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Abstract. We consider an electrical network where each edge is con-
sists of resistor, inductor, and capacitor joined in parallel. We will make
sense of Newmann-to-Dirichlet map for these networks. We will prove
that any recoverable resistor network is still recoverable when capac-
itance and inductance are added in parallel. We will also give some
examples of networks nonrecoverable as resistor networks but recover-
able when inductor and capacitor are added to every edge.

1. Introduction

Let a graph with boundary be a triple Γ = (V, ∂V,E), where (V,E) is a
finite graph with the set of nodes V and the set of edges E. Let ∂V be a
nonempty subset of V called the set of boundary nodes. To each edge we
assign three numbers inductance L, capatance C, and resistance R joined
in parallel connection. Suppose we apply an alternating voltage v on one of
the boundary nodes with frequency ω and zero on the other nodes. Then
at steady state according to laws of circuit theory all the nodes will have
voltage with frequency ω [3]. Then I on any edge is the sum of the currents
for the resistor, capacitor and inductor. From elementary circuit theory it’s
known that the current I going through a resistor is proportional to the
voltage drop v on this edge,

IR =
1

R
v

through a capacitor is proportional to derivative of voltage drop for this
edge,

IC = C
∂v

∂t
and for an inductor the current is proportional to the antiderivative of volt-
age drop,

IL =
1

L

∫ t

0

v

Then the current going through a single edge is just the sum of them

I = IR + IC + IL

(1.1) I =
1

R
v +

1

L

∫ t

0

v + C
∂v

∂t
1
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Let p be an interior node and qj its neighbors. Suppose the voltage at
node p is v(p) and at nodes qj are v(qj). Then at steady state, by Kirchhoff’s
law, the sum of the currents flowing out of interior node p is equal to zero.

(1.2)
∑

pqj

(

1

Rj
(v(qj)− v(p)) + Cj

∂

∂t
(v(qj)− v(p)) +

1

Lj

∫ t

0

(v(qj)− v(p))

)

= 0

Suppose we apply a voltage in the form eiωt at one boundary node, where
ω is frequency and t is time. Then the voltage is of the form Aeiωt at all
interior nodes, where A is some complex function on the nodes. So we can
rewrite the last equation in the following form:

∑

pqj

(

1

Rj
(A(qj)−A(p)) eiωt + Cj

∂

∂t
(A(qj)−A(p)) eiωt) +

1

Lj

∫ t

0

(A(qj)−A(p)) eiωt
)

= 0

(1.3) =
∑

pqj

eiωt (A(qj)−A(p))

(

1

Rj
+ i(Cjω −

1

Ljω
)

)

= 0

⇒
∑

pqj

(A(qj)−A(p))

(

1

Rj
+ i(Cjω −

1

Ljω
)

)

= 0

We call

γ =
1

R
+ i(ωC − 1

ωL
)

an admittance defined on the edges, where Re(γ) > 0 and Im(γ) is some
function of ω.

2. uniquiness

We call a connected graph Γ with a function γ on its edges a network
Γγ . Suppose we have a network with n nodes, m of which are boundary
nodes. We number all nodes in the network in such a way that the first
m nodes are boundary ones: q1, q2, ...., qm, qm+1, ...., qn. Then we construct
Kirchhoff’s n× n matrix in the following way:

if i 6= j, then ki,j = −∑ γ(e), where the sum is taken over all edges e

joining qi to qj (if there is no edge joining qi to qj , then ki,j = 0);
ki,i =

∑

γ(e), where the sum is taken over all edges e with one end point
at qi and other endpoint not qi.

From the construction of K it’s clear that K is symmetric (ki,j = kj,i) and
the sum of the elements of any row is zero (

∑

i ki,j = 0⇒ ki,i = −
∑

j 6=i ki,j),
K also has a block structure.
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Suppose

(2.1) K =









A B

BT C









where A is m ×m submatrix representing a map for the boundary nodes.
Define Λ = A−BTC−1B. This definition will be correct if C is nonsingular.

First we prove that the rank of K is n − 1. Let x be a n × 1 vector
[x1, ...., xn] such that Kx = 0. Then x̄TKx = 0. It follows that

(2.2) x̄TKx =
n
∑

i,j

x̄iki,jxj

=
n
∑

i6=j

x̄iki,jxj +
n
∑

i=1

ki,i|xi|2 =
n
∑

i>j

ki,j(x̄ixj + x̄jxi) +
n
∑

i=1

ki,i|xi|2

=
n
∑

i>j

ki,j(xi−xj)(x̄j−x̄i) =
n
∑

i>j

−ki,j(xi−xj)(xi − xj) = −
n
∑

i>j

ki,j |xi−xj |2 = 0

Since Γγ is a connected network, any node qj can be connected to qi and
Re(ki,j) < 0 for i 6= j it follows that x must be a constant vector.

Suppose that Cy = 0, where y = [y1, ..., ym−n] is some (n−m)×1 vector.
We build a n×1 vector z that has the form z = [0, ...., 0, y1, ..., ym−n]. Then
we have

(2.3) z̄TKz = ȳTCy = 0

From this it follows that z is constant vector, but z has zero entries, so y

is the zero vector and C is nonsingular.
We proved only for the case when ω is real. But this result can extended

for any ω in the complex plane, becuase determinant C can not be identical
zero (we proved that C is non-singular for real ω) it can have only a finite
number of zeros.

Suppose the voltage of the form F∂ =







F1

...
Fm






eiωt is applied at the

boundary nodes, and let Fint =







Fm+1

...
Fn






eiωt be the resulting potential

at the interior nodes. Then at the steady state the potential inside satisfies
a current version of Kirchhoff’s law [3].
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(2.4)

(

A B

BT C

)(

F∂

Fint

)

=

(

G∂

0

)

Since C is invertible, the Dirichlet problem with boundary data F∂e
iωt

has an unique solution.

⇒ Fint = −C−1BTF∂

The current out of boundary nodes is given by

(2.5) G∂ =
(

A B
)

(

F∂

Fint

)

=
(

A−BC−1BT
)

(F∂) = Λγ(F∂)

We define the Dirichlet-to-Neumann map Λγ to be a linear map from
the boundary potential of the form F∂e

iωt to boundary currents G∂e
iωt.The

matrix that represents Λγ can be calculated explicitly in terms of blocks of
the K matrix.

Λγ = A−BC−1BT

for some γ.

3. implications from resistor network

The difference between the situation when there are only resistors in a
network and when there are resistors, inductors, and capacitors is great.
Any network that is recoverable in the first case is still recoverable in the
second, because by choosing ω = −iω0 ,where ω0 > 0 our admittance γ is
always bigger than zero

γ =
1

R
+ i

(

C(−iω0)−
1

L(−iω0)

)

=
1

R
+ Cω0 +

1

Lω0

> 0.

Thus we know γ for all pure imaginary ω with negative imaginary part. So
we know γ for any ω.

In the last proof we didn’t use the specific form of the γ. We used only the
facts that γ is analytic and maps the negative imaginery part onto positive
real part.

4. two in series

There are some cases, a resistor non-recoverable network can be recovered
when inductor and capacitor are added.

We look at a graph with two edges connected in series between two bound-
ary nodes. Assume that the first edge has conductivity γ1, and the second
γ2.
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Suppose that

γ1(ω) =
1

R1

+ i

(

ωC1 −
1

ωL1

)

γ2(ω) =
1

R2

+ i

(

ωC2 −
1

ωL2

)

and we are given a Λ matrix or in our case we know
(

1

γ1

+
1

γ2

)−1

or

(

1

γ1

+
1

γ2

)

.

We rewrite the last expression in the simple fractions form:

(4.1)

(

1

γ1

+
1

γ2

)

= ω

(

1

iC1ω2 + 1
R1

ω − i
L1

+
1

iC2ω2 + 1
R1

ω − i
L1

)

Let ω1, ω1′ be the zeros of the ωγ1(ω) and ω2, ω2′ be the roots of ωγ2(ω).
Then the equation (3.1) has a unique representation in simple fractions. Let

D1 =
1

R2
1

− 4C1

L1

, D2 =
1

R2
2

− 4C2

L2

be discriminants of ωγ1(ω) and ωγ2(ω), notice that D1 and D2 are real.
Assume that D1, D2 6= 0,then

(4.2)
1

γ1

+
1

γ2

= ω

(

1√
D1

(

1

ω − ω1

− 1

ω − ω1′

)

+
1√
D2

(

1

ω − ω2

− 1

ω − ω2′

))

We have several cases:
1.D1 6= D2.
If ω1 6= ω2 and ω1′ 6= ω2′ , or in other words, if γ1 is not proportional to

γ2, then we can always distinguish ω1, ω1′ from ω2, ω2′ by letting ω approach
ωj , (j = 1, 1′, 2, 2′) and see how fast 1

ω−ωj
goes to ∞, by the speed of

√
D1

or
√
D2. By the same approach we can determine D1 and D2. Thus we can

find γ1 and γ2.
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This method can be applied in the case that one of the discriminants is
zero. One of the roots will be a double root and can always be distinguished
from the other two.

If ω1 = ω2 and ω1′ = ω2′ , and γ1 is proportional to γ2 (γ1 = kγ2), then
there are infinitely many solutions and we can always replace γ1 and γ2 by
one conductor γ = k+1

k
γ1.

2.D1 = D2 = D 6= 0.
If D < 0 then

√
D is pure imaginary and ω1 and ω1′ are symmetrical with

respect to the imaginary axis, so are ω2 and ω2′ . We can combine ω1 with
ω1′ and ω2 with ω2′ , so the solution is unique.

If D > 0, then we can rewrite (3.2) in the form

(4.3)
1√
D

(

1

ω − ω1

− 1

ω − ω1′

+
1

ω − ω2

− 1

ω − ω2′

)

Notice that

ωj , ωj′ =

− 1
Rj
±
√

1

R2

j

− 4Cj

Lj

iCj
, where j = 1, 2

thus ωj , ωj′ are pure imaginary with positive imaginary part. We know that
if we approchimate ωj from +i∞ in (3.3) then two roots must have positive
imaginery parts and the other two negative imaginery parts. Assume that
ωj = iaj , where j = 1, 1′, 2, 2′. Then

1

ω − iaj
− 1

ω − iak
=

ak − aj

−iω2 − (ak + aj)ω + i(akaj)

Because the coefficient of ω2 must be pure imaginary with positive imaginary
part, it follows that ak − aj must be negative. We have two cases:

a). if both a1′ and a2′ are greater than a1 and a2, then a1 can be combined
with either a1′ or a2′ , so can a3. Thus there are two solutions.

b). if one of the a1′ or a2′ is smaller or equal to a1, or a2, then in one of
the combining we would get a wrong sign. Thus the solution is unique.

3.D1 = D2 = 0.
In this case ω1 = ω1′ and ω2 = ω2′ , and

(

1

γ1

+
1

γ2

)

= ω

(

1

iC1(ω − ω1)2
+

1

iC2(ω − ω2)2

)

. Then the possibilities are:
a). ω1 = ω1′ = ω2 = ω2′ , then γ1 is proportional to γ2, so there are

infinitely many solutions.
b). ω1 = ω1′ 6= ω2 = ω2′ . In this case by letting ω approach ωj (j =

1, 1′, 2, 2′), we can find C1 and C2, so we can recover γ1 and γ2.
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5. similar connections

The idea of connection of two conductors in series can be extended for
any arbitrary number m.

...............1 2 3 mm-1

Suppose we have conductors γ1, . . . , γm, and suppose that D1, . . . , Dm 6= 0
are discriminants and ω1, ω1′ , . . . , ωm, ωm′ are zeros of ωγ1, . . . , ωγm.Then

1

γ1

+ · · ·+ 1

γm

has unique representation in simple fractions:

(5.1)
1

γ1

+· · ·+ 1

γm
= ω

(

1√
D1

(

1

ω − ω1

− 1

ω − ω1′

)

+ · · ·+ 1√
Dm

(

1

ω − ωm
− 1

ω − ωm′

))

There are many possibilities which are similar to the case when there are
only two conductors joining in series. We wouldn’t consider all the cases,
they are rather tedious although they are can be handled by the same ideas
as in the last section. The case when

D1 6= . . . . . . 6= Dm and ω1 6= . . . 6= ωm, or ω1′ 6= . . . 6= ωm′ is recoverable
because we can always distinguish ωj from ωk and ωj′ from ωk′ , where
j, k = 1, . . . ,m and k 6= j. We can also always combine ωj with ωj′ . By
letting ω approach to ω − j, we can find Dj . Knowing that we can find γj .

The case when Dj = Dk is the same as in the last section. The cases
when more than two discriminants are equal are rather messy and it’s not
the purpose of this paper to look at all of them.

Knowing how to recover m conductors joined in series allows us to recover
the case of star shape connection like this:
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where m rays are coming from one point, and each ray has n admittances
in sries (n and m are arbitrary).

This star is also recoverable in the most cases. We numerate all nodes
boundary nodes first and the central the last 1, 2, . . . , n, n+ 1. Let rays be
1, 2, . . . , n by numbers of boundary nodes. We can asumme that each ray j

has one admittance γj .

2

1

2

3

4

5

n

n+1

1

4

n

5

3

Then the Kirchhoff’s matrix is
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







γ1 0 · · · −γ1

0 γ2 · · · −γ2

· · · · · · · · · · · ·
−γ1 −γ2 · · · Σ









, where Σ = γ1 + γ2 + . . .+ γn.

Thus Λ matrix for this network is

(5.2) Λ =
1

Σ













S1 −γ1γ2 −γ1γ3 · · · −γ1γn
S2 −γ2γ3 · · · −γ2γn

S3 · · · −γ3γn
· · · · · ·

Sn













where Sk =

n
∑

j, j 6=k

γkγj

We know that the Λ matrix is symmetric and determined by its above
diagonal elements. Suppose

a1,2 =
γ1γ2

Σ
, . . . , ai,j =

γiγj

Σ
.

Then
γ1γ2γ3

Σ
= a1,2a1,3 + a1,2a2,3 + a1,3a2,3 + a1,2

∑

j>3

a3,j .

Thus

γ1 =
a1,2a1,3 + a1,2a2,3 + a1,3a2,3 + a1,2

∑

j>3 a3,j

a2,3
,

γ2 =
a1,2a1,3 + a1,2a2,3 + a1,3a2,3 + a1,2

∑

j>3 a3,j

a1,3
,

and

γ3 =
a1,2a1,3 + a1,2a2,3 + a1,3a2,3 + a1,2

∑

j>3 a3,j

a1,2
.

Similary we can find all γj , j = 1, 2, . . . , n. Knowing this sum everything
can be reduced to the case of m admittances joined in series.

The answer that this star is recoverable follows from section three and
the fact that this star network is recoverable in the case of resistor network.

6. example of nonrecoverable network

From the last examples it may seem that networks with admittances as
conductivities can always be recovered in the most cases. It is not true.
Example of network such that can be
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23

1 2

3

4

13

14
24

where 1, 2 are boundary nodes.
In this cases the idea of two condactors joined in parallel works. The Λ

matrix of this network is 2×2 and determinited by one of diagonal element,
say a12 that equal to:

(6.1) a12 =

(

1

γ23

+
1

γ13

)−1

+

(

1

γ14

+
1

γ24

)−1

We can rewrite (5.1) in the form

(6.2) a12 =
1

ω

(

γ13γ23(γ14 + γ24) + γ14γ24(γ13 + γ23)

(γ13 + γ23)(γ24 + γ14)

)

Thus a12 is a rational function of ω: polynomial of degree 6 in numerator
and a polynomial of degree 4 in denominator.

Suppose that ω1, . . . , ω6 are roots of numerator, and ω1′ , . . . , ω4′ are roots
of denominator. Let a be a leading term for the numerator and b for the
dominator. Then we can rewrite (5.2) in the following form:

(6.3) a12 =
a

bω

(

(ω − ω1) . . . (ω − ω6)

ω − ω1′) . . . (ω − ω4′)

)

From expression (6.3) we have 11 pieces of information: 6 zeros, 4 poles,
and the ratio a

b
. On the other hand we have 12 unknown parametrs. So we

don’t have unough information for recovering all parametrs.



THE INVERSE BOUNDARY PROBLEM FOR GENERAL PLANAR ELECTRICAL NETWORKS11

7. dual networks

The concept of duality for the resistor network has natural extension to
the case when resistor R,capacitor C, and inductor L are joined in parallel
connection. Using dual quantities in the table (7.1)

(7.1)
Kirchhoff ′s V oltage Law C R L v I z −series
Kirchhoff ′s Current Law L 1

R
C I v γ −parallel

we get that resistor, inductor, and capacitor joined in series is the dual to
resistor, capacitor, and inductor joined in parallel.

R

L

C

R

L

C

If instead of writting the integro-differential equation for the C,R,L joined
in parallel connection we write the integro-differential equation for L,R,C
joined in series, and instead of using Kirchhoff’s Current Law we use Kirch-
hoff’s Voltage Law, we get an impedance z in the form

z = R+ i(Lω − 1

Cω
)

on edges, where each edge is R,L,C joined in series.
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When we recover one network, we automatically recover the dual one.
Thus for example knowing the result for n admittances joined in series,
we automatically know the result for n impendances joined in parallel.

m-1

mm-1...............

Z 1
Z 3

Z

1

Z 2

32

mZ
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