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1 Introduction

We deal with electrical circuits considered as networks where edges
are conductors. There are two types of the nodes of the network:
interior and boundary. We can impose and measure voltages and
currents on the boundary. The first Kirchoff’s law is true within
the interior: all current, that comes into an interior node, will leave
it.
There is a linear map Λ from boundary voltages to boundary

currents. Original problem is to recover conductances of the network
if we know the structure of the network (its shape) and Λ - how much
the voltages influence the currents. I change the problem considering
a Ψ-matrix instead Λ.

2 Preliminaries

A network is represented by its Kirchoff matrix. It is a square matrix
N×N : K = {ki,j} (where N is the number of nodes in the network).
Nodes are numbered so that boundary nodes come first. Any non-
diagonal entry ki,j equals minus conductance of the edge between
nodes i and j (if there is no edge between them then the conductance
is 0). And diagonal entries are sums of the conductances of the edges
incident to the node.
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The Kirchoff matrix (K-matrix) is symmetric, entries of any row
or column sum up to 0. All entries of the matrix are negative or
zero, if there is no edge. Only diagonal entries are positive. This
matrix contains all information about the network.
The edges of the network are divided in groups so that the first

group consists of edges from boundary to boundary, the second:
between the boundary and the interior and the last one consists of
edges which connect two interior nodes. K-matrix is also divided in
blocks by the same rule:

K = K ′ BT

B A

The sizes of blocks are determined by the number of boundary
nodes: Nb and interior nodes: Ni.
The standard inverse problem considers the recovering K-matrix

from Λ-matrix. There is a formula for Λ:

Λ = K
′

−BTA−1B.

I consider not Λ but Ψ:

Ψ = BTA−1B

Λ = K
′

−Ψ.

We consider only connected networks. In the article I consider
networks with no boundary to boundary edges so K

′

is a diagonal
matrix.
For detailed description see [1], [2].

3 Basic theorem

The following theorem 3.4 will be important:
Lemma 3.1 Suppose S and T are two m×n matrices such that:

STS = T TT, (1)
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and there some α1, α2, .., αn (where at least one α is non-zero) such
that:

n
∑

i=1

αisi = 0, (2)

where si is a i
th column of S, then,

n
∑

i=1

αiti = 0,

where ti is a i
th column of T.

Proof We will consider matrices S and T as sets of column vec-
tors. Take inner product of the sum of (2) and any sj:

(
n

∑

i=1

αisi)sj = 0.

But, using (1):

(
n

∑

i=1

αisi)sj =
n

∑

i=1

αi(si, sj) =
n

∑

i=1

αi(ti, tj) = (
n

∑

i=1

αiti)tj.

Thus we have,

(
n

∑

i=1

αiti)tj = 0.

Thereafter:

(
n

∑

i=1

αiti)
2 =

n
∑

j=1

(
n

∑

i=1

αiti)αjtj =

=
n

∑

j=1

((
n

∑

i=1

αiti)tj)αj =
n

∑

j=1

(0)αj = 0.

And so,

n
∑

i=1

αiti = 0.
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Corollary 3.2 Linear independence is equivalent in both matri-
ces.

Corollary 3.3

Ifforasj : sj =
n

∑

i=1

αisi, then
n

∑

i=1

αiti.

Theorem 3.4 Suppose S and T are two m×n matrices such that:

STS = T TT, (3)

than there is a m×m orthogonal matrix R (RTR = I) such that
T = RS.

Proof. I will consider matrices S and T as sets of column vectors.
Then R will map columns of S into T ’s.
Reorder the columns of matrix S so that some first columns form

a linear independent set (call it sub-basis) while all the other are
linear combinations of them. Exchange the columns of T so that
the correspondence between columns of S and T will be kept. By
3.2 T will have the same structure as S.
DetermineR as a operator that maps one sub-basis into the other.

It is possible because the vectors are linear independent. Then the
image of R on any other column of S is a linear combination of
images of the sub-basis (which are sub-basis in T ) where the coeffi-
cients are determined from the formula for the vector:

R(sj) = R(
n

∑

i=1

αisi) =
n

∑

i=1

αiR(si) =
n

∑

i=1

αiti = tj

Thus R is a linear map that takes columns of S into T . To
finish constructing of R we just complete both sub-bases to bases
by orthonormal bases of the orthogonal complements to the sub-
bases.
Consider R: it maps a basis into another preserving inner prod-

ucts of any pair of basis vectors (if both are from S it is clear be-
cause S and T satisfy (1), if any of two is from the complement, the
product will be 0). Then inner product of any two vectors will be
preserved:
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(R(s
′

), R(s”)) = (R(
l

∑

i=1

αisi), R(
l

∑

j=1

βjsj)) =

= (
l

∑

i=1

αiR(si),
l

∑

j=1

βjR(sj)) = (
l

∑

i=1

αiti,
l

∑

j=1

βjtj) =

=
l

∑

i=1

l
∑

j=1

αiβj(ti, tj) =
l

∑

i=1

l
∑

j=1

αiβj(si, sj) =

= (
l

∑

i=1

αisi,
l

∑

j=1

βjsj) = (s
′

, s”).

Then it will be easy to prove that R is an orthogonal matrix.
Apply R to a vector with one 1 and all the other entries 0. The
result will be a column of R. But the norm of the original vector
was 1, then the norm of any column of R is 1. Now apply R over a
vector with 2 ones. The result will be the sum of two columns of R
and the norm of the image will be 2. But

2 = (r
′

+ r”)2 = (r
′

)2 + (r”)2 + (r
′

, r”) = 1 + 1 + (r
′

, r”).

Thus all columns of R are orthogonal terms. And so

RTR = I.

Statement 3.5 If we can form a basis from the columns of S
then there is only one R.

4 Networks for particular Ψ

Theorem 4.1 If a matrix equation

Ψ = BTA−1B, (4)

where the sizes of matrices are known and A is square positive def-
inite, has more than one solution then they will be connected by a
linear map E:
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B2 = EB1 (5)

A2 = EA1E
T . (6)

Proof I apply Cholesky decomposition to A-matrices, i.e., I will
consider each A matrix as a product:

A = CTC,

where C is the uniquely determined upper-triangular matrix with
positive entries on the diagonal. Thus,

BT
1 A

−1
1 B1 = Ψ = BT

2 A
−1
2 B2

BT
1 C

−1
1 C−1T

1 B1 = BT
2 C

−1
2 C−1T

2 B2

(C−1T

1 B1)
T (C−1t

1 B1) = (C
−1T

2 B2)
T (C−1t

2 B2).

Thereafter by Theorem 3.4 there is an orthogonal R such that,

(C−1T

2 B2) = R(C−1T

1 B1).

Now denoting,

E = CT
2 RC

−1T

1 , (7)

we have,

B2 = EB1.

Then I want to show that E will satisfy (6):

ETA
−1
2 E = (C−1

1 RTC2)A
−1
2 (C

T
2 RC

−1T

1 ) =

= (C−1
1 RT )(C2C

−1
2 C−1T

2 CT
2 )(RC

−1T

1 ) =

= (C−1
1 RT )(RC

−1T

1 ) = C−1
1 (RTR)C

−1T

1 = C−1
1 C−1T

1 = A−1
1 ,

so we have,

ETA
−1
2 E = A−1

1 ,

and then,
A2 = EA1E

T .
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Theorem 4.2 If there is linear map E such that,

B2 = EB1

and
A2 = EA1E

T ,

and A1, B1 is a solution of the equation (4):

BTA−1B = Ψ,

then A2, B2 will be a solution of that equation too.
Proof Just compute:

BT
2 A

−1
2 B2 = (B

T
1 E

T )A−1
2 (EB1) = BT

1 (E
TA−1

2 E)B1 =

BT
1 A

−1
1 B1 = Ψ.

Theorem 4.3 If A1 and A2 are positive definite, then any F such
that,

A2 = FA1F
T , (8)

can be decomposed into,

F = CT
2 PC

−1T

1 ,

where P is an orthogonal matrix and C1 and C2 are triangular ma-
trices of Cholesky decomposition of A1 and A2.

Proof Using Cholesky decomposition:

A2 = FA1F
T

CT
2 C2 = F (CT

1 C1)F
T

CT
2 C2 = (C1F

T )T (C1F
T ),

and by 3.4,

C2 = P (C1F
T )

C−1
1 P−1C2 = F T

F = CT
2 P

−1T

C−1T

1

F = CT
2 PC

−1T

1
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5 Networks of fixed shape

In this section I assume that the network has fixed shape. The only
variables are conductivities. I will need some new definitions:

Definition 5.1 ShB - is the set of matrices B = {bij}, Ni ×Nb,
whose entry bij is either negative if there is an edge between nodes
i and j or equal to 0 if not.

Definition 5.2 ShA - is the set of positive definite matrices A =
{aij}, Ni × Ni, whose non-diagonal entry aij is either negative if
there is an edge between nodes i and j or equal to 0 if not. A has
to be symmetric with positive diagonal entries.

Definition 5.3 ShK - is the set ofK-matrices such that B ∈ ShB,
A ∈ ShA and for any row of K, corresponding to an interior node,
the sum of entries is 0.

K = K ′ BT

B A Sums of entries in these rows are 0.

Definition 5.4 U is the intersection of two sets of linear maps:

U1 = {D such that there is a B ∈ ShB : DB ∈ ShB}

and

U2 = {D such that there is a A ∈ ShA : DADT ∈ ShA}.

Any D ∈ U is non-singular because DADT is non-singular, if A and
B are a solution of (4) then images of them will also satisfy that
equation by 4.2. Any D ∈ U takes some K into another preserving
zeros:

D(K) = K
′

D K
′

BT = K
′

(DB)T

B A DB DADT
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For any D1 and D2 ∈ U their product D2D1 ∈ U .
Definition 5.5 U

′

is the subset of U , consisting of D which not
only preserve zeros in A and B but also map a K ∈ ShK into another
element of ShK .
For any D1 and D2 ∈ U

′

their product D2D1 ∈ U
′

.
Definition 5.6 IZ is the set of diagonal matrices Iz with positive

diagonal entries (z is the vector of diagonal entries of Iz). And I is
the matrix of identity.
It is easy to see that U is never empty: it always include IZ ,

Because any Iz does not influence upon the shape of matrices A and
B: it keeps signs of all entries.

Definition 5.7 Vector 1 is the vector whose all entries are 1.
Theorem 5.8 For any D ∈ U there is the only z such that

IzD ∈ U
′

. I will call this Iz - the correction to D.
Proof For any Iz, IzD ∈ U . The only thing we need to look at

are sums in the rows. Consider the matrices A and B which D keeps
within the sets ShB and ShA. Now write down the equation of 0
sums of entries in a row:

(IzDB)1+ (IzDADT Iz)1 = 0

Iz(DB1+DADT z) = 0

DB1+DADT z = 0

DADT z = −DB1

z = −(DADT )−1DB1

z = (DADT )−1(−DB)1

z = (A
′

)−1(−B
′

1).

We have got the formula for z. We must check that all entries of z
are positive. B

′

∈ ShB, so all entries of B are non-positive. Then
(−B

′

1) is a vector with positive entries. All entries of (A
′

)−1 are
positive too, because A

′

∈ ShA. Thus z consists of positive entries.
Corollary 5.9 D ∈ U

′

iff the correction is the identity.
Corollary 5.10 IZ ∩ U

′

= I.
Proof It is clear that Iz−1 will be a correction for Iz, because

Iz−1Iz = I. So the correction is not identity unless Iz = I.
Corollary 5.11 If U 6= IZ then U

′

includes more then only I.
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Proof We know that IZ ∈ U . Then there is a D ∈ U such that
D /∈ IZ . Then there is a corrected map IzD whose correction will
be the identity, and so IzD ∈ U

′

. And IzD will not be the identity,
because if it were the identity then D=Iz−1 but D /∈ IZ .

Theorem 5.12 Any E ∈ U
′

takes one K-matrix into another.
Proof Consider E(K) where K is a K-matrix (a Kirchoff matrix

of a network). E(K) will have the same Ψ and the same shape. The
only thing that we need to check is that entries of any of first Nb

rows sum up to 0. We know that sums of entries of last Ni rows is
0 in K and E(K):

A1+B1 = 0

EAET1+ EB1 = 0.

We can multiply by E−1 the former equation because E is non-
singular. Now extract −A−1B1 from both equations:

−A−1B1 = 1

−A−1B1 = ET1.

Then,

ET = 1.

Look at the sum of entries of rows in (EB)T :

(EB)T1 = BTET1 = BT1.

The sums have not changed. Thus the sums in K itself have not
changed too. And E(K) is a K-matrix.

Corollary 5.13 If U 6= IZ then a solution of the problem of
recovering the network from the Ψ-matrix and the shape of the
network is not unique.

Theorem 5.14 Criteria of uniqueness. If a solution of the
problem of recovering the network from the Ψ-matrix and the shape
of the network is not unique then U 6= IZ .

Proof The non-uniqueness of the solution means that there are
two different K-matrices K1 and K2 with the same Ψ. It means that

10



there are two solutions of (4). Then by 4.1 there is a E that takes
A1 and B1 into A2 and B2. Thus E ∈ U . But A2 and B2 are blocks
of a K2 and K2 ∈ ShK . So E ∈ U

′

. Then U 6= IZ because K’s are
different and so E can not be identity.

6 Networks with no edges between interior

nodes

These networks have diagonal A matrix. So its Cholesky decompo-
sition will be a product of a diagonal matrix C with its transpose.
Consider equation (4):

Ψ = BTA−1B,

denoting:

H = CB,

we will have:

Ψ = HTH.

We know that any two solutions are connected by an orthogonal
matrix R = {ri,j} (see 2.1):

H2 = RH1.

If the only possible R were I then there would be the unique H.
And E for (5− 6) will be by (7):

E = CT
2 RC

T−1

1 = CT
2 C

T−1

1 = C2C
−1
1 .

Thus E ∈ IZ and it will lead to uniqueness of the whole problem.
So I want to force R to be the identity. All I know about R is

that it is orthogonal and it preserves the shape of H. C is a diagonal
matrix with positive entries, thereafter H has the same shape as B:
H ∈ ShB. Thus R should preserve zeros and negative signs in H.
What should B be so that R will be the identity? I had to

give up sign conditions because it was very difficult to use them.
Then I considered the problem: how I should put zeros in B so that
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the problem of recovering the network from Ψ and shape will have
unique solution not depending upon the value of conductances.
Consider R as a collection of rows: ri. Orthogonality gives

Ni(Ni − 1)/2 non-linear equations for rows. Each zero as a value
of an entry hi,j of H gives a linear equation for the i

th row of R.
If R were diagonal then R = I would follow from the equation of
orthogonality of R: RTR = I. Managing zeros in H, I want to have
R diagonal.
There is a homogeneous system of linear equations for any row ri

of R consisting of equations with coefficients from the columns of H
which have zeros in the ith row. All coefficients of rii will be 0. So
the system gives no restrictions on it. Thus the system has Ni − 1
variables. The space of solutions of the system will be a subspace
of a RNi−1-space. And the dimension of the subspace will be Ni− 1
without the number of linear independent equations of the system.
If the system has only zero solution then the entries of the row

of R will be all zeros except the diagonal entry, which is free to be
any number. If it is true for systems for all rows of R then R will
be diagonal, and so identity and then I will have the uniqueness of
whole problem.
But I can reach the same result using fewer of zeros. I can use

equations of orthogonality to eliminate dimensions in the subspaces
of solutions of the systems.
Here is how to do it. If a system for a row is full (the number of

unknowns is equal to the number of linear independent equations)
then the row will consist of 0 except the diagonal entry. Then using
orthogonality it is clear that all other rows of R must have 0 in the
column of non-zero in that row. Thus the number of unknowns in
the remaining systems became less. If I can continue the process
this way I will have diagonal R at last.
Reorder rows in H and R in the order of consideration of the

rows by the process. Then to make the process work R should have
the proper amount of linear independent equations in the systems:
(Ni − 1) for the top row, then (Ni − 2), etc. up to one for the next
to the bottom row (rows are after reordering):
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. 0 0 0 0

. . 0 0 0

. . . 0 0

. . . . 0

. . . . .

This means that for each row ri there are enough linear independent
columns of H with 0 in the ith row.
This will be true if I can select a linear independent collection of

columns B, so that there will be enough zeros. If it is impossible then
I will have to select linear independent equations from the system
for each row of R, and check the number of them.
Thus I am really interested in some kind of linear independent

columns only. So after a certain moment I do not care about the
rest of columns of H, i.e. I pay no attention to additional boundary
nodes.
I want to find networks such that their shape will lead unique

recoverability conductances of all edges. So my linear independent
columns have not to lose the independence for any values of their
entries. All I know about H is the positions of zeros and negativeness
of all the other entries. or negative. To check linear independence
I need some more things. Sum of vectors is a vector of sums of
coordinates, here it will be just the same way, but an entry of the
sum is 0 if it is a sum of zeros and the entry is non-zero in the other
case. Two vectors are equal if they have zeros in the same places,
because if so then I can choose numbers so that they will be equal
and if not then there is no way to get these vectors equal.

Criteria for linear independence of a collection of vectors if we
know only zero entries and we know that all other entries have the
same sign:
If a vector is a sum of some vectors of the collection then it will

be the unique way to express the vector as a sum of the vectors of
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the collection.

Example Now I want to show a non-triangular matrix B which
satisfies all conditions, i.e., networks of this shape is uniquely recov-
ering from Ψ-matrix:

. 0 0 0 .

0 . . 0 .

. . 0 . .

. 0 . . .

Here four first columns are in use.
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