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Abstract

This paper discusses the technique of probing a network of resistors with bound-
ary currents and voltages in order to determine the resistance of any resistor in the
network in one step.

Key Terms:

Network of Resistors: A Network of Resistors is a collection of resistors (also called edges)
bound together at nodes, which obey Ohm's Law (V=IR). There are two types of nodes: bound-
ary nodes and interior nodes. Interior nodes are nodes which must also obey Kirchhoffs Current
Law, while boundary nodes do not. A network of resistors will
also be referred to as a nefwork.

Circular Planar Network of Resistors: A Circular Planar
Network or resistors (or just circular network) is a network of
resistors which can be embedded inside a topological disk D
such that all the boundary nodes of the network lie on the
boundary of D.  See Figure 1.

Layer or Depth of a Node: The layer of a node is the
minimum number of resistors that would need to be passed
through to reach that node, starting from the boundary. The
layer or depth of a node is determined inductively as follows:

1) Define the depth of all boundary nodes as zero.

2) Any node connected to a level zero node by a single Figure 1: An example of a
edge, which has not already been defined as a level circular planar network. The
zero node, will be defined as a level one node. white nodes are boundary

3) Any node connected to a level one node by a single nodes.

edge, which has not already been defined as a level
one node, will be defined as a level two node.
Continue in this manner until all nodes in the network of resistors have been so labeled.
The deeper the node, the greater its assigned value. Example: Figure 1 has three boundary
nodes and one level one node.

Layer or Depth of a Network: The layer or depth of a network will be defined as the depth of
the deepest node in that network. Example: Figure 1 is a level one network.

Layer or Depth of an Edge, Resistor, or Conductor will be defined as i, where i is the depth
of one of the resistor's nodes on the andj is the depth of the other and i <j. Example: an edge
formed between a layer 2 node and a layer 3 node is referred as a layer 2-3 edge. The deeper
the edge, the larger the value of (i +j). (Note: 0<(j-i)<1)



The Dirichlet-to-Neumann Map

Boundary voltages (called Dirichlet data) uniquely determine boundary currents (called
Neumann data). The exact relationship is linear, being based on Ohm's Law, and is given by the
following equation:

Ap=6

where A= (l,.j) is the Dirichlet-to-Neumann Map represented by an n xn matrix (where n is the
number of boundary nodes), @ is the n x I column vector whose i " entry corresponds to the
voltage at the i™ boundary node and O is the n x I column vector whose i entry corresponds to
the resulting current at the i "™ boundary node. For the purposes of this paper, we restrict our-
selves to inspecting or specifying only Dirichlet and Neumann data.

Medial Graphs

Given a circular planar network of resistors, a medial graph is constructed by first placing
vertices at the midpoint of each edge in the network and then joining all adjacent midpoints
together (adjacent midpoints meaning that they lie on edges in the network which share a
common node, but which can be joined together without crossing through another edge in the
network). See Figure 4a,b,c. By doing this, you effectively enclose each interior node in its own
cell. The treatment of boundary nodes is only slightly different. If the boundary node is on a
spike (see Figures 4c, 2a) then the two medial line segments that cross through the spike sur-
round that boundary node. If the boundary node is not on a spike, then medial lines from each
side of the node will surround it (see Figures4c, 2b). Notice that this also encloses the boundary
nodes in cells.

Figure 2a: Boundary node on a spike Figure 2b: Boundary nodes on an edge

Figure2: White nodes are boundary nodes. Medial lines are shaded red. The netiwork and interior nodes are black.

Medial Lines

The next step is to define medial lines in the medial
graph. Each medial line begins and terminates at a point on
the boundary (unless it is a closed loop--see below). Start at
one of the terminating points and follow it through the
network. At every intersection, choose the path such that it
will bisect the other path (i.e. go 'straight' through each
intersection) until you reach the boundary or otherwise
come to an end, thus defining one medial line. See Figures
4d, 3. Continue in this manner until all the edges in the
medial graph are contained in medial lines.

Figure 3: Crossing medial lines




&
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Figure 4a: Given a circular planar graph. Figure 4b: Mark the midpoints of each edge in the
nettwork.
Figure 4c: Connect adjacent edges Figure 4d: Distinguish between different medial lines.

The different colors are only aids in showing the different
lines.



Derinmion 1 The depth of a medial line will be defined as i-j, where i- is the depth of the
deepest edge in the network of resistors which the medial line intersects. The deeper the medial
line, the larger the value of (i + ).

How Medial Graphs/Lines Embed Information About the Network

Medial graphs/lines are extremely useful when analyzing electrical networks. Any networks
which are the same will have the same medial graphs, so that behavior of the medial lines will
tell you whether or not a network is completely recoverable from boundary measurements
alone. There are two medial line formations important in determining whether or not a network
is entirely recoverable: lenses and self-intersections. A lens is formed by two different medial
lines intersecting each other twice, while a self-intersection is formed by a medial line intersect-
ing itself, forming a closed loop. See
Figure 5. Only if medial lines form
lenses or self-intersections is the network
not entirely recoverable form boundary
measurements alone. For the purposes,
of this paper, however, only networks
which are fully recoverable will be
discussed.

To this extent, the most important .
feature about the medial graphs is the B / \ - "
way potential and current information of S '
the network can be embedded in the

medial graph. Figure 5a: A lens formed Figure 5b: A self-intersection.
: between the red and green  Thjs occurs around an interior

. As nOted.befo_re’ the medial graph medial lines. Lenses indicate spike.

isolates each interior and boundary that a set of edges are in series

node in its own cell. To each of these or in parallel. In this case there

cells, a number can be associated to are two edges in parallel in an

represent the potential at the corre- equivalent nefwork.

sponding node. See Figure 6. In the
remaining cells not associated with nodes,
there is assigned a "circular current,” to
which there is associated a counter clock-
wise rotation (e.g. the "J" cells in Figure 6).
Each "circular current" cell partially defines
the current running conductors adjacent to
it in the following way:

1) Choose a direction of current flow
through the resistor adjacent to
both "circular current” cells.

2) Subtract the "circular current”
whose rotation arrow opposes this
chosen direction from the one
whose rotation arrow agrees with

3) This yields the current flowing in Figure 6: The current running from V, to V, is given by
the desired direction through the J-d,=(V,-V,) ¥,,, where ¥, is the conductance of
conductor. See Figure 6. the adjoining edge.




Since all medial graphs are valence four, it is possible to
arrange all current cells and voltage cells so they do not share an
edge with a cell of the same type-- much like a checker board. See
Figure 7.

Introduction to Landrum's Method

The technique of probing networks with Dirichlet and
Neumnann date to recover any resistor in a circular planar network
by imposing only one set of boundary conditions (i.e. in one step)
will hereby be referred to as Landrumm's Method, after Joshua
Landrum who first introduced the technique in his 1990 paper,
"Three Algorithms for the Inverse Conductivity Problem." Since
Landrum's Method allows us to recover any resistor in one step it
has the advantages of being more accurate and faster when com-
puting deep edges then other algorithms, which often require that
other conductivities be recovered first. The main disadvantage is
that Landrurn's Method can only be applied to a very special family
of networks, whose properties will be the main focus of this paper.
Before saying more about these properties, an introduction to
Landrum's Method is in order.

Consider the rectangular network in Figure 8a, b, where both
the actual network and its medial graph are shown. In Figure 8c,
imposed boundary voltages (their values depicted by numbers
next to the nodes), imposed boundary currents (their values
enclosed in parentheses), and their internal implications (the

Figure 7: The medial graph
from page three showing how
voltage and current
infromation can be embeded
in it. Circular current cells are
denoted with J's while voltage
cells are denoted with Vs.
Note the added border around
the medial graph formed by a
topological disk intersecting
the ends of each medial line
helps to belter define the
boundary current and voltage
cells . This type of boundary
will be used in all medial
graphs found in this paper.

squiggly lines which represent zero current flow across the resistor and either a voltage of 1 or 0
at each node on that resistor if the lines are red or green respectively) are shown. (It may seemn

be at potential 0.)

strange that both boundary currents and voltages may be specified,
but this will covered later.) These internal implications can easily be
found using Kirchhoffs Current Law. (For Example: if a boundary
potential and current of 0 are specified at a boundary node, it must
be that the neighboring interior node must have a potential of 0.
Further, any interior node with a potential 0, surrounded by three
nodes with a potential zero, must have its fourth neighboring node

The most important thing to notice about the setup in Figure 8¢

is that the network has effectively been divided into two parts, so

Figure 8a: Rectangular
neltwork

Figure 8b: The correspond-
ing medial graph with

has been recovered in one step.
boarder.

that all the current flowing in from the top of network must flow
through the blue conductor as it flows out the bottom of the net-
work. Since both the voltage drop (1-0 = 1) and the current (which
is equal to the current flowing in one end of the network) are
known, it is easy to find the conductance of that conductor by Ohrr's
Law. Namely, it is equal to the current flowing across it:

I=Vy
I=(1-0)y
I=y

Thus, the conductance of a resistor buried deep within the network



In Figure 8d, the corresponding situation is shown on the medial graph, with the corre-
sponding imposed boundary conditions shown in white and their implications shown in black.
Regions where there are potentials of one and zero current and where there are potentials of
zero and zero current are shown by the red and green shadings, respectively. Note the current
running from left to right through the blue resistor is known, being equal to b - a, which is the net

current flowing in/out one end of the network.

DiFmvimion 2:  for the purposes of this
paper, a medial region will be defined as a
region representing zero current flow and
known potentials in the medial graph which is
imposed by boundary conditions alone.

Now, back to the question as to why both
Dirichlet and Neumann data can be specified.
In general, one can specify as many boundary
voltages and boundary currents as there are
boundary nodes (e.g., if there are ten bound-
ary nodes, 5 voltages and 5 currents could be
specified). However, caution must be exer-
cised, since not all combinations of currents
and voltages will work together. Consider the
case of a rectangular network (as in Figure
8a), where the right to impose as many
conditions as possible is exercised by specify-
ing a current of 1 at every boundary node.
Clearly, this can not work as there would only
be current flowing into the network, violating
Kirchhoff's Law. For clarity's sake, the follow-
ing definitions will be used:

DerFinmion 3: Any boundary node with
imposed potential and current conditions will
be called an alpha-node.

DerFinimioN 4: Any boundary node with
unknown current and potential will be called
a beta-node.

Let us investigate what happens when
we impose current and/or voltage conditions,
by looking at the case depicted in Figure 8c.
First, number the boundary nodes clockwise
consecutively, starting at the upper right-hand
node (the 0(0) alpha-node) as number 1.
Then impose one extra voltage condition at
node 8 so that its potential is 0 (the reason for
this will be clear later). Let v, represent the
voltage at the i”” boundary node. Then rela-
tion

Ap=06
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Figure 8c: The imposed Dirichlet and Neumann
conditions set up regions of zero current and known
voltage (proven by Kirchhoff's Law) which act to
separate the network into tivo parts, so that all current
flowing in the top of the network rmust flow through the
isolated blue resistor. Since both the current flow and
voltage drop across the resistor are known, its conduc-
tance can be easily found using Ohm's Law.
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Figure 8d: The sarne situation shown in the medial
graph. Imposed Dirichlet and Neumann data are shown
by a white fill. The colored sections mark regions of
known (zero) current flow and known voltages. Note
the region outlined in the blue square, which corre-
sponds to knowing the current and voltage drop across
the blue resistor above. This type of touching belween

medial regions is the key to Landrum's Method.



yields the following system of equations:

UQI|Q+ UIU’I IIJ+ Ull'{ li+ UIZ'{ 12+ Ul3! 13+ UH'lll 14+ UI'Jl I"+ U]E-!l Iﬁ+ ',l l?+ !: I?+ ! + { + I + ! +

l'i,z + !, + I_. + Uzs i2s T Uzs’.,ze"' Uz7’.,z?+ Uzs! 28T Undlingt Uso’.,sa"' U:w i3 0

fori=1,2,3,4,56,7,17,18, 19, 20, 21, 22, 23, 24.

Although there are fifteen equations and fifteen unknowns, that does not guarantee a
unique solution. However, there is a simple graphical technique to see whether a unique solu-
tion exists, but to prove this, a result from [1] must be used. Let T'be a mxn matrix and let
Y=(y,,¥,, - ¥ ) and Z=(z, z,, ..., z,) be two sets of integers so that 1 <y<mand1<z<n. Then
T(Y;Z) is the sub-matrix formed by the entries in the rows Y and columns Z of T.

Let I" be a connected graph with a boundary (T" need not be planar). LetI denote the set
of interior nodes. If p and g are two boundary nodes, a path from p to g through I is a sequence
of edges (p, r), (r,, r,),... ,(r,, @) inT where the r, are distinct interior nodes. Suppose P = (p,

.. p,) and Q =(q, ..., q,) are two disjoint sets of boundary nodes. A connection from P to Q
through I' is a set o = (01, ..., 0,) of disjoint paths through I', where for each 1 <i <k, o, is a path
from P, to Q x and Tis an element of the permutation group S,. Let C(P;Q) be the set of all
connections from P to Q. For each & = (0., ..., @) in C(P;Q), let:

1) 1, be the permutation of (qf, q, -» q,) which occurs at the endpoints of the
paths (a, ..., a,);

2) E, be the set of edges in a;

3) J_ be the set of interior nodes which are not the ends of any edge in o.

4) Kbe the NxN (N is the number of interior and boundary nodes) Kirchhoff
Matrix, which is similar to A, but maps boundary and interior voltages to bound-
ary and interior currents as (also based on Ohrn's Law):

K%=0

Where ¥ and © are Nx] column vectors where 9, is the voltage at the i node
and @, is the resulting current out of the i” node. Every principle submatrix of K
is positive definite.

5) +y(e) represents the conductivity of the resistor corresponding to edge e.

Lemma 1 (from, and proven in, [1]). Let (T, y) be a connected resistor network. Let
P=(p, p, ...p)and Q =(q,q,...q,) be two disjoint sequences of boundary nodes. Then

det A (PQ) - det KD = (0 Ysan(@q X [T (o) detk ;1)

=K vecPQ €€k
TES, s

This result yields the following theorem:

Theorern 1. Suppose T is a circular planar resistor network and (P;Q) = (p, ...p,;q, .-»q,)
are a set of pairings between boundary alpha-nodes and beta-nodes. Then, if (P;Q) are con-
nected through the interior with only one permutation of pairings of the p/s and qs, then the
imposed conditions yield no confradictions and are legal.



Proof: Since K(1,1) is positive definite, det K(J,J)>0 for allJc . Also, since y(e) > 0, it
follows that det A(P;Q) # 0 if there is only one permutation of (g, g, ..., q,) determined by a
connection. Thus A(P;Q) Py = 9@ always has a unique solution. [J

A useful tool for checking to see whether or not alpha-nodes can be uniquely paired with
beta-nodes is the technique of reducing the network. When it is asked whether or not imposed
current and voltage conditions can exist in a network, it is really being asked whether or not
there is a set voltage patterns such that Kirchhoff's Law is not borken in remaining part of the
network (i.e., the part not directly affected by the conditions in question). To answer this, first
remove all edges in the network which have specified currents across them (e.g. no current).
Then define boundary nodes for the reduced network as any rermaining nodes which were

either original boundary nodes or any original interior
nodes with a known potential (note that beta-nodes
will never be removed). The latter type of boundary
nodes for the reduced network will have imposed
upon them the condition that zero current runs
through them, since they were originally interior
nodes. For an example based on the previous rectan-
gular network, see Figure 9.

Since reducing the network removes edges, it
cuts down on the number of possible non-intersect-
ing paths connecting alpha- and beta- nodes, so it is
easier to see if permutations of connectivity are
unique. Another benefit to examining a reduced
network is that excessive boundary current specifica-
tions in the original network are revealed. Because
only the reduced network alpha-nodes need to be
paired with beta-nodes (which are the same for both
the original and reduced networks) to show that the
set of boundary specifications in the original network
is legal, it must be that the alpha-nodes in the original
network can be paired with the alpha-nodes in the
reduced network. Thus, there need only be the as
many alpha-nodes in the original network as there
are in the reduced network. Example: In Figure 8c,
node 32 could have been specified as a 0 (0) alpha-
node without affecting the interior implications of the
imposed boundary conditions. However, nodes 1
and 32 could not be paired to beta-nodes via non-
intersecting paths, leaving the question as to whether

rrrroror?
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Figure 9: The reduced network of the of the
previous rectangular case. [t is sufficient to ask
whether or not this pattern of currents and
voltages is non-contradictory in the reduced
network to determine if the original patterns of
currents and voltages were non-coniradictory in
the original network. The red lines show how
each alpha-node is uniquely paired with a beta
node via non-intersecting paths. Thus, the
imposed current and potential conditions are
non-contradictory in both the original and
reduced nelworks.

or not the boundary specifications were legal open. But whether or not nodes 1 and 32 are both
specified as alpha nodes does not matter when examining the reduced network. In either case
the reduced network only has 15 alpha-nodes, showing that there only needs to be 15 alpha-
nodes in the original network (which is indeed thec case).

These two properties of reducing graphs allows for the proof of the following theorem:

Theoremn 2. Any square, rectangular network (with boundary spikes) can be entirely recov-
ered using Landrum's Method, regardless of the size of the networR.
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Proof: Let N be the layer of the square rectangular network (with spikes), R. Further, let w
be the width of R, equaling the number of boundary nodes along one edge. Then:

N<(w+1)/2

Let P equal the number of boundary conditions (i.e. the number of specified potentials and
currents) needed to imply known voltage and current conditions to the innermost layer. Then

P=2(N+(N-1))
<((w+1)+(w-1))
=2w

Notice the number of available boundary conditions needed to penetrate to the deepest
layer twice (once from each side of the network) is less than or equal to the total number of
boundary nodes, 4w. Thus, there are always enough boundary conditions available to impose
the desired potentials on the deepest resistors. It is easy to see by reducing the graph that these
conditions are also legal.

Whenever Landrum's Method is used to penetrate to the center of a square network, the
medial graph will resemble that in Figure 10a. Note that regardless of the size of the network, in
the reduced network, all alpha-nodes will be paired uniquely to beta-nodes and thus the bound-
ary conditions necessary to create these medial regions are legal.

Recovering other resistors in the network using Landrum's Method corresponds to setting up
medial regions as in Figure 10b, which can be interpreted as the result of shifting the medial
regions necessary for recovering the deepest resistors. Note that as the medial regions shift, the
blue lines showing the unique pairings of all the alpha-nodes with beta-nodes shift with them so
that boundary conditions necessary for creating these other medial regions are also legal. Thus
any rectangular network with boundary spikes is recoverable using Landrum's Method, regard-
less of its size. The proof for a square network without boundary spikes is similar. O

Figure 10a: Note the shape of the reduced
network resulting from penetrating to the center
of a square network using Landrum's Method is

such that all alpha-nodes are uniquely paired
with beta-nodes via non-intersecting connec-
tions (the blue lines).

Figure 10b: When other resistors are recovered,
the medial regions representing such a recovery
are merely the result of shifting the medial
regions required for the Landrum-recovery of the
deepest resistors. Note that as the medial
regions shift, the blue lines showing the unique
pairings of alpha-nodes and beta-nodes in the
reduced network shift with themn so that the
boundary conditions must be legal by
Theorem 1.
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conductor (blue). Imposed boundary conditions are

Hexagonal Networks

Aside from rectangular networks, certain hexagonal networks can also be entirely recov-
ered using Landrum's Method, such as the level two hexagonal network shown in Figure I1a.
An example of the boundary conditions needed to recover the conductivity of a deep resistor is
shown in Figure 11b. Note the shapes of the medial regions. The touching edges of each

region consist of a voltage cell surrounded by two
current cells--they are each three cells long. In fact,
for Landrum's Method to work in hexagonal net-
works, the touching edges of the medial regions
must always be no more than three cells long,
otherwise internal contradictions arise. In Figure
11c the red medial region has been extended (de-
picted by the yellow addition) so that its touching
edge is longer than three cells. Note how A, B, and C
determine X. Now A,D, and X determine Y, but so do
C, E, and X, which leads to a contradiction, and
hence the medial regions cannot exist together.
Another way to see if adjacent medial regions lead to
contradictions is by looking at the "star" (shaded blue
in Figure 11c) formed by the current cell adjacent to
the voltage cell wedged between the two medial
regions and all other voltage cells also adjacent to it.
If more than one of the points of the star intersects
the medial regions (as in Figure 11c¢), then there will
be contradictions. Otherwise there will be none (at
least not nearby...). This star feature also exists for
other networks (such as the heptagonal network, q.v.).

Figure 11a: A level two hexagonal nelwork.
Boundary nodes are marked with dots.

Figure 11b: An exarnple of recovering a level 2-2 Figure 11c: Hexagonal networks must have no

larger than three-sided (i.e. 2 current cells surround-

those with a white fill. ing a voltage cell) edges which touch. Otherwise an
illegal contradiction results.  A,B, and C determine
the value X. Then Cells A, X, and D deterrmine Y.
However, C.X, and F also determine Y, so there is a
contradiction. For a network to have non-contradic-
tory medial regions, a "star" must be formed with

only one point existing in either region.
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Although Landrum's Method works for recovering small hexagonal networks such as in
Figure 11a, any hexagonal networks of level greater than two cannot be entirely recovered, such
as the level three network in Figure 12a.

This network is too large to create medial
regions with length-three edges deep within the
network. Only edges that can be reached by
imposing boundary conditions such that not
more than one 0-0 edge (or corner) has an
alpha-node specified per medial region can be
recovered.

Figure 12b shows what happens when
more than four corners have alpha-nodes
imposed on them. Since all medial regions
must be convex, the medial region will never
have a edge less than the length of one of the
sides of the network, which in this case is
greater than three cells. Thus, the desired
length three edge cannot be made by specify-
ing alpha-nodes at more than four corners.

Similarly, no more than three corners can
have alpha-nodes placed on them, as shown in
Figure 12c¢. Again, in order for the medial
region to be convex, it must have sides longer
than three cells, making the region useless.

Following the same reasoning, there can't
be two or more corners with alpha-nodes on Figure 12:1!.' A Level four h.exagonaf nefwork cannot be
them. See Figure 12d. Using this information, entirely recovered with Landrum’s Method.
it is easy to determine whether or not a resistor
could be recovered using Landrum's Method. See Figure 12e. In order to do so, simply set up
the desired medial regions, keeping in mind that they both need to be convex and need to touch
along edges that are of length three or less (look for the star). If either of these desired medial
regions indicates that more than one corner must have alpha-nodes specified on it, then the
region is bogus and cannot be set up.

However, just because the resistor can't be recovered by one medial region does not mean
it can't be recovered by another medial region. This is the case in Figure 12e. Since medial
graphs are 4-valent, there are always ftwo ways to isolate a resistor--each one using one of the
two medial lines passing through the resistor to act as the barrier between the two regions. In
Figure 12e, the resistor can be recovered if the alternate medial regions are used. Figure 13
shows which resistors can and cannot be recovered using Landrum's Method. More will be said
about this later in the paper.

Theorern 3. Only level two and smaller hexagonal networks such as in figure 11a can be
recovered entirely using Landrum's Method.

Proof: Let n be the number of complete hexagons intersected by a ray originating from the
central hexagon of a hexagonal network, perpendicular to one of its edges (e.g., in Figure 12a,
n =2). Further, let N be the depth of the network, and B be the number of boundary nodes.
Then,

N=2n
B=6(n+1)



Figure 12b: The red region represents imposed
condifions and the green region shows their implica-
tions. Since medial regions must be convex, specifying
alpha-nodes at four or more corners results in a region
with an available edgelonger than three cells, and is
thus useless in Landrum's Method.

Figure 12d: Even if as few as two corners have alpha-
nodes on them, the medial region will vield edges of
length greater than three. Note that on the ends there
are two edges of length two, but these could be rore

easily specified by placing potential conditions at each
corner, and thus the extra conditions used in this case
do not act to create a medial region that could pen-
etrate the network any deeper than could be achieved

with fewer boundary specifications.

Figure 12¢: Simnilarly, there cannot be three or more
corners with alpha-nodes placed on them, otherwise all
of the edges of the medial region will be longer than
three cells, making them useless. Again, the red region
represents imposed boundary conditions while the
green region representis their implications.

Figure 12e: Using the previous information, it is easy to tell

whether or not a resistor can be recovered with Landrum's
Method. First, the desired edges along the resistor are set
up (note the stars) and then the smallest convex regions

are made to fit these sides. If either of these regions

indicates that alpha-nodes must be specified at more than
one corner, then the desired regions cannot be setup and

the resistor cannot be recovered. Note that in this case, the

red region covers more than two corners, and thus the

resistor in question cannot be recovered with this kind of

medial region. Howeuver, this resistor can be recovered by

approaching it in a different way.



Now, the number of boundary conditions which nee}l3
to be specified in order to reach the innermost node (i.e.
number of imposed potentials and number of imposed
currents) is:

2N=4n

To probe to the center, one medial region must reach
the innermost layer while the other must reach it and go
one step further, so that the required boundary conditions
needed to isolate a level N-N resistor:

dn+4n+2=8n+2
Figure 13: A graph showing which
resistors can (green) and can't (red) be However, the number of imposed boundary conditions

recovered with Landrum's Method cannot be greater than the number of boundary nodes, so it
Notice how the level 2-2 resistors can't be must be that:

recovered, although all of their neighbors
can.

B=8n+2
6n+628n+2
n<2

Thus, regardless of whether or not they are legal, just to be able to get the proper potentials
specified in the center requires a layer four network or smaller. But as was just shown, a layer
four network cannot be probed because specifying those voltage conditions cannot be done
legally. Therefore only hexagonal networks of level 2 or less can be entirely recovered using
Landrum's Method. [

Hexagonal Networks with Boundary Spikes

Because only a hexagonal network (without spikes) of layer two or smaller can be entirely
recovered, it is natural to conjecture that a hexagonal network with boundary spikes (or spiked
hexagonal network) such as in Figure 14 cannot be
recovered unless it is a level one network. This assump-
tion is correct and easily proven using the same node
counting techniques used previously:

Let n, N, and B be defined as they were in the proof
for Theorem 3. Then, for a spiked hexagonal network,

N=2n+1
B=6n+6

Now, the number of boundary conditions which
need to be specified is to isolate a level N-N resistor is:

(4n+2)+(4n+4)=8n+6

For this to be less than or equal to the number of
boundary nodes, n = 0. Thus, the spiked hexagonal Figure 14: A level three spiked hexagonal
network can be no deeper than one layer. network. This network cannot be entirely
recovered using Landrum's Method.
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Other Hexagonal Networks

Besides the hexagonal networks previously discussed, there are other types of networks
based on hexagonal tilings which can be completely recovered using Landrurn's Method, such as
the friangular hexagonal networks depicted in Figure 15a, b. These two examples are both
entirely recoverable using Landrum's Method. Figures 15¢, d show examples of recovering the
deepest resistors in the networks. Another level 3 triangular hexagonal network (this one with a
hexagon center rather than a node) which cannot be recovered with Landrurmn's Method is
shown in Figure 16a, with an example of the problems that arise when trying to isolate a level 3-
3 resistor. Note how the medial regions do not cut back sharp enough so that only one of the
star's points intersects the medial regions. More will be said about this in the Section X.

Figure 15a: A level tiwo Figure 15b: A level three Figure 16a: A level thr?e triangular
triangular hexagonal triangular hexagonal hexagonal netiwork w.fnch carnot be
network can be completely network can also be entirely recovered with Landrum's
recovered with Landrum's completely recovered with Method.
Method. Landrum's Method

Figure 15¢: Re(;o;)eyy of a level Figure 15d: Recovery of a level 2- Fl]g'ure 16b: An exampie of how
1-2 resistor in a level 2 triangular 3 edge in a level 3 triangular recovery of the deepest layers cannot be
hexagonal network. White hexagonal network. White done. White indicates imposed bound-
indicates imposed boundary indicates imposed boundary ary conditions. Note the star region on
conditions. conditions. Note: the yellow the top has two tips inside the medial
potential was determined to be | regions, indicating that the boundary
as all of it's neighbors were found conditions are illegal. Attempted
to be at potential 1. Landrum-recovery in another way leads

to the same difficulties.



15

Circular Networks

DEerFiniTION 5. A circular network (Note: not a circular planar network) of type C(m,n) is
composed of m21 circles andn=(4m + 3) rays. Exanple: Figure 17a is a C(2,11) network.

Unlike the other types of networks examined
so far, circular networks of type C(rm,n) cannot be
recovered with Ladrum's Method, regardless of
their size. Figure 17b shows the problem in-
volved in probing the network. Note how the two
medial regions touch along very long edges,
causing many contradictions.

These medial regions are typical in of circu-
lar network. If the medial region contains the
center cell (corresponding to the node of degree
m + 1), two edges (the "radial edges") are each
defined by a single medial line. If the medial
regions do not contain the central cell, the two
"radial edges" are each defined by a single medial
line up until a level 0-1 edge.

Therein lies the problem in using Landrum's
Method to recover a circular network. Figure 18
shows the central section of a circular network
and the corresponding medial regions which
must be imposed in order to recover an m -

(m + 1) resistor. Since one of the "radial edges"
of each medial region is defined mostly or en-
tirely by the single medial line running through
the isolated resistor, they will touch along that
line up a 0-1 edge, thus causing many contradic-
tions. Therefore, a circular network of type
C(rm,n) cannot be Landrum-recovered.

Figure 18: The ceniral section of a C(m,n) network.
Note how required conditions for Landrum-recovery of
a level m-(m+ 1) resistor lead to the two medial
regions having contradictory contact since each
touching edge is defined by the same medial line.

Figure 17a: A C(2,11) Network.

Figure 17b: Trying to recover the blue resistor. Note the
long touching edges which lead to coniradictions. The
shape of the red region is lypical of medial regions that

do not contain the center cell. The green region's shape

is typical of regions which corntain the center cell. The
yellow section is needed fto specify the current running
through the biue resistor. Note how specifying an extra
alpha-node adds another "strip" to the medial graph,
which is defined by two rnedial lines.
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A Degenerate Circular Network

There are many other types of circular networks besides C(rm,n)-type. Particularly interest-
ing is the type shown in Figure 19a in that the deepest edges can be Landrum-recovered while
shallower ones cannot. Figure 19b shows which
edges can and cannot be Landrum-recovered and
Figure 19c shows a typical problem when attempting
to Landrum-recover those edges: there is a contradic-
tion since cell Y will be determined in two different
ways.

In this case, the method of isolating a level 1-1
resistor has been chosen so that all central (level 1-2)
resistors must have no current running through them
(the alternate choice is even more problematic). The
underlaying reasons for the problems of Landrum-
recovery of these edges are very similar to those for
the C(rm,n)-type networks. Note how in both net-
works the two "radial edges" of each medial region
are defined [entirely] by a single medial line. Al-
though the two medial regions in this degenerate )
circular network do not touch all the way along these Figure 19a: A degenerate level 2 circular

neftork,
edges, they are close enough so that they do cause
contradictions (i.e., the Y cell). In fact, because all 1-
2 edges must have zero current running through them,
it appears that it doesn't even matter how many extra level 0-1 edges are placed between the
seven central spokes (i.e. the spokes formed by joining the seven intersecting level 0-1 and 1-2
edges) because at some point, recovery of one of the level 1-1 edges will force the two medial
regions too close together, causing contradictions.

Figure 19b: Green resistors can be Landrum Figure 19¢: A contradiction in the Y cell arise
recovered while red resistors can't. An interest- when trying to recover a level 1-1 resistor
ing feature of this network is that level 1-2 because the medial regions are too close
resistors can be Landrum-recovered while level together. This happens because each of the
I-1 resistors cannot. region's "radial edges" is defined mostly (or

entirely) by a single medial line.
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Heptagonal Networks

Perhaps the most interesteresting network discussed in this paper is the heptagonal net-
work, an example of which is shown in Figure 20a. What makes it so interesting is, despite it's
complexity and size (it is a level five network),
it can be completely recovered using
Landrum's Method. Even a level seven hep-
tagonal network can be Landrum-recovered.

In fact, it seemns that any size heptagonal
network can be Landrum-recovered, although
this speculation is not proven.

Figure 20b shows the medial graph
corresponding to the recovery of a level 5-5
resistor. Notice how the problems that
plagued the other networks do not appear
here. Each region cuts away from the other
quite sharply compared to the hexagonal and
circular networks (in fact neither "stars" have
any points intersecting the medial regions).

The reason for these well behaved medial
regions seems to be due in part to the com-
plexity of the network itself.

Figure 20a: Despite its size and complexily a level 5
(and even a level 7) heptagonal network can be
completely recovered using Landrum's Method.

Figure 20b: Medial regions correspond-
ing to the recovery of a level 5-5 resistor.
Note how sharply each region cuts back
away from the other, almost on the verge
of being non-convex, unlike the medial
regions of other networks. This turning
away is so abrupt that even the "stars" do
not have any points laying in the regions,
indicating how internal irnplications of
imposed boundary conditions can be
isolated and controlled well. The reason
for this desireable behavior seems to lie
in the cornplexity of the network iteslf.




18

The complex configureation of the heptagonal network gives rise to many different types of
medial lines-ones which sweep through the entire network, some which go midway in, and
others which turn back out almost as soon as they entered. These different lentghs of medial
lines seem to be what is responsible for the ability of the medial regions to make such sharp
turns.

Figure 21 shows the medial regions corresponding to the recovery of a different resistor.
Marked in blue are the medial lines which act to define the medial regions. Notice how the large
region is defined by four medial lines, two sides by level 5-5 medial lines, while on the other
sides it is defined by shallower medial lines. The smaller region is also defined by four different
medial lines--all of which are rather shallow. If the smaller region could not be defined by me-
dial lines shallower than the lines which act to define the larger region, they would most likely
end up touching along the longer lines for too great a distance, causing contradictions, as hap-
pens in other networks. The C(m,n)-type circular networks are a most noticable example of this
behavior, since all medial lines have the same depth. See Figure 22.

In fact, there seems to be a strong correspondence between networks which have a wide
variety of different depth medial lines and whether or not they are Landrurn-recoverable. Figure
23 shows the medial graphs of all of the different networks discussed and the different layers of
medial lines.

Figure 21: Medial regions corresponding to the Flgure 22: The medial graph for a C{m,n) nefwork.
recovery of a level 3-3 resistor. The blue lines Notice how all medial lines are level m-{m+1). As
correspond o the medial lines which act to define was shown before, this causes problems since all
the edges of the medial regions. Note how the medial regions must be defined in terms of these medial
density of shallow medial lines allows the green lines. Thus if two regions are adjacent, both of their
region to cut back quite sharply, since it does not edges will be defined by the same medial line, causing
need to be defined by deep medial lines. If there them to touch too much, leading to contradictions.

wern't such a high density of shalloiw medial lines,
both regions would be defined by deep medial
lines, wouch would probably lead to them touch-
ing too much, causing contradictions. This is quile
apparent in the circular network, where all medial
lines have the same depth. See Figure 22.
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21 9.9.9.9.9.9.9.9.9:
219:9.9.9.9.9.9.9.9,
0-1 '

Figure 23b: A level two hexagonal network has two

Figure 23a: A level eight rectangular network has eight levels of medial lines:

levels of medial lines:

0-1

0-1 2.2
I-1

1-2

2-2
2-3
3-3

Figure 23c: A level four hexagonal network has three Figure 23d: A level three spiked hexagonal network has
levels of medial lines: fio levels of medial lines:

0-1 I-2
2-3 3-3
4-4
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Figure 23i: A level two degenerate circular network has two Figure 23j: A level five heptagonal network has five

levels of medial lines: 1-1, 1-2.

levels of medial lines:

I-1, 1-2, 3-3, 34, 5-5.

Table 1
Network Label Depth of | # of Medial |}|Network Label Depth of | # of Medial
Type Letter Edge Linesof |}IType " Letter Edge Lines of
Same Depth Same Depth
Rectangular 4 m
Network b 1-1 4 Network b 1-1 0
(leveld) c 1-2 4 With Spikes c 1-2 6
d 2-2 4 (Level 3) d 2-3 0
e 2-3 4 e 3-3 6
f 3-3 4 Triangular a 0-0 3
a 3-4 4 Hexagonal b 0-1 3
h 4-4 4 Network c 1-2 3
Hexagonal a 0-0 0 (level 2)
Network b 0-1 6 Tirangular a 0-0 3
(level 2) c 1-2 0 Hexagonal b 0-1 3
d 2-2 6 Network c 1-2 3
Hexagonal a 0-0 0 (level 3) d 2-3 3
Network b 0-1 6 Alternate a 0-0 3
(level 4) c 1-2 0 Triangular b 0-1 3
d 2-2 0 Hexagonal c 1-2 3
e 2-3 6 Network d 2-3 6
f 3-4 0 (level 3)
g 4-4 6
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Table 1, continued For each network, Table 1 shows the

—— - different depths (or fypes) of edges it has
Network Label Depth of #f.f Med'fa' and how many medial lines have that same
Type Letter Edge San:le;:pth depth. The column "Label Letter" provides

an easy way to refer to each row.

5 Notice that all of the networks that can

|l be Landrum-recovered have at least the
same number of different depth medial lines

C(2,11) a 0-0 0
0

Network c - 0 as the networks are deep. For example, the
0
0

Gircular b 01

(level 3) d 1-2 level five heptagonal network has five
o 22 | || different depths of medial lines, and the
I R level four rectangular network has eight
f , 23 11 different depths of medial lines. Notice that
Degenerate a i 0-0 0 nearly all of the networks that could not be
) R Landrum-recovered lack this property. For
Circular b 9-1._ 0 example, the level four hexagonal ngwork
Network c . 1-1 14 has only three different depths of medial
(level 2) d 1-2 7 lines.
The only exception to this is the alter-
Heptagonal @ o1 0 nate level three triangular hexagonal net-
'Network b 1-1 14 | work which has four different depths of
| (level 5) c 42 21 | medi.al lines. However,_ the-re is not a great
density of shallow medial lines, as seems to
| __d___ L 2-3 0 be required for Landrum-recovery. In fact,
e 3-3 7 there are six of its deepest medial lines and

i ¢ 34 T only three of each of the other three shal-
. ) | lower types (i.e., 40% of its medial lines are
g 5 | 0 of its deepest type). It seemns that although

7 |l itisnot as diabolical as the circular net-
works, it still has similar properties-- too
many of its medial regions will be defined
by these deep medial lines, leading to
contradiction. Thus, it might be reasonable to expect that not only would a network be required
to have the same number of different depth medial lines as it is deep, but that the medial lines
be arranged so that for a medial line of depth i+, there would be at least the same number of
medial lines of depth &-/, for each k-1 shallower than .

This conjecture seems to hold for most cases, except the heptagonal network which has
fewer 1-1 level medial lines than 1-2 level medial lines. Perhaps the number of k-/ depth medial
lines need only be at least X% (e.g., 67%) of the number of i medial lines for each k-I shallower
than i and for some number X (which may or may not be a constant). An alternative explana-
tion as to why this doesn't hamper the Landrum-recoverability of the heptagonal network is that
it happens so close to the boundary. If the heptagonal network had all boundary spikes re-
moved so that all level 1 nodes became boundary nodes, than there would be more level 0-1
medial lines than level 0-0 medial lines. A lack of 0-0 medial lines wouldn't cause any problems
since boundary-level currents and potentials can be so easily controlled. This may be a viable
interpretation since specifying a the proper boundary conditions required for Landrum-recover-
ability in either case (i.e., with or with out boundary spikes) yields the same results. So the
correct formulation may be that the medial lines be arranged such that for a medial line of depth
i, there would be at least the same number of medial lines of depth &-/, for all &-/ shallower than
i and deeper than m-n, for m-n near the boundary. The exact formulation seems rather slip-
pery.

An intuitive argument for why there must be the same number of different level medial lines
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follows:

DeriniTion 6: There exists a depth-correspondence befiween a medial line and an edge if
they have the sarne depth. Saying "there is a depth-correspondence” is equivalent to saying
"there exists a depth-correspondence between a medial line and an edge."

Note that all of the networks that could not be Landrurn-recovered, except the alternate
triangular hexagonal network, have a rather small number of different depths (or fypes) of me-
dial lines as compared to the number of different depths (or types) of edges. For example, the
level four hexagonal network has only three types of medial lines, but seven types of edges. In
Table 1, it is clear that for the level four hexagonal network, only in rows b, e, and g is there a
depth-correspondence. Rows a, ¢, d, and f do not have contain a depth-correspondence, and
most notably, rows ¢ and d are adjacent.

DerFiniTion 7: In an ordering of a network's edge types from shallowest to deepest, there exists
an X skip if there are X consecutive edge-types which do not have a depth-correspondence. This
is equivalent to saying that in Table 1, there are X consecutive rows which do not have depth-
correspondence.

Derinimion 8: The two types of edges which act to define the boundaries of an X skip, but are
not themselves included in an X skip, are defined as the skip-neighbors.

DeriniTioN 9: Any edge existing in the set of edges which comprise an X skip are called
skipped edges.

In every network which is not Landrum-recoverable, except in the alternate level three
triangular hexagonal network, there exists a level two (or greater) correspondence skip, while in
all Landrum-recoverable networks there exists either one skips (e.g. heptagonal network), or no
skips at all (e.g., rectangular network).

How might this be interpreted? It might be that a one skip is allowable since the medial
lines of the skip-neighbors compensate for there being no depth-correspondence of the skipped
edges by providing a medial region which contains the skipped edges. Since the medial lines
which define this region are about the same depth of the edges they enclose (some shallower,
some deeper), the region may behave for all intents and purposes as being created by medial
lines of the same depth as the edges it encloses. However, if there exists a two skip, then this
same type of simulated medial region which encloses the deepest edges of the skip region must
be comprised of medial lines which are at least as deep as the deepest skip-neighbor. Thus this
region will lack medial lines which are shallower than the edges it is enclosing. In this respect, it
would seem similar to the regions set up in circular networks and may face the same problems
in that it nay not be able to be controlled as well as needed (e.g., be able to make sharp enough
turns).

In fact, it might not be so coincidental that the shallowest edge that cannot be recovered in
the level four hexagonal network is the level 2-2 edge (see Figure 13). As shown in Table 1, the
level 2-2 edge is the second edge in the two skip-- the edge whose surrounding medial region is
defined entirely by medial lines deeper than itself. Not all networks which are not Landrum-
recoverable experience this phenomena, but it may be important.

Although there has not been much research put into the idea, if it were possible to show the
exact relation the medial lines and the types of medial regions they can define, then perhaps this
argument could be proven rigorously. It seems that there is a correspondence between the
depths of the intersecting medial lines which define medial regions, but finding and proving this
would require much more time, but would most likely yield much information.
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