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- Abstract

For a rectangular array with unit resistors and set boundary voltages, the ..
boundary currents will uniquely determine the position of all internal
current sources assuming that all sources are of the same strength. If there is

only one internal current source, the resistors need only be known.
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1. Introduction

Motivation for this problem came from Strakhov and Brodsky’s paper [1]
which looks at uniquely determining the shape and density of planar
gravitating objects. They find that the object can be uniquely determined
when certain restrictions are placed on the shape and density of the object.
We attempted to find the discrete analog of their problem using electricity
instead of gravity. We set up a network of resistors with current sources
arranged inside the network. We tried to uniquely determine the location of
the current sources based on the currents and electric potentials on the
boundary. In truth, the problem we solved is not the discrete analog. We
focused on finite networks, not infinite networks and there weré several
other differences. Nevertheless, that is where the idea for this problem came
from and we hope that the results in this paper will be useful to others who
wish to look at the discrete analog of Strakhov and Brodsky’s paper.

We consider rectangular networks of

¢ resistors in the plane as in Curtis and
-1 —- Morrow [2] which we shall restate for the
reader’s convenience. Let Z? be the lattice
in R® consisting of the points with
integer coordinates. Two lattice points p
and q are adjacent if there is a horizontal
or vertical segment of length one joining
them. ~ We ‘construct a rectangular

network Q as follows. The nodes of Q are
the lattice points p = (i,j) for which 0 <i <

1 band 0<j<c (b cijare all integers),
0 with the four corner points (0,0), (0,c),

(b,0), (b,c} excluded. The resistors are the
horizontal and vertical lines that connect

 Figure 1 - adjacent nodes. The ‘boundary of Q,

called 9€, consists of the points (0,j), (bj), -
(LO) and (ic) where 1 < j<c-land 1<i<b-1. The interior of Q, intQ,
consists of all the nodes in Q that are not on the boundary. A source is. an

interior node with positive net current. A node is harmonic if the net
current is zero. '

0 1 2. ' b-1b
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In previous papers no sources were allowed on the interior so the boundary
nodes were the only nodes with a nonzero net current. [t is important to
keep this in mind when looking at results and definitions from other papers, -
like the maximum principle, to make sure the results ‘do not depend on there
being no source or sink nodes on the interior.



We con51der a network Q w1th some current sources in the interior and no
current sources on the boundary. The resistors are known, the boundary
potent1a15 are set to zero, and the current flowing out can be measured..

" The forward problem we pose is: Gwen the location of the sources, what are _
the currents on the boundary?. : '

The inverse problem is: Given the currents on the boundary can we umquely .
_ determme the location of -the current sources in the mter:or? B

Throughout this paper we use Ohm’s Law and Klrchhoff's Law.. We state' '
them here. .

A - O.hm’.sLav{r:'
g . V-V =R,

v, , Vv, R,L V, _K1rchhoff s Law (where V, is harmonlc)

I+IQ+I +I =0

Here we should ‘remember the 31gn'

: conventions for current. Current is positive

Vi ~ ifit is flowing out of a node and negatlve if it
is ﬂowmg into a node. : :

| 2, The Forward Problem

This problem was solved in [3] and we shall restate the results here. We look
at the Dirichlet problem in block form. :

£BT_H_[E] |
LB A llu) M
Writing this as two equaﬁons we have: -

K'u, +-BTui =¥,

Bub+Au =M

Where w, is the vector of boundary potentials, u; is the vector of interior

potentials, and W, is vector of boundary currents. M is the vector of current
sources on the 1nter10r whose entries are nonzero only at sources. The big
matrix is the Kirchhoff matrix and is determined by the resistors in the .
network. H1ggmson proves that the solunon is unique..




As the outside potentials "are equal to zero this equation can be further
simplified to the following which is easily solved. :

u, =AM |
3. The -_lnversé Problem

Two different algorithms were generated to solve the inverse problem. The
first works in the case of one source and leaves open a question about the

generalization of the Maximum Principle. . The second works for any number =

of unit sources in a network with unit resistors.

3.1 The First Algorithm - |
Consider a rectangiﬂar network with one source of current (of any size) at an
interior node, all of the boundary potentials set to zero, and known
resistances. The algorithm described in this section can find the location and
size of the current source. ' ' :

Theorem 1.2.1: In a rectangular network of resistors with only one source
node and zero potential on the boundary, the maximum . potential must
occur at the source node. : : : - '

Proof: By the Maximum Principle the extrema will occur on the boundary or
at a source node. As there are no sinks, all potentials must be greater than or
equal to zero and the minimum is on the boundary. If the maximum
occurred on the boundary then the potential at all nodes would be zero which
would mean no current was flowing. The maximum must be at the source. of
- current. [ | R |

3.1.1 The algorithm

Measure the currents on the boundary nodes. The sum of these currents is
the size of the current source.. S -



Figure 2 is a section of a network. The

S. -~ | -~ zerosare the voltages on the boundary of
' the network and N, P, Q, and S are
| L IR, interior nodes. Letus look closely at the
N| LR, P} IL,R; Q “currents around node P. R, and I, are
' T e known and can be used to calculate V,

I, R, (the voltage of P). :

o o g | V,-0=LR, |

Figure 2 o Similarly, thé voltages of N,.Q and- all

other nodes that are the neighbors of the.

. . boundary can be calculated. Look at I, and

I;. The voltage drop and resistors are known so the currents can be calculated
- using Ohm’s Law. Three of the currents around P have been calculated and
the same can be done for every node adjacent to the boundary. .+

Now we compare all the voltages known so far. The node with the highest
potential might be.a source. All other nodes with known potentials are not
current sources by Theorem 1.2.1, so the sum of the currents must be zero.

Let us use the same picture, where P does not have the highest potential.
Using Kirchhoff's Law we can find L. S S

S L=-@GeLeL) o

Using Ohm’s Law we can calculate the voltage of another node.
V.-V, =LR, |
Vs = I4R4 + Vp . | | S (2)

We do these @alculatiohs (1 and 2) for all nodes except tﬁe one W'i_fh t.he '
highest potential. \ _ ' :

We have calculated potentials that were previously unknown and we want to
use this information to calculate even more potentials. We compare all the
voltages again. If the maximum changes then we know the original
maximum was not a source and we can use Kirchhoff's law to calculate the
fourth current. We continue using Ohm’s Law and Kirchhoff's Law to
calculate voltages and currents, making sure that we never use Kirchhoff’s
Law on the node with the highest potential. ' This process is repeated until all
the potentials are calculated. The current source is the node with. the .
- maximum potential. S SR S

Note 1: The-:cu_rrent source may be found before all the potentials are
calculated. All four currents out of a node might be known if we know that
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all four neighbors are not sources. If the net current is nonzero then the node
is a source.

Note 2: Some nodes (in the corners, for instance) may be calculated from
more than one neighbor. The voltage of the node is unique because it can’t
physically have more than one potential so the calculation is made once and
it doesn’t matter which neighbor you use. '

3.1.2 Generalization for more sources

For our algorithm to work when there are k sources of the same size, the k
sources must have the k highest potentials. We found that this was not true
- in general. Here are some counter examples..

The k circles are sources and the squares are interior nodes with potentials
higher than a source node. The nodes with the k highest potentials are filled
in. ' '

i
1/

.

A
Fai
\

]
L

/

]

1/

N

Strakhov and Brodsky had to make restrictions on the geometry and the
density of the gravitational bodies in order to find a unique solution. We
hoped that similar restrictions would yield situations in which our algorithm
always worked. We tried defining and restricting ourselves to simply
connected convex shapes. We were able to find counter-examples even with
definitions so conservative that they only allowed solid rectangles.



The counter-examples for simply connected

~convex shapes have to do with the boundary
being set to zero. This may not be a problem in
the infinite case where the entire plane is a

network of resistors. In the infinite case the -

“boundary data” is different. The differences
between the voltages goes to zero as we

approach infinity. The infinite case is similar

to the finite case because we will look at the

voltages on the boundary of a finite rectangle,

large enough to contain all the sources on its

- interior. However, there is no reason that the

voltages on the boundary of this rectangle would be the same. The infinite -
case and the finite case differ enough that a generalized Maximum Principle
- might be found in the infinite case even though we have been unsuccessful .
in the finite case. ' -

3.1.3 A Conjecture : .

We found a simpler algorithm for finding a lone source in a network of unit
resistors. Unfortunately we were hot able to prove that it works. To show
that it works we must prove something about the Green’s. function. The
Green's function can be interpreted as the voltage at a node. In [4] Duffin
looks at the Green's function of an infinite three dimensional network of

unit resistors with a source at the. He proves that the Green's function '

decreases when moving from a point to a neighboring point more distant
from the origin. L ' -

If this were true for a finite two dimensional
network of wunit resistors with a source
somewhere in the interior, we could use this to
find the location of the source. We would look
at the boundary currents on one side of the
—M - rectangle. Notice that these currents are equal to
' the voltages of the neighboring interior nodes.
We find the maximum voltage. We would
know that the node with the maximum voltage
is closer to the source then all other nodes on
that side. This means that the source is in the
same row as M. We would do the same for an adjacent side of the rectangle
to determine what column the source is in. The source has been found. '

Unfortunately Duffin’s proof relies heavily on the symmetry of the network
(the source is at the origin). He also uses the fact that the voltages go to zero
at infinity. Even in the infinite two dimensional case the differences of the
voltages go to zero at infinity, not the actual voltages. Duffin’s result cannot

.



be directly applied to our problem and it was not clear whether his approach
could be used. The question remains open in both the infinite and finite two
dimensional cases with one source but we suspect (without any proof) that in
both cases the Green’s function decreases as you get farther away from the
source.

4. Another Algorithm: Exhaustive Search

The above algorithm is elegant in its simplicity, but unfortunately it is not
widely applicable. Therefore, we wish to formulate an approach that will
apply in general to any number of sources in a rectangular array. Before we
required that the resistors in the network be known. * For more than one
current source, we require that all the resistors have unit resistance. This is
more restrictive, however having uniform resistance is closer to the
continuous case. Also we require that all the sources have unit strength. -

S0 suppose we are given a resistor array and are told to find the internal
current sources. ' Note that we are given the dimensions of and the value of
the resistors in the array. So we go to our lab and create a resistor array
identical to the one we are given but without any current sources. Then we
perform the following experiment: We first choose our favorite internal
node. Setting the boundary voltages to zero, we put a unit current source on
that node and record the boundary. currents produced. We repeat this
experiment for every internal node, recording the vector of boundary
currents for each.

Note that any set of interior current sources will produce boundary currents
‘which are a linear combination (with all coefficients one) of those from the.
above experiments. Also note in general we know the number of internal
sources in an array; to find that number, we simply add up the boundary
currents which tells us the total current flowing into the array from within.
Since we are only allowing unit current sources, we then know the number
of sources in the array. So when handed an array with unknown internal
current sources, we calculate the number of internal sources, and find the
appropriate linear combination. We thus have the locations of all the
sources.

Of course, gathering the preliminary information does not require actually
building an array and performing these experiments. We know the resistors,
80 we can write down the Kirchhoff matrix. Performing an experiment
described above is just the forward problem, where M (see above) is one of the
standard basis vectors. So the boundary currents from the experiments are
obtained from the columns of A™. |

The only problem with this approach is one of uniqueness. That is to say, we
want t0 show that no two distinct linear combinations are the same. We can
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~ restate this in network terms: Suppose that you are given two rectangular

arrays of the same shape, with unit resistors, which have the same boUnd’al_'y
currents and thus the same number of internal sources.  We need to show

that the two arrays indeed have the same internal source configuration.

At this time recall that for all arrays, we set the boundary voltages to zero.
Thus two arrays of the same size will trivially have the same boundary
voltages. So let boundary ‘data” refer to both boundary currents and voltages.

Suppose that we have two mXn resistor arrays, I" and ©, with unit resistors

and the same boundary data. Consider the ‘difference’ of these two arrays.
That is, consider a third array, A, of the same size as T and ©, with unit

resistors, which has unit sources where I' has sources and unit sinks where ©
- has sources. If both T and © have sources in a certain spot, A will have a,
harmonic node (net current zero) in that position. Note that A still has

boundary voltages zero, and in addition it has boundary currents zero. Thus

by Ohm’s law we have that all nodes adjacent to a boundary node (on the

‘first layer in’) have potential zero. If we can show that this difference array

has no sources or sinks, then we have shown that the two arrays , I and @,
had the same source configuration. Before we prove this uniqueness, we first
need to prove a small lemma.

Lemma 4.1: If a rectangular resistor array, with unit resistors, has boundary

currents and voltages zero, then the voltage at every node in the array

must be an integer.

0 ¢ 0 o0 0 0 . - Proof: As noted- above, the

' potentials on the first layer in

0 0 _ 0 qQ ¢ _q Q0 0 are zero. Now note that the
' currents in the boundary spikes

0 _ o [9 0 and between nodes on the first
layer in are zero because all

. 0 0 h 10d . e :

0 0 these nodes are at the same
_ 0 ' - potential. Consider a node on
0 _ 0 0 the first layer in. ~ Note that
. three currents flowing into that

0 0 ‘ 0 0 node are all zero. This node

_ may be a unit sink, unit source,
0 0 0 g d o ¢ 0 or harmonic node. Thus the

- fourth current flowing - from
that node is either -1, 1, or 0.
Thus all voltages on the second

0 0 0 0 0 0

layer in are either 1, -1, or 0. .

Now suppose that we know all the nodes on the first k layers in have integer
voltages. Since the voltages are integers and the resistors have unit
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_resistance, the currents flowing between all nodes on the first k layers have
integer values. Consider a point on the kth layer. Three of the four currents
flowing into this node have integer values. Again since the net current -
flowing out of this node is either -1, 1, or 0, the fourth current must have
/integer value. Thus the nodes on the (k+1)st layer in have integer-valued
‘potentials. So by induction, all nodes in the array have integer-valued
potential. [] o '

Unig ueness Theorem: If two rectangular arrays of the same size, with unit’
resistors, have the same boundary data, then these two arrays have the
same internal source configuration. - -

1 2 3 4. . Proof Consider the difference array, A.

: _ We want to show that there are, in fact,
o7 ~ no sinks or sources in A. Note that all the
Sl | potentials in A arezero if and only if there
o i P P ~ are no sources or sinks present.

P P P 2 __ Consider ‘the .top left-hand corner of A.

£ _ the maximum voltage attained in the
AP I 1  difference array. We find a diagonal 9
S - - which has a node, say v, with potential p.
' : Since W is the highest value .of any
- potential, v must either be a unit ‘source
or a harmonic node. Again since | is the
_ L highest potential, if v is harmonic, then
all its neighbors must have potential p. Note that two neighbors of v are on
the (d-1)st diagqnal. Thus there is a node on the (3-1)st diagonal which has
the maximal voltage. Suppose that v is a unit source. Because it has the
maximal value and-all voltages are integer-valued, three neighbors of v must
. have potential p. (The fourth neighbor has potential p-1.) Thus at least one.
- node on the (d-1)st diagonal has potential p. By iteration, we have that the
maximum - is attained on the first diagonal. The only node on the first
diagonal has potential zero. Thus the highest potential in the array is zero.

By making appropriate ‘substitutions, stch as replacing ‘maximum’ with

- ‘minimum’, in the above argument, we have that the minimum value of the

- potential must also be attained on the first diagonal. Thus the minimum
value must also be zero. BT ' : :

. Thus all the potentials in the array are zero. Thus there are no sinks or
sources in A. O ' ' a : '

10T T - We number diagonals as shown. Letp be



* Note that we needed only that the two arrays had the same boundary voltages
and not zero boundary voltages. This is because when we subtract two arrays.
which have the same boundary voltages, we still get zero boundary voltages
in the difference array. ' : o

Before discovering the above proof, we tried many different methods to
prove the uniqueness. These methods proved to be computationally
. involved and hard to generalize for an inductive argument. The ideas .’
behind these methods, however, are sound, and we are hopeful that they may

be instructive to some readers. So below, we shall give some proofs for smail
networks and then we shall sketch two unfinished proofs for the general case..
For convenience, we shall say a certain size array ‘has a unique solution’
. when two arrays of that size with unit resistors and the same boundary data’
have the same internal source configuration. Note that the proofs below are
given for square arrays, but the techniques may be applied to rectangular
networks. - '

Theorem 4.1: A 1x1 resistor network has a unique solution.

Proof: The only currents in this array are the boundary currents. Thus-if the

boundary currents are the same in two 1x1 arrays, all the currents in the
arrays are the same. Thus they have the same source configurations. [

Theorem 4.2: A 2x2 resistor network has a unique solution.

Proof: This, too, is a trivial case. Suppose you have
two 2x2 resistor networks with the same boundary
data. Since the resistors are identical in both arrays,
by Ohm’s law the voltages at the four interior nodes
are the same in the two networks. ' Thus the current
- flowing between the four interior nodes is also the
- same. Thus all the currents in the two arrays is the

same in the two networks. Thus the two networks
have the same source configurations. [ - :

Note in the two proofs above, we only needed that the resistors were known
- and equal in the two arrays but they need not be of unit resistance. For larger
arrays, we must have unit resistors. Also we did not assume anything about
~ the current sources themselves, but again for future proofs, we need all the
sources to be of unit strength. ' ' ‘ -

These two cases were trivial to prove. The following cases become more
cumbersome. To prove the next two cases, we first make observations about
possible source: configurations on the diagonals. ‘So first we number the
diagonals as shown above. We consider the first diagonal. L
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.

Lemma 4.2: If two rectangular arrays of the same size with the same
resistors have the same boundary data then they must have the same
source configuration: on the first diagonal. ' '

- Proof: This is very similar to the proof of the 2x2 case. Since the two arrays
have the same boundary data and resistors, we know that they have the same
" voltages on all nodes adjacent to boundary nodes. Thus they also_have the
same currents flowing between the nodes on the first layer in. Now note that
‘the only node on the first diagonal is on a corner; all the four currents
flowing into this node are either boundary currents or currents on the first
layer in.’ Thus the arrays have the same source configuration at this node. [I

First note that this above proof did not use the fact that we were looking at -
the upper left-hand corner. That is to say, this proof shows that two arrays
with the same boundary data have to agree on the first diagonal coming from |
the top left corner and on the first diagonal coming from the top right corner
and so on for the other two corners. The same is true for any diagonal. -

Next note it is because of this lemma that the proofs of the 1x1 and 2x2 cases

are trivial. That is, note that all interior nodes in the 1x1 and 2x2 cases are on
a first diagonal. - So by the lemma, they must have the same source
configuration at every node. Now we consider the second diagonal. '

Lemma 4.3: {f two arrays are of the same size, with unit resistors, and
have the same boundary data, then they will have the same - source
configuration. on -the second diagonal. ' ' ‘

Proof: Before we begin this proof, we shall state a few conventions. First we
shall label all the nodes in the array: n; shall denote the node in the ith row
and jth column, where 7, is the interior node on the first diagonal. V shall
denote the potential at n,. Likewise, I; will denote the net current out of n;,
where current flowing out of a node is considered positive with respect to
that node. Note the net current will either be zero or one. I, shall denote
the current flowing from 7, to n, . In this proof we shall be considering two
resistor arrays. We shall differentiate one. array with a prime (); all
information regarding that array shall be primed. In a graphic, a closed dot on
a node indicate that the two arrays have the same source configuration at this
“node. An open dot indicates a unit source at that node. A cross on a node
indicates that the node is hatrmonic. @~ - : : :
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Now suppose we have two
arrays of the same size, with unit
o ' resistors and the same boundary

N _ _. ’ data. Let us consider the top left-
- _ 1 x *~ hand corner of these two arrays.
-We already know that two arrays
agree at the node on the first
diagonal. Suppose that n;,’ is a
source and n,, is a harmonic
node." Because the boundary

- currents and currents on the first

layer in are all the same, we have

' 1;2,22 = 112,22 +1. - | (4-1).

From this We get | |
V=V -1 @

Since V,, .l_= V,, we have

fz:,zz = by +1 | o (4.3)
_ / | R - Thus we have a source at 1,
' and a harmonic node at My
- | - o Our goal now is to show that
.. _ C) : _‘ . x - _ this ; configuratior} is not

~ possible. To do this, we look

| to the next diagonal. What
'—x —— source configurations can we
N o put on the third diagonal with
this configuration on the
second diagonal. Let wus
consider what happens at 7,,.
We are only allowmg unit -

o
~J/

current sources, so we have three possibilities:

1 ' .
Ly=I,+{0 4y
-1 ' :
So we write down the equation for L,
' -Ilzz ='4V2’2\_ Vm - V?:l - Vz:3 - Véz - : (45) _
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Using the fact that potentials on the first layer in are the same in the two
arrays and equation (4.2), we have

‘Gz =4V ~D-V, - Vgl - Vzls - V;ﬁ | (4:6)
Because #,, and n32. are on the second layer in, we have

1 _
Vs =V +40 . - {4.7)
| '

and likewise for V,,. So in (4.6), we have at best

L, =4V Vo=V -V -V -2=1, -2 (4.8)
which is not possible. Thus the two arrays cannot differ on the second
diagonal. O

Just as the uniqueness of the 1x1 and 2x2 cases is dependent on the first

diagonal, the uniqueness of the 3x3 and 4x4 cases follow easily from the I‘
previous lemma. :

Thegrem 4.3: A 3x3 resistor network has a unique solution.

. ~ Prooft Suppose we have two 3x3 resistor

' . ‘ . . networks with the same resistors and boundary

: : information. From above we know that these
two arrays do not differ on any first or second
. ' diagonal. Thus we have that the two arrays are

identical on the first layer in. So we have

' - reduced to the 1x1 case which was know is

'- ' , ~ unique. Note that we actually reduced to the

Ix1 case where the boundary voltages are the
~same in both arrays, but they are not zero.

_ : Because we never use the fact that the voltages
are zero, only that they must be the same, this is fine. O -
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Theorem 4.4: A 4x4 resistor array has a unique solution.

Proof:  This works exactly as the last
_ ‘ ' ‘ - theorem. Note that all the nodes on the first

o layer in on a 4x4 resistor array are all on a
first or second diagonal. Thus the two arrays

must agree on the first layer in. Thus we
have reduced to the 2x2 case. O

., . Now we present two incomplete induction
| proofs for the general uniqueness theorem.

Uniqueness Theorem: An mxm. square

resistor network has a unique solution.

Sketch of Proofs: .Sup‘pose that we have two

mxm arrays with the same, unit resistors and the same boundary.
information. =~ We want to show -that they have the same source
configuration. There are several ways that one could prove this in general.

One possibility is an induction proof along the diagonals. Note that we have
shown that the two arrays must agree on the first two diagonals. So suppose
that we have shown that the two arrays cannot differ on any diagonal smaller
than m. We want to show that they must agree on the mth diagonal. Note
on the second diagonal, there is only one possibility for the source
~ configurations in addition to case where the two arrays agree. On the third
diagonal we get two additional possibilities. In general, there are a huge
number of possible configurations to rule out. Thus taking a case-by-case
approach would be too complicated, but perhaps there is a way to handle all
the cases at once. Note that this proof would actually show that a rectangular
network bounded on at least two adjacent sides had a unique solution.

We could also induct on the size of the array. Note that we have shown that

the 1x1 and 2x2 cases are unique. Suppose that the conjecture is true for all
cases smaller than the mxm case. Now we check for the mxm case itself, =

14



0 0 0 o 0 0 : S’u_ppose that -w_e have two -

mXm resistor arrays with unit
0 0 o 9 d 9 0 0  resistors and  the - same
| boundary ~ information.
0 0 0 O - .
- _ : - Consider the difference array, A.
ol | _ |0 . Recall from above that A still
0 — - _ 0 has boundary voltages zero,
0o .0 ' i o o  andinaddition it has boundary
i _ _ B currents zero. Thus we have
0 ' 0 that all nodes on the first layer
0 | : —U in have potential zero. So no
g ' : - current flows on the boundary
o—0 9 0 ¢ a 4 o spikes nor between nodes or't}i_
~ the first layer in. Thus' we can

0 0 0 o0 0 o0 - ignore those edges in our

~ reducesto | graph. We have reduced to the

_ o m-2 case. Note, however, that

00 ¢ 0 - now there might be sources or

, sinks on the boundary of the

0— . ' 0  difference array, which we never

'_ - allowed before. So we must show

00— ' —0  that there cannot be any sources or
' sinks on the boundary nodes.

_ - Consider n,. We want to show
0 - 0 that this is a harmonic node. So
o ' suppose that n, is a source. That
_ _ means Iy, =1. Because the
0 o0 - 0 0 boundary voltages are. zero, we
_ - have V, =-1. Thus J,,, =1. Note
ny; can be a unit source, unit sink or a harmonic node. So at the very least we
have either 1,,,, =1 or /,;, =1. Thus in the best case we have either V, =—2
“or V,, = -2, both of which force a boundary node to be a current scurce of two.
Thus n,, cannot be a current source. By negating all the riumbers, this also
shows that n,, cannot be a sink. So we have that all boundary nodes on the
corners must be harmonic. | ' '

Now we do another induction proof to show th\at. all nodes on the boundary
are harmonic. Again, an argument that applies in general was not found.
But with that inductive step, this proof would be complete. o

5. Conclusion:

Let us pause for a moment to consider what we have. shown here. We have
seen-in a particular network, by taking some boundary measurements, we can
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uniquely determine the internal sources present, demanding only that the
- sources be uniform in strength. This is a somewhat astonishing result.
Recall in the continuous analog, this result is just not true. Given the field .
produced. by some configuration outside a sphere, assuming that the
configuration has uniform charge density, one cannot determine the shape of
that configuration. Brodsky and Strakhov had to constrict themselves to
lemniscates to get the uniqueness in the continuous case. We did not have to
so constrict our view. Ah, but we have made some pretty rigid assumptions
about our system; we have placed our restrictions on the network itself and
not on the placement of the sources. ' '

First we require that the network be
rectangular. Consider the ‘circular’ array.
That is, consider a network that is
composed of at least two circles and any
- number of spokes. Suppose that we put
unit current sources on. the inner-most
circle, as shown. Assuming that the
resistors and sources have unit strength,
this gives the same boundary currents as
the case where we have current sources on -
any other circle. Parenthetically, if there
were only one current source in the’
picture, we could use the first algorithm to
locate it. So our general uniqueness proof is highly dependent on the
geometry of the rectangular array. That is, we can prove the uniqueness for
the rectangular array because it is highly asymmetric. One could ask for
which other arrays can the uniqueness be proven. Perhaps this result is true
- for networks in which' all nodes are of degree four. This question is
completely open. | : :

In addition to only considering rectangular arrays, we assumed that all the
resistors and all the sources were of unit strength. As we stated above, having
unit resistance is in keeping with the continuous case. In the standard

continuous set-up, we have some source configuration: confined to some
sphere. We usually assume that this configuration is in empty space which -
has uniform, unit conductance.  Thus in the discrete analog of this, we use-
uniform, unit resistors in our array (recall resistance is the inverse of
conductance). . Conversely, having. non-uniform resistors in our- array is

analogous to placing our charge configuration not in empty space, but in an
infinite, non-uniform conductor. Additionally, allowing only uniform
- current sources is equivalent to demanding that the charge configuration in
the continuous realm have uniform: charge density. This, too, is a standard -
necessary assumption; it is easy to formulate examples even in the
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rectangular array where our umqueness does not hold ‘when we allow'_

different strengths of current sources.

So in fact our assumptlons on'the resistors and sources were not extreme in

any sense. One still wonders if there are situations where we can relax these
conditions and still have our desired result. Indeed in the case of one source

and in the 1x1 and 2x2 cases, we need nelther the size of the source nor
uniform resistance. Are these the only cases? So in the end, we do have a
rather interesting result w1th some room for further research o
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