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1 Introduction

In the past, work has been done by Anderson and Duffin on series addition
of conductors in an electrical network. It is my aim to look at parallel
and series additions of networks and to find interesting properties from the
resulting A matrices.

I will be looking at the division of current in networks that result from
the parallel addition of previously formed electrical networks and looking
at the power dissipated by the resulting network as compared to the power
dissipated by the component networks. The same will be done for the series
addition of networks. Also a way to calculate the inverse of the A matrix in
terms of the effective resistances is formed.

2 Parallel Addition

Let I'y and I's be the graphs of networks 1 and 2 respectively, with boundary
nodes {pgl)}’f, {pZ@)}’l" and with n = m, taking the ordering of the boundary
nodes to be counterclockwise around the network. We will define the parallel
addition of networks 1 and 2 to be the connecting of the boundary nodes in
such a way that pgl) is connected to p§2), pgl) is connected to p§2), and so
on, as in Figure 1. Parallel addition of networks is defined only when the
number of boundary nodes in network 1 is equal to the number of boundary
nodes of network 2. Current flowing into the boundary nodes of the newly
formed network now has a choice of which way to flow. The current may
flow into either network 1 or network 2, although the total current flow
cannot change. We will assume that the current will divide in such a way
that the power dissipated is a minimum. Also, we will assume that there are
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Figure 1: Parallel Addition of Networks

no sources or sinks inside either component network, so there are no sources
or sinks in the network formed by their parallel addition.

Given a graph I', we will let A denote its associated Dirichlet to Neu-
mann map. For our definition of parallel addition of resistor networks, the
following is true:

Theorem 1 Let I'1, 'y be a pair of networks with associated Dirichlet to
Neumann maps A1, A2 and boundary nodes {pgl)}?, {pz(?)}’f. Take T'p to be
the graph resulting from the parallel addition of I'y and I'y as defined
above. Then the map associated with I'p is:

Ap=A1+ Ao (1)

A Simple Example Consider two networks I'; and I's, each with two
boundary nodes. Take the conductance between the two boundary nodes
in network 1 to be a and the conductance between the two boundary nodes
in network 2 to be b. Then A = @« —a and Ay = < b b )

—a a -b b
Taking the parallel addition of the two networks results in another
network, I'p, with conductance a + b between the two boundary nodes of

a+b —a—-b)\

this network. Therefore, Ap = (
Proof. Let u; be the solution of the Dirichlet problem for I'; and let ug be
the solution of the Dirichlet problem for I's. Since the current at the
boundary nodes of the combined network is just the sum of the currents at
the boundary nodes of the individual networks, the solution of the
Dirichlet problem for I'p is u1 + ug. Therefore, Ap = A1 + As.



Lemma 1 (A1 +A) P = AT AT+ A TIAS?

Proof.

1)71A2—1 +(A1—1 +A2—1)71A1—1
AT AT

So ATYAT AT TIAS = (A 4 Ag) 7L

For notational simplicity, we will denote A7 (AT + A51)"TA; ! by
ATHIAZT

Lemma 2 ATHIAST = ASHAT!
Proof.

AT AT = AT AT+ A TIAGT
= (AT A =AM AT THATT AT - AT
= (AT HFAHAT F A THA AT = AT AT AT + AT
A_l(égllij\i_ll))(/\lit A TIAT AT AT+ A TIALY
— 12 1 2 1
= Ay MATt

)

Given a resistor network with associated Dirichlet to Neumann map A,
the power dissipated by current w flowing through the boundary nodes of
the network is given by w/ A~ lw.

Theorem 2 For any x and y such that v +y = z, where z is the current on
the boundary of the network formed by the parallel addition of I'1 and I'y,

ZTATHAT Yz < aTAT e+ y ATy (2)

Proof. The minimum of xTAl_lx + yTAZ_Iy, when x + y = z, occurs when
o= (AT + A TIA 2 and y, = (AT F AT TIAT 2. So

Arz, = (ATHAS Y2 and ASty, = (ATY|AS )z, Then

Ty AT w0+ yd MY o = a (ATHIAS) 2 4 ud (AT A )2 = 2T (AT YA )=
So given these values of z, and y,, equality holds.



Let x =25+ u,y = yo —u,u# 0. Then x +y = z, + yo = z. We want
to show that 2T A7 e + yT ALy > 2T (ATHAS D).

A'e = AT e, + AT u = (AT Az + AT
Aty = A3y — Ay tu = (AT AR D)z — AT

eTA e+ yTA y = 2T (AT A )z + 2T A u + T (A A )z — yT Ay T
= 2T(ATHAS ) 2 + 2T AT — yT AL M

In order to complete the proof, we must show that xTAl_lu—yTAQ_Iu > 0.
eTAT u — y A = 2T AT+ uT AT e — DA + uT A
— ZTA2_1(A1_1 + A2_1)*1A1_1u + uTAl—lu
—ZTATH AT+ AT TIA 4w AL T
= uT AT u + uTA T > 0.

So for any x,y so that = +y = z, 2T AT e + yT ATy > 2T (ATHASY) 2.
[ )

Since we are assuming that the current flow will divide itself in such a
way that the power dissipated is minimum, the current will divide itself so
that z = (AT + A;")"TAy 2 and y = (A7 + A51)"'AT' 2 to minimize the
power dissipated by the network formed by parallel addition.

Since we are assuming that the networks contain no sources or sinks,
> z; = 0, where z is the current flow on the boundary of the network. Let
al = zTAl_lz and ag = zTAglz. Clearly if z = 0, then a; = 0 and as = 0.
We will assume z # 0 so that a; > 0 and ag > 0. Then the following is true:

Corollary
ATz < (- + i>1 (3)
a;  az
Proof. Let z = (alfa2> zand y = (al(fﬁ@) z.
Then z +y = (allf@) z+ (alil@) Z=Z

So by Theorem 2, 27 (AT |AZ 1)z < 2TAT 2 +yTAS Yy =
TA—1 TA-1 —
(GI(EGZ) 2 Ay e (aﬁfaz) - (aﬁﬁag) Z Az (mc—Ll—laz) -

2 2
ag al _ a1a2(a1+02) __ aia2
(al—l—az) ar + (aﬁ-az) a2 = (a1+a2)? — aitaz’
-1
T A—1 -1 ataz _ (1 1
So 2T(AT Az Yz < ez = (L4 L)
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Figure 2: Series Addition of Networks

3 Series Addition

Let I'y and 'y be the graphs of networks 1 and 2 respectively, with bound-
ary nodes {pl(l) T, {p§2)}71". Take the ordering of the boundary nodes to be
counterclockwise around network 1 and clockwise around network 2. The
boundary nodes of each network are divided into two subsets, those where
the current flows into the network, and those where the current flows out of
the network. Let {ql-(l)}lj and {qZ@)}’f be the boundary nodes with current
flowing into the network of networks 1 and 2, respectively. Let {7"1(1)}% and

{7’2(2)}{ be the boundary nodes of networks 1 and 2 with current flowing out
of the network so that b+ d = n and k 4 j = m. The series addition of net-
works 1 and 2 is defined to be the connecting and interiorizing of the second

subsets of boundary nodes of the two networks in such a way that 7‘51) is

connected in series to qf), rél) is connected to q§2), and so on, as in Figure
2. For series addition of networks to be defined, the boundary nodes of the
two networks must be divided in such a way that d = k. Our definition of

the series addition of networks is analagous to I'; e I's as defined in Rosema.

Theorem 3 Let I'1, 'y be a pair of networks with associated Dirichlet to
Neumann maps A, Ao, and boundary nodes {qz(l) b {rgl)}il, {rl@)}{, {qz@) b
A By Ay B
B{ 01 Bg 02
the graph resulting from the series addition of I'1 and 'y as defined above.
Then the map associated with I'g is:

withd =k. Let A = and Ay = . Take I'g to be

Ao — A — 31(01 + Cg)le? —Bl(Cl + CQ)ilBgﬂ (4)
s —Bo(C1 + Co) 'BY Ay — Bo(Cy + Cy) ' BY

Proof. This follows directly from Lemma 10 in Rosema.



)

Let I' be the graph of a network with intI" representing the set of in-
terior nodes and OI' representing the set of boundary nodes. Let w; =
2inj Wii, Wij = —wj;, where i ~ j are those nodes ¢ that are neighbors of j.
Also, let W = {wj; : w; = 0 for je intI',w; = 1; for jedl', where ) 1); = 0},
and Q(w,w) = Zrijw?j =3 %wfj

Theorem 4 Q(w,w) is minimized for that {w;; }eW such that
wi; = 7ij(vi — vj) for some {v;}.

Proof. Since the Neumann problem has a solution, such {v;} exist. Let
wij = vij(vi —v;) and let z;;eW, such that z;; = w;; + ;. Since z;jelV,
z; = 0 at each interior node. Therefore, since z; = w; + x; and w; = 0 at
each interior node, x; = 0 at each interior node. Also, z; = v; at each
boundary node. Since w; = 1; at each boundary node, z; = 0 at each
boundary node. Thus, x; = 0 for all i.

Qz,2) = %zfj => %,j(wij +25)? = Q(w,w) + Q(z,x) + 23 %J_wijxij.
But 33, ; sowijay = 205 — ) ti5 = 3 5 vittij — Y Vi =

S vz + > vjz; = 0 since ; = 0 for all i. So Q(z,2) = Q(w,w) + Q(z, x).
Therefore, Q(w,w) < Q(z, z).

)

Let I's be the network formed by the series addition of I'y and I'. Con-
sider a given current z on the boundary, where the current flowing into
the network flows out of the network divided into the exact same val-
ues as it entered (the current flowing on the boundary of the network is
z=[x1-Tn, w1 — 2,])7). Then the following is true:

Theorem 5
2TAG e < 2TATI 2+ 2TAS (5)

Proof. Follows from Theorem 4.



4 Inverse for the A Matrix

Let A : " — R" be the Dirichlet to Neumann map for a network with n
boundary nodes. Since we are considering only those networks that contain
no sources or sinks, W = I'm(A), where W = {w = [wy - - -wy,]T :wy +---+
wy, = 0}. Let e be the n x 1 matrix containing all 1’s. Then ker(A) = {te}.
Let R : R" — R represent A~1,

Theorem 6 R = (—%) acts as A1, where pij is the effective resistance
between nodes v and j.

Proof. From Lemma 2 in Duffin, there exists constants p;; such that
v = _71 ?:0 pijw; + ¢, where ¢ does not depend on i. Also,
pij = pjis pjj = 0, and p;; > 0 for ¢ # j. It is later shown in Duffin’s paper
that these constants are the effective resistances for the network. So
U1 P11t Pln w1

= %1 ool : + ce. Therefore Rw = v — ce.

Un Pnl " Pnn Wn,

So ARw = A(v — ce) = Av = w for all weWW and AR =1 on W.

)

Although Rw, where w is a current on the boundary of a network, only
determines the boundary voltages v up to a constant, R may be used in
place of A~! when calculating the power dissipated by the network.

Theorem 7

vl Av = w? Rw (6)
Proof.
v Av = vTw
=wly

= wl (Rw — ce)

= w? Rw, since Y w; = 0.
[

Consider a network with n boundary nodes. The following is an algorithm
for finding p;j, where p;; is the effective resistance between boundary nodes
¢ and j.



1. Apply a voltage of 1 at boundary node ¢ and voltage of 0 at node
j. Insulate the other n — 2 boundary nodes so that current can flow only
through nodes i or j. Permute the A matrix so that node 7 is the first entry
in the matrix and node j the second, followed by the other n — 2 nodes. The

A matrix may be divided into submatrices so that A = < 4 B ), where

BT C
Ais2x2 Bis2xn—2 BT isn—2x2 and Cisn—2xn—2.
2. Now Av = w, where v = (1 0 ;- -2, 2)" and w = (wj

w;j 0---0)T. Therefore, by solving the last n — 2 equations of Av = w,
you may find the voltages at the other boundary nodes. This amounts
1
0
tion since C' is invertible. Therefore, the unknown boundary voltages are

1
_ -1 pT
zr=-C'B 0

to solving the equation BT + Cz = 0, which has a unique solu-

3. WeknowthatA<1>+Bx:< Wij

. Substituting the known
0 —Wjj
1

0 —Ww; 7 )

4. Using Ohm’s Law, you get 1 = Ip;; or p;; = % So A— BCO~'BT will

N——

voltages for x, we get A ( (1) ) — BC—'BT (

|

wij —wi]’

o s 1
. Pii 1s Just —.
—Wij Wi Pig 15 JUSE w5

produce a 2 x 2 matrix (

5. Once p;; is found, pj; is known. Also, we know that p; = 0, so
these values need not be calculated. Once p;; is found for every pair i, j, the
matrix R may be easily calculated.

Consider a network with four boundary nodes. R, representing the
inverse of the A matrix, will be a 4 x 4 symmetric matrix. Let the en-

tries of R be denoted by 7;, where r;; = (—@) Because of the prop-

erties of the effective resistance of a network, r; = 0 for all . Thus,
0 ri2 73 T4
0 . : . .
R=| "2 23724 | This matrix may be divided into four 2 x 2

ri3 123 0 734
T4 Toa T34 O

. ([ R R
matrices so that R = ( Rrip Ra )

The power dissipated by this network by a current w = ( ¥ ) =

(l‘l Tro —IT1 — .%'2>T is:



R R z
T oy — (4T _ T 1 It
w' Rw = (z Z)<R2T R3)<—z>

= (2TRy — 2TRY TRy — 2T R3) _Zz )

=2TRyz— zTRg — 2TRoz + 2T R32
= 27Qz, where

Q=Ri—RY —Ry+ Ry — —2r13 T12 — 123 — T14 + 734
T12 — T3 — T14 + T34 —2r94

For a network with 6 boundary nodes with current flowing out exactly
the same way as it came in, the power dissipated by the network can be
represented by 27 Qz, where Q = Ry — Rl — Ry + R3 =

—2714 12 — T4 —T15 + 745 T13 — T34 — T'16 + T46
r12 — T15 — T'24 + T45 —2r95 T3 — T35 — I'26 + T'56
713 — T34 —T16 T 746 723 —T26 — T35 + 7’56 —2r36

The entries of Q are the transfer resistances as defined in Duffin. For the
network with 6 boundary nodes, the i, j entry of @) is the transfer resistance
between node pairs 4,5 and ¢ + 3,7 + 3. The transfer resistance between
boundary node pairs a,b and ¢, d is p;, where v. — vg = Jp; when a current
J enters the network at a and leaves at b, all other boundary nodes being
insulated.

_ +Pbe— —
pr= Pad pbc2pac Pbd

It follows from direct calculation that, in general, for a network with n
boundary nodes with current flowing out exactly the same way as it came
in, the power dissipated by the network can be represented by 27 Qz, where
Q is the § x § matrix where the 7,j entry of @ is the transfer resistance
between nodes 4, j and nodes i + 5, j + 3.
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