodeoninl"thenwp=up.Ifnodeqttunsthediodeoffthean=vq_ .

Theorem 5.11. (Refer to Figures 5.2 & 5.3) Let Up be the vector of potentials due
to acurrentof 1 atnode pin I'y. Letvpbethevecnorofponentialsduetoacutrentofl
at node p in I'y. Then for all nodes p in the interior of I'y (and Ig), vp(p) > up(p).

Proof:
We know that vp = up + ®uy -0y

Casel.
Let p be an interior node which turns the diode on.
Then up(x) > up(y)
Therefore  ux(p) > uy(p)

We then know that B > O, because up(x)>up(y).

Now, if we put a currentof 1 at x and -1 aty, we know that some of the current
applied at x will flow to each neighbor of x. Hence the flow across Yxy cannot equal
1. Thus we can see thatd + £ < 1.

Therefore we know that ® > 0.

Hence we know that wuy(p) - muy(p) >0.

Therefore vp(p) > up(p) for all nodes p that turn the diode on.

Case 2.
Let p be an interior node that turns the diode off.
Then up(x) < up(y)

Therefore ux(p) < uy(p)

12



We then know that <0, because up(x) < up(y).

Now, if we put 2 current of 1 atx and -1 at y, we can see that § + ¢ < 1.
Therefore we know that ® <0,

Hence we know that wuy(p) - couy( p)<0.

Therefore vp(P) 2 up(p) for all nodes p that turn the diode off.

Therefore vp(p) 2 up(p), for all nodes p in the interior of the I ((and ). B
Recail that u_p(j) is the potential at node j due to a current of -1 at node p-

Theorem 5.12. Let node p be an interior node in a network without a diode. Let x
and y be any other neighboring interior nodes, such that up(r) > up(s).
Then u_p(r) < u_p( s).

Proof:

We know that up(r) > up(s).

Then if we input a current of -1 at node p we can simulate what will happen by

multiplying up by -1. In this case Up = -U.p. Therefore up(r) = -U_p(r).

Since up(r) > up(s) it follows that -u_q(r) > -u_n(s). Whic implies that u_g(r) < u_n(s).
14 P p P P

Thefefore u.,p(r < u_p(S). -

Theorem 5.13. Let p be a node that turns the diode on. Then -W.p(p) = vp(p).

Proof:
Since node p turns the diode on, up(x) > up(y) and wp(x) > wp(y). Then if we put a
~current of -1 in at node p, by theorem 5.12 we know that u_ (X) < u.p(y). This implies
- that putting a current of -1 in at node p will turn the diode o&. This implies that W.p=
Yo Therefore -w,p(p) = vp(p). B

 Theorem 5.14, Let q be a node that turns the diode off. Then “W_q(@) = ug(Q).

Proof; -
- 'The proof follows directly from theorem 5.13. @

“Theorem 5.15. Let p be 2 node that turns the diode on. Then Wp(p) < -W_p(p).
¢ know from theorem 5.11 that if node p turns the diode on thenlup(p) < vp(p). We
50 know from theorems 5.10 and 5.13 that wn(p) = u (p)and-w_p(p)=v (p),

P P P
therefore wp(p) < -w.p(p). ®

Theorem 5.16. Let q be a node that turns the diode off. Then wq(@ > -W_q(@).

13




Proof:
It is clear that by a similar argument to theorem 5.15, it can be shown that

Wq(CI) 2 "W-q(cD- .

Recall that f, is the vector of outflows due to a current of 1 at node p. Also recall that f.p
is the vector of outflows due to a current of -1 at node p.

Theorem 5.17. Let p be any node that turns the diode on and q any node that turns
the diode off. Let i be any boundary node. Then the following will occur:
1. fi(d) = fp 1()(i)).
2. £ o) = f5Vq).
3 £ = ).
4. -L.p(0) =qu(0)(i).

Proof:

We know that if node p turns the diode on then w =up.Thisimpliesttm

fp=wpCT = upCT. Therefore fy(i) = £ (). W also know, by theorem 5.14, that if
node g turns the diode off -w_q = ug. Since f =w_gCT , we can conclude that

'f-q = _w_ch = quT. Therefore -f_q(i) = f(;(:ll )(i) in I‘y. By a similar process we can
alsoprove#3and #4. &

V. Forward problem with a diode
Now we are ready to simulate the forward problem with a diode.

Step 0. In this step we create our auxiliary networks I'y and I'g. We create them as
they are described in Remark 5.6.

Recall Remark 5.4. for the notation A1, Ag'! and G.

Step 1. In step 1 we will use the network I'y to determine which nodes will turn the
diode on, and which nodes will turn the diode off. We do this by calculating A, just as
we did in the forward problem without a diode. Once A,"! has been calculated we will
compare up(x) and up(y) for all p in int(I"). With this calculation we know that if
up(x)>up(y)thennodepmmsthediodeon. otherwise node p turns the diode off.

Step 2. Now we would like to use A;-1 and Ag™! to calculate G, where each column
of G comes from a column in either A,"! or AgL. Since we have A;-! and Aq! we can
begin to create G. We already know which nodes turn the diode on and which nodes turn
the diode off. Let p be any interior node in the network; If p tuns the diode on then we
will let wp, = up (the corresponding column from A;-1). If node p tumns the diode off we
will let vlvp = vp (the corresponding column from Ag'D). Hence, G is created from A1

Step 3. We now simply want to calculate the outflows from I. We can now do this by
calculating -F = GCT,

14



VL. Inverse problem with a diode

We are now ready to begin recovering the network I,

Step 0. In this step we will begin solving the inverse problem by applying currents of
I and -1 at each interior node. Now recall that W_p(p) is the potential at node p due to a
current of -1 at node p, and f_(i) is the flow out boundary node i due to current of -1 at
node p. From this we step wilf)be able to get the wp(p) and W_p(p) at all interior nodes p
in . We will also be able to get fp(i) and f,p(i), forallp € int(I") and i € HI).

Step 1. At this point we will separate the nodes info two groups, those nodes which
turn the diode on and those nodes which turn the diode off . From theorem 5.15 we can
see that if wp(p) < -w_p(p) then node p turns the diode on. From theorem 5.16 we know
that if wp(p) > -W.p(p) then node p turns the diode off. By theorem 5.8 we know that at
least one node must wm the diode on and one node must turn the diode off.

Step 2. Now we will show how to recover both the diagonal entries of Ar-land Ayl
By theorem 5.16 we know that -u_p(p) = vp(p) and ~V_p(p) = up(p). We also know that
ifnodepmmsthediodeonthenwp(p)=up(p)andifitu1msthediodeoffthen .
wp(p) = vp(p). We also know that 1f node p turns the diode on then W.p(P) = vp(p) and if
it turns the diode off then -W.p(P) = up(p). Recall Definition 5.3. Now for all nodes p
that turn the diode on and all nodes q that turn the diode off, Wp(p) = up(p) and

“W_q(@) = ug(q). Therefore we have recovered all of the diagonal entries of Ayl
Siz&mly, we can recover all of the diagonal entries of Aq-l.

Step 3. In step 3 we will show how to recover all of the outflows for I’y and I,
Recall theorem 5.17 and definition 5.3. Now forpe Pand q € Q we know that fp() in
I" will equal fy(i) in I'y and -f.q()) in T will equal fq(dinI';. We also know that fqinl

will equal fq(i) in [y and - _p(i) in I" will equal fp(i) in I'y. Therefore we now have all of
the outflows for I'; and I,

Recall in remark 5.5 we know that A;~! is symmetric, Ag! is symmetric but that G is not

- Step 4. Because our algorithm for recovering a network without a diode depends on
the symmetry of A-1, we cannot use it directly on G. So, we must use the auxiliary
- networks in order to use our method.
- Now we will show how to recover all of the resistors for I'; and Ig. Recall that A ;-1
-and Ag-! are auxiliary networks without diodes. We have just shown in steps two and
three that we have all of the diagonal entries of A;~1 and Ag'l. We also have all of the
~outflows for ') and for I'q. We also know that Ayl and Ayl are symmetric. First we
. will recover I'y using the same method we used to recover a network without a diode
from Section IV. Then we will recover I using the same method from Section IV.
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Step 5. In this section we will show how to recover I". From step 4 we now have I
and I'y. [y will give us all of the conductors of I, I'y will give us all of same conductors
of T except there will be a zero where the diode is. Therefore we know all of the
conductors of [ and the location of the diode. We can also find the direction of the diode.
Of the two nodes connected to the conductor with the diode, we know which node turns
the diode on and which node turns it off. We also know that the direction of the diode,
from base to tip, goes from the node that is on to the node that is off. Hence we have
recovered all of I". '

V1. Conclusions

1. It would be interesting to consider a network with more than one diode. This
investigation might discover further properties of networks, or even alter the theorems
presented in this paper. Undoubtedly, more than one diode in a network will create even
greater complexity for the inverse problem.

2. The degree of accuracy involved in the recovering of a network with a diode is
also of interest. Examining the accuracy of the recovered conductors, as the network
gets larger and larger, would make an excellent project.

3. The algorithm for locating a diode in a network (as defined in this paper) is
currently being developed into a compauter program. Once complete, this program will
allow for the further investigation of network properties, as suggested above.




