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RECOVERN -"j'i'-l‘1::':.'a'i"_.GEcmETnv OF CIRCULAR PLANAR
RESISTOR NETWORKS FROM BOUNDARY MEASUREMENTS

CHRIS STASKEWICZ

Abstract, The following is a step by step algorhiuim used to recover the "unknown” geometry of a circular planar
graph. The bulk of this project is devoted towards Theorem 4.1.10, which relates connections between two boundary
nodes in circular planar graph to the rank of a submatrix in the Dirichlet-to-Neumann map denoted by A. Briefly, the
Dirichlet-to-Neumann map is a function which relates boundary information to the interior of a circular planar resistor
network. More information regarding the Dirichlet-to-Neumann map can be found in [1). A computer program writen in
Mathematica 3.0 accompa'nies' this presentation in section 6, as well as a complete Mathematica "package” format
including examples of Dirichlet-t6-Neumann maps with graphic displays of the resulting circular planar graph at the end of
this paper.

1. Introduction. A graph with a boundary is a triple I = (V, E, dV), where I is a finite graph with V = the set of
nodes, E = the set of edges where the conductivity y acts, and 8V = the non-empty subset of V called the boundary nodes
where the current { is induced. T is allowed to have multiple edges (i.e., more than one edge between two nodes) or loops
(i.c., an edge joining a node to itself}, Within the content of this paper, we will not be looking at loops, since in previous
articles, it was noted that loops can be eliminated to.produce electrically equivalent graphs.

A circular ptanar graph is a graph with a boundary which is embedded in a disc D in the plane so that the boundary
nodes le on the circle € which bounds D, and the rest of T is in the interior of D. The boundary nodes will be labelled vy ,..
., Vo in the (clockwise) circular order around €. A pair of sequences of boundary nedes (A,B) ={ay, ..., ax, 1, ... be) such
that the entire sequence (4, ..., ks &1, ..., be) is in circular order, will be called a gircular pair. Note that in section 5, we
will want to seperate (or divide) the circular pair (A.B) by a set of intervals denoted (7;,7;) such that i #jand i < j. This
notion will be clear later on.

A circular pair (A,B) of boundary nodes is said to be ¢gnpected through I if there are k& dmjomt paths a1, ..., @ in
T. such that a; starts at «;, ends at b;, and passes through no other boundary nodes. We say that o is a connection from A
o8, ' _

For each circular planar graph I', let #(T) be the set of all circular pairs (A.B) of boundary nodes which are
connected through T

Recall there are two ways in which we can remove an edge from a graph I'. First, we can delete an edge. Second,
we can contract an edge to a single node. {An edge joining two boundary nodes is not allowed 10 be a contracied to 2
single node,) '

We say that removing an edge breaks the connection from A to B if there is a connection from A to B through T,
but there is not 2 connection from A to B after the edge is removed. A graph I is called critical if the removal of any edge
breaks some connection in #(F), The final result of this paper is to produce a critical graph including all interior nodes
and edges by simply gathering all necessary information at the boundary of the graph. Thiak of a "fortune teller”
predicting the shape of an object concealled within a foggy crystal ball by simply feeling the texture of its surface.

A graph I remains critical under Y - A equivalence transformations. Briefly, a Y - A equivalence is a geometric
transformation shown below which maintains electrical equivalence since we replace three edges by three edges. For more
information regarding the properties of Y - A equivalences in T, please see [1). '

Y - A equivalence transformation in T
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A conductivity on a graph T is a function ¥ which assigns to each edge e € E a positive real number ¥{(¢}. A resistor
network (T,y) consists of a graph with a boundary together with a conductivity function 4. This paper makes no attempt to
recover conductivities from boundary measurements. Therefore, we will not talk much about conductivities, except in the
examples which conclude this paper. However, it should be noted that there is a linear map from boundary functions to
boundary functions defined as follows. For each voltage potential £ = {f{v;)] defined at the boundary nodes, there is a unique
extension of f.to all the nodes of ' which satisfies Kirchoff's current law,

Zgeip) YPP F@) -~ f @) =

where N(p) represents all neighboring nodes topandp e V, and g € 0V or V. This function then gives a current /= (I(vi)}
into the network at the boundary nodes. The linear map which sends fto [ is callcd the Dirichlet-to-Neumann map and is
represented by an # x n matrix’ denoted by A.

2. Medial Graphs We will investigate the key formula of this paper, namely, R(A) = card(A} - black{A) - max(
A,B), where max(A,B) is the rank of a particular submatrix within the A matrix and (A,B) reprcsents the circular pairs as
defined in section 1.

A medial graph M is a circular planar graph such that its boundary nodes are 1-valent and its interior nodes are 4-
valent. ' -

4-valent geodesic interior node 1-valent geodesi¢ boundary node

The name "medial” comes from the following construction that for each circular planar graph T produces a
corresponding medial graph M(T).

Suppose I = (V, E, dV) is a circular planar graph with 7 boundary nodes, I is assumed to be embedded in the closed
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unit Jisk D so that the boundary nodes ¥;...., Vx occur in clockwise order around a circle C = ol and Lhc-rest of T is in the
interior of D. The medial graph M(T) dcpends on the embedding. First, for each edge ¢ of I, let m, be its midpoint. cht,
place 2n boundary points #1,....12, on C so that

nen<hais <. <l 1< V< fag<l

in the clockwise circular order around C.
(1) The vertices of M(T) consist of the points m, for e E, and the points 1; for § = 1.....2n.,
(2) The edges in M(T) are as follows. Two vertices m, and my are joined by an edge whenever e. and fhavea
~ common vertex and e and f are incident to the same face inI'. There is also one edge for each point ¢; as follows. The
point f1; is joined by an edge to m, where ¢ is the edge of the form & = v;r which comes first after the arc v;#;; in clockwise
order around v;. The point f2;_; is joined by an edge to my wherc fis the edge of the form f = v; 5 which comes first after
the arc vif2;-1 in clockwise order around v;,

The vertices of the form m, of M(T) are 4-valent; the vertices of the form f; are 1-valent,

An edge uv of a medial graph M has a direct extension vw if the edges uv and vw separate any other two edges
incident (o the vertex v. A path g ;... 4 in M is called a ggodesic arc if each edge u;_ u; has edge ; uiy as a direct
extension, A geodesic arc ug uy. .. uy. is cailed a geodesic if either

(1) ug and ;. are points on the circle C.
or : .
(2) up =g and up_y 4 has ug u) as a direct extension,

If each geodesic in M begins and ends on C, has no self-intersection, and if M has no lenses, we will say that M is
* lenstess. For our purposes, we will only be looking at lensless graphs. For more information on lenses and various
Lemmas associated to electrical equivalency of medial graphs with lenses, please see {2], section 4.1.2.
-A trigngle in M is a triple {f,gh} of geodesics which intersect to form a maugle with no other intersections within
the configuration,
Suppose {f, gh} form a trian gle A motion of {f g.h} consists of mte.rchangmg the conﬁgurauon as shown below.

A motion of f,g,h in the Medial Graph

h

a a
Lewma 4.1.1. Two circular planar graphs are Y-A equivalent if and only if their medial graphs are equivalent under
motions. :

Proof. Each Y-A wransformation of I’ corresponds to a motion on M(T'). Con{rersely, a motion on M(T") corresponds to 2 Y-A
" iransformation of ', = '
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3. Z-Sequences. We begin this section with the study of the Z-sequence for a particular medial graph, M(T)..
And although we do not directly compute the Z-sequence within the computer algorithm, we mention 1t solcly to provide a
more detailed presentation of medial graphs.

Let M be a medial graph. Then M will have # geodesics each of which intersect C twice. 'I‘he n geodesics
intersect C in 2a distinct boundary points. These 2n points are labelled f1, ... #1,, 50 that

ez <. <l 1<th,<h

are in circular order around €. The geodesics will be labelled as follows. Let g; be the geodesic which begins at f;. The
remaining geodesicsare labelled g2, g3, ..., gx S0 that if § < j, then the first point of intersection of & with C occurs before
the first point of intersection of g; with C in clockwise order starting from ¢;. For each i = 1,2,...,.2n let z; be the number
associated with the geodesic which intersects C at ;. In this way we obtain a sequence z(M) = 21, 22, ...; 22, called the £-
sequence for M, Each of the numbers from 1 to # occurs in Z-sequence for 3 exactly twice.

' ‘Windings and Unwindings in the Medial Graph
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The tranformation above from left to right will be called unwinding between 1 .and t;. The inverse of this
transformation, defined if the geodesics from f; and ¢, are different and do not intersect in a lensless graph, will be called
winding between f; and ¢;. After winding or unwinding, the medial grapb is still lensless and its Z-sequence changes by one
transposition. '

Lemma 4.1.6. Two lensless medial graphs M and M, are eqmvaienr under motions if and only if the Z—sequence oM !
equals the Z-sequence of M.

Proof. Obviously, motions of 2 medial graph do not change its Z-sequence.

We show the other direction by an induction on the number of interior nodes of the medial graphs. Clearly, the
lemma is true if M) or M, have no interior vertices. Now, suppose tghey have at least one. ‘Then not all geodesics in My or M,
are paraliel. WLOG we can assume that none of the geodesics of M) or M, terminate at two adjacent boundary nodes, that is
there are no two equal adjacent symbols in the Z-sequence of M, or the Z-sequence of M, Therefore, WLOG we can
assume that the geodesics that go through boundary nodes 1 and 2 intersect in an interior vertive p;in M;, i = 1,2. By a finite
sequence of motions all other geodesics can be moved out of the triangle 1 2,p; . Therefore, WLOG the medial graphs look
tike the following figure near the boundary vertices 1 and 2.
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The unwiriding transformation above produces two new lensless medial graphs with equal Z-sequences. By the-
inductive statement, since these new medial graphs have fewer interior vertices, they are equivalent under motions, and -
therefore, so are the ongmal graphs [ ]

4, Connections and Z-sequences. Key Identity, Let I be a circular planar graph. A parh B between boundary
-nodes a and & of T is either and edge (ab) or a sequence of interior nodes py, ..., Pm such that '

(ap1), (21 p2)s v (Pm=1 Pm), (P B)
are edges of T - ' _ :
A disjoint connection & between two disjoint k-tuples of boundary nodes ay, ..., dx and by, ..., b is a set of
pairwise disjoint paths &; between the g;' s-and b;'s.
. The following theoreém, proved in [1], shows that the existense of disjoint connectmns between non-lnterlacmg k=
wples of boundary nodes of T on C can be read directly from a Ditichlet-to-Neumann map A.

Theorem 4.1.7. (see [1]} Letay, ... qe and b, .., by bea das;omt pair of non-interlacing boundary nodes of I. Then
there is a disjoint connection between the a;' s and b;' s if and only if

det{Alas, b;)} 2 0.
This states that the determinante of the submatrix in A formed by the rows a; and the columus &; is not equal 10

We now extend the notion of disjoint connections to medial graphs, M(T').

A face of medial graph M is a connected component of D < M. Due to the valences of the nodes in M one can color
the faces of M in black and white so that no two faces with the same édge are of the same color {the so'called two-
coloring). If M = M(I') then one can choose the two-coloring of M so that a face is black if and only if it contains a node
of T. Let us call this colormg induced, : : _

The boundary nodes of M split C in into 21 mtcrvals namely, I, Iz, o I g, Atwo-coloring of M induces a two-
coloring of the intervals. :

For the remainder of this section, let ¢ and d be two points in two distinct intervals Landl;. Let C-{cd}=AUB
where A and B are conaected disjoint geodesic arcs. Let / and J be two black intervals on the boundary such that f < A.and
Jc B. Apath G between [ and J is a sequence of black faces Fy, ..., F, such that [ € F;. JeF, F ﬂFM;&Q)

Fa, ... Fire1N € = and ¢ and d are not in the closures of the F;'s,
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- Let I; and J; be two disjoint k-tuples of the black intervals, such that LcAand JicB. A gw@
between the I;'s and the J;' 5 is a sequence of pairwise disjoint paths G; between the I;' s and the J;' 5
The definitions above are chosen so that the following lemma is true.

Lemma 4.1.8. Ler I' be a circular planar graph. Suppose M = M(T')is its medial graph with the induced coloring. Let
{ai} € A and [b;] € B be two disjoint k-tuples of boundary nodes of I'. Let I; and J; be corresponding black intervals.
Then there is a disjoint connection between the a;' s and the b;'s if and only if there is a disjoint connection between the
L s and the J;'s.

Proof. From the construction of M(I'} one has 1-1 correépondé_nce between the nodes of I and black faces of M{T').
Moreover, the interior nodes of I correspond to black faces that do not touch C. This induces the 1-1 correspondecne
between disjoint connections in I and M(T). m '

We have by Theorem 4.1.7, that a Dirichlet-to-Neumann map A gives complete information about disjoint
connections between non-interlacing k-tuples of boundary intervais in M(T'). The following identity provldes alink
between existence of the disjoint connections and the Z-sequence of 2 medial graph M.

For the purpeses of the algorithim in this paper, the following identity is more suited to explain the link between
disjoint connections through the interior of T and ibe rank of a particular submatrix in A,

Theorem 4.1.10. (Key Identity) Ler card(A) be the number of boundary nodes of M in A. Ler Black(A) be the number of
black intervals in A. Let Max(A.B) be the size of the biggest disjoint connection between a set of black intervals in A and a
set of black intervals in B = C - A. Note: Max(A,B) is the rank of a particular submatrix of A associated 1o the choice of
intervals, (A.B). Let R(A} be the number of geodesics that start and terminate at A (i.e. returning geodesics for A). Then
for a particular mapping A, the following identity holds,

R(A) = card(A) - Black{A} - Max{A,B)

Proof. Let 1, and £ be two adjacent boundary nodes of M so that {1, 2} CA or B, The following obseration is crucial:
Each of the four elements in the above equation do not change with respect of windings or unwindings of the geodesics for
a particular interval A. By a sequence of such windings and unwindings M can be transformed to a lensless medial graph
without imerior nodes. For the graph without interior nodes, the identity is trivially true. By the observation, it is wué-for
a general lensless medial graph. ® '

5. Setting up the Algorithm. For the remainder of this paper, we change notation from above only slightly to suit

the needs of the computer algorithm. We begin by assuming that the given A matrix is a matrix for a circular planar

" resistor network. We set up the black and white intervals along the perimeter of C, I;, where i = 1,2,....2n corresponding to
the number of boundary nodes, #, in sequential order such that /; begins before and next to /», and I contains the first
boundary node, 6T"y. All intervals, [;, occur clockwise around the unit circle. Even intervals contain boundary nodes (thc
black intervals) and odd intervals do not (the white intervals).

Now that we have established the perimeter of our resistor network, we take specific "cuts” or divisions in two '
selected intervals corresponding to {{I;,];) € I, L i ], i < j}, where upon we use the program to find the value of R(A) for
a particular division say, (f;,»4;, ). We find the value of R{A) for all such divisions along M(I') of which there are preciscly
i’—’%ﬂ differant choices, where once again, n represents the number of boundary nodes.

_ Now that we have established which intervals {(fi.[;} € 2 | i #], i < j} have geodesic arcs connected through the
interior of M(I), we proceed to locate which geodesic vertices are connected to each other. We do this by first locating an
interval (f;, 1, ) which has a value for R(A)# 0, Since i <j and R(A) # 0, we know that there must be at least one pair of
geodesic vertices that are connected 1o each other. Let the geodesic vertex between I;, and Jj, | be denoted as the interior.
geodgsic vertex to the interval . Therefore, in order to find which geodesic vertex is connected to thig interior vertex of
I, . we "advance” the interval [;, one by one (i.e. iopts F04T,men ig.,;,),'umil R{A) changes value at the & "advanced” intetval.
From this, we know that the geodesic vertex interior to [, is connected to the geodesic vertex between intervals fy_and fg.
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We repeat this process unt:l we know which geodesw vertices are connected to one another.
Thie final step is to draw in geodesic arcs. The result is a medial graph which, when given a two-colnnng, is
equwalent 10 a critical mnstor network under Y-A transformations.

6. Recovery Algnrluthm. The program below uses Mathematica 3.0 (or 2.2 without the special fom and function
fnrma{s)

Part 1; Finding the number of connections through the interior of T,

The user input of the A matrix. Below is an example of A%,

A=Tabla[a[ir j}: {.ir 4}, {ja 4}15
MatrixForm[a]

a[l, 1] af1, 2} a[i, 3] afl, 4]
al2, 1] a[2, 21 a[z, 3] a[2, 4]
a{2, 1] al3, 2) al[3, 3] af3, 4]
al4, 1] af4, 2) a[4, 3] a[4, 4]

Using the formula from Theorem 4,1.10, R(A) = card(A) Black(A) - Max(A,B), we set up the funcuon
“intervalValues™ to find the value of R(A) for each interval {(I,.I Y€ by, li#j, i < j} on the perimeter of M(T'). There are
precrsely -m—"” different choices for divisions along the penmcter of M(D).

module[x , m_] := Lf[Med[x, m] a= 0, X, Mod[x, m]];
Attributes[modulo] = {Listable};

Here we define ‘maxAB" 10 be the Max(A.B), where the numerical value of Max(A,B) is delcrmmcd by the rank of
the submatrix of A consisting of those boundary nodes of A which satisfy the following criteria:

o If we take a cut along the perimeter of M(I') in an even interval, then we exclide the node contained within
this interval (since for all boundary nodes, #, 2# € within an even interval) from the submatrix whose rank is to
be determined. - _ '

e All boundary nodes contained within (£;.1;), for example I; < n;, ..., m < [}, these nodes will designate the
sequence of rows of the submatrix. All other nodes will designate the sequence of columns.

» If any entire sequence of row entries or column entries is empty, then the rank of the submatrix formed by
them will be zero

1+1+ (2xLengthi{A])
2

maxAB[1i_, 3_] := ]::.f [Range[l'%J +1, [ -1] == (1

i+1

0‘, [Lenqt'.h['rra'.r:aspose [J\[ [modulo [Range.{ liJ +1, J - 1] ’ Length [A] ] .

1+14+(2 xLangth[A])
2

mdulo[nange[l'%J +1, [ J -1]. Length[a]]]]]] -

i+1

1
Length[Nullspace[a| [mdulo[Range[l;J +1, [ J -1}, Length(a}],

-1], cengenta1]]]]])}:

' 1+1+ (2xLengthlA
modulo[Range[l%J+ l +1+ (2xLengthi[A])

2

Here is the function, R{A) = card(A) - Blaclc(A) Max(A,B), where R(A) is applied to all * mrérvals" in order to
determine the " ‘intervalValues." :
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+1

_ ' 1 :
RofAfi_, §_) = (I~-1) - [l%] -[ J +1] -maxAB[L, 1];

Off [Transpose: nmtx] i

Off [NullSpace: imatrix];

Off [Gener_a.l tatop] ;

intervalvalues = Table[RofA[1, 3], {i, 1, 2xLength[Al},
{3, 1+1, 2xLength[A]}];

Below are the “intervalValues" determined from R(A) corresponding to the above "intervals,” from which, we will
now determing thel z-sequence. ' ’

MatrixPorm[intervalvalues]

{0, 0,0,0,1, 2, 3}
{6, 0,90,0,1, 2}
{0, 0,0, 0,1}
{0, 0, 0, 0}
{0, 0, 0}
{0, 0}
{0}
\ “{}

Part 2 Graphics.

Below we define the functions for graphics. "bNode" and "bullwinkle" lists the number of boundary nodes, #, for I.
"rocky" lists the intervals, {(;.1;) € I | i# . i < j}, for dividing up the perimeter of M(I) in order to determine R(A).
"fixed Values" determines random fixed positions of the geodesic verticies in order to prevent triple intersections of the
geodesic arcs. If, when running the program, a triple intersection ' appcars" 1o have occurred, sitnply run "fixed Values"
once again to select a different orientation of the gcodcsu: verticies.

2kx ' 2xx

bNode = Ta;bla{{PointSize[O.Dzsl_, poipt[_[CQs [_m], =Bin [ me——— ry—— —11]}.

{k, 0, Leagth[A] ~1}]; -

Bullwink 18 =

2kwr
-rame[-rexr.[arm, {t.11c [m] -{1. 1) s n[m]}] .{k, 0, Length{a) -1}];
2k 2k ax

}r -(1.3) 51n]

r

rocky = Table[Text {Tr., {(1.3) cos|

2 xLengthfa] 2 Length[A]

k., -1, 2x Length{A] - 2}]:

geoVin_] 1:- Table[

273 J-n-( =1y%l x 2x| 3]+ (~1)*" xe

{cos|— ], -sin = ]} 7+ € 5 Random([Real, {0.5, 1.5}],

- -..n
{x, 0, (2xn) -1}];

tixedValuee = geoV(Length[A]]:

qeodesic\irerticiais = Thread[Point [fixedValues]];
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Part 3: Finding specific geodesics.

Using the column vector from “intervalValues” we select rows {(gh) |h =g+, g # O} corresponding to a geodesic
veriex, take the difference in "intervalValues,” and determine when the difference is not equal to zerd, Next, we select the
first element in which the statement is true, This value corresponds to a different geodesic vertex. Together, these two
geodesics vertices correspond to a single geodesic curve connected through M(F) The process is then repeated until all
geodesic curves have been located in M(T).

usedverticies = {};:

skipTest{k_] := If [ (MemberQiconnectlon[k], True] A
FraaQ[usedverticlea, Part([flxedValuea, k}]), k, skipTest[k +1]) /.
usedvVerticles -» {AppendTo[usedVerticles, Part[fixedValues, X]]}

firatvValues = Table[skipTestlk}, (X, 1, Length{a]l -1}];

firstPairs = Table[{Part[fixedValues, Part[firstValuas, k]].,
part{fixedvalues, Length[Take [connection[Part{tirstvalues, k]],
Positlon[connectlon[Part{first¥alues, k]], True, 1, 1}[1, 1]]]] +
rart{firstvalues, k]]}.
{k. 1 LenQChEA] -1}1:

gecdeaicPathe = Thread [Line[firstPalrs]];

1astLine' a Line[Complement [£ixedValues, fixedvalues[)Platten[firatPairs, 1]}]s
Part 4: The medial graph.

Below is the graphics output of the program showing M(T') together with the boundary nodes, JT, and the intervals
{(.0)) € o li#], i < j} used to divide the perimeter of M(T).

show[Gra.phics[{bNode, rocky, bullwinkla.
geodsalcPatha, lastbhline, {PolntSize{0.015]), geodesicv’articies},
{Circle[{0, 0}, 1]}}, PlotLabal - "Medlal Graph of A", AspectRatio =+ 1]]

End{]

7. Conclusion. Unfortunately, a command to find the rank of a matrix is unavailable in Mathematica. Therefore,
we had to define a clumsy rank function of our own in order to make the necessary computations. The rank funcuon
involves two commands known to Mathematica, (namely Transpose and NullSpace) however, when the rank of an empty
matrix must be computed, the program errors on trying to Transpose an empty matrix or find the NullSpace of an empty
matrix. Therefore, one will note the suppression of error messages at the beginning of the program (namety, Off[ '
message]). This did not cause any difficulty in the computing of the interval values however, since we take the rank of an
empty matrix to be zero. Here the sacrifice is only a complete and compact program.

Another limitation is in the graphics of the resulting medial graph. It would have been convenient to "iwo-color”
the medial graph in order to establish the black and white intervals as well as the dual graph. Nothing is sacraficed except
convience, One only needs to understand the proceedure of coloring the proper regions with a pencil o pen.

Finally, the program is unable to distinguish between planar A magrices, non-planar A matrices, or random valued
malrices for that matter. In effect, the program will create a critical medial graph for any square matrix, preferably larger
than AY. The former case being an isolated boundary node. Therefore, the program does not take into account the .
effects of signs of determinants within the A matrix as discussed earlier and in {1]. Recall that the signs of the
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determinants of submatrices within the A matrix is of the form, 4++,==,4++,=-,... . What the meaning of the medial gmphf
associated to an arbritary matrix generated by the above program is unknown. ;
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EXAMPLES

The following examples were done in Mathematica 3.0 with the package MedialGraph.m. To call the package from the
internal files, use the command <<MedialGraph™. Then type TMedialGraph if you do not understand what the fanction

MedialGraph[A] does. You can input any matrix (preferably a A matrix as described in section 1 of the writen presentation).

First I had 10 add my working file to the Marhémqfica $Path directory.
Prgpend']:‘é [ $Path, "My-Mac-Files"];
This calls for the p.acka-gc MedialGraph.m.
' <L ued.ia.lgeraph‘

Here is the inpus of a Kirchoff matrix with the conductivities, ¥ = 1 for all edges in the graph. The resulting A matrix is -
below as well.

3 -1 0 0 =1 =1 0)
-1 2 0 0 0 0 -1
o 0 1 o © o0 -1
E=| 0 0 0 1 9 -1 o |;
<1 0 0 © 2 -1 0
-1 0 6 -1 -1 & =1
L0 -1 -1 ¢ ¢ =1 23}

A=K{[{1, 2, 3, &, 5}, {1, 2, 3, 4, 5}]]:
B=K[[{1, 2, 3, 4, 5}, {6, 7}]]):

BT = Tranapose[B] ;

B=K[[{6: 7} {6, 7}]]):

PI = Inverse[P];

a=zA-B.PI.BT;

MatrixForm[A]
2w L2 _ 1 _ 3 _ 14
1 T ~1ir i1 11
_i2 18 4 _ L _ 1
11 1T ir T T
I S | 7 a1 _
T T IT T11 T
- L A 2 -
11 IT Tt 1T T
A4 L 3 13
11 ir 11 11 1

As the package promiisses, here is the resulting Medial Graph for A. All that remains is to two-color the graph and connect
corresponding faces for the Y - A equivalent graph, T'. '
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Media 1Gfaph [A]

Medial Graph

Is 1,

Here's a different Kirchoff matrix with y = to a set of prime conductivities with the resulting Medial Gfaph.- Note that éiin_ce
both the Kirchoff and A matrices are large, we omit the display of both. ' '

FullrForm[K]

List{List{3, 0, 0, 0, 0,0,0,0,0,0,0,~-3,0,0,0, 0},
List{o, 12, 0,0, 0,0, 0,0, 0,0,0, -5, -7,0,0,0],
List[0, 0,24, 0, 0,0, 0,90, 0,0, 0, 0, =11, 0, 0, -13], :
List[0, 0, 0, 3, 0,0, 0,0,0;0,0,0,0,0,0, -3], -
List[0, 0, ¢, 0, 12,0, 0,0, 0,0,0,0,0, 0, =7, -5],
List{0, 0, 0, 0, 0, 24, 0, =13, ¢, 0, 0, 0, 0, 0, -11, O},
- List[0, 0,0,0,0,0,7,-7,0,0,0,0,0,0,0,0],
Listfo, 0, 0, 0, 0, -13, =7, 23, -3, 0, 0, 0, 0, 0, 0, 0],
List{0, 0,0, 0, 0, , -3,13, -5, 0,0,0,0, -5, 0],
0
Q
0

List[0, 0, 0, 0, 0, -5, 15, -7, 0,'0, -3, 0, 01,
List[0, 0, 0, 0, , 0,0, -7, 31, -11, -13, 0, 0, 0],
List[-2, =5, 0, 0, ,0,0,0,0,-11, 19, 0, 0, 0, 0],
List[0, -7, =11, 0, 0, 6, 0, 0, 0, 0, -13, 0, 42, -11, 0, 0],
Lisc[0, 0, 0, 0, 0, 0,.0, 0,0, -3, 0, 0, =11, 34, «7, =13],
List[0,.0, 0, 0, =7, =11, 06, 0, -5, 0, 0, O, O, =7, 30, O},
List[0, 0, ~13, -3, -5, 0, 0, 0, 0, 0, 0, D, 0, =13, 0, 34]]

The Kirchoff matrix above is converted to a A matrix. The resulting Medial Graph is below. Note how -Iérgef matrices cause
a greater probability of triple intersections within the interior of the medial graph. Recall that triple intersections are not .
allowed, and in fact, they do not exist in the graph below due to the random assignments of the geodesic vertices.
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MedlalGraph(a]
Medial Graph : 'E

“Iy2 Tz . : _ : IR

The Mathematica Package

(+ :Pitle: MedialGraph.m #)
{+ :Context: MedialGraph' «)
{(+ :Author: Chris Staskewlcz )

{x :Summary:’
This package was developed for the REU program at the University of washington,
Seattle involving resistor networks. This
package makea use of the Theorm 4.1 .10 proven by David Ingerman,
. which states that connections of resistors through the interior of =
resiator network ls based upon speciflc ranka of the A matrix. )

(+ :Mathematica Version: 3.0 or 2.2 #)

{* :Limitations: .

S8ince no rank function 1s bullt into Mathematica, we had to creste our own rank
function which evaluates submatricles of the A matrix. Unforntuately, we must
evaluste the empty matrix at certain steps of thls program, whera upon, yathématica
returns errcr messagea about Transpose and NullsSpace functloms. Thereforé,

we had to supresa these error messages for a smooth running program. See
the first few lines under the ‘Private’ context. «) ' ) :
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(+ :Thanks to: 'Jim Morrow, pavid Ingarinan, and Jack Lee ¥)
BeginPackaqe [ "l(sﬂ ial@raph*™ ]

MedlalGraph: -usa.ge = “MadialGraph[A_} takea a A matrix lmput 2nd plots
the resulting medlal graph with boundary nodes and selected intervals.™

Begin[" Private "]

MedialGraph[A_ ] :=
Module[{g, b, i, 3, ke m, B, %6 intervalValues, bNode, bullwinkle, rocky, fixedvalues,

geadeaicVerticies, usedVarticies, firstValues, firstPairs, geodesicPaths, lastlina},

off [Transpasé r:omtx] ;

off [NullSpace: smatrix) ;

off [General::stop];

modulo[x_, m_] := If[Mod[x, m] == 0, x, Mod[x, m]];
attributes[modulo] = (Listable}:

ROfA[L_, 3_] :=

i i+l 3 1+1+(2 xLauatﬁ{A])
(j-i)-(l-i-J-l 5 J-l-‘l}-(lf[na.ngs[lgjq-l, l 5 J-1] == {},
_ Se1 .

0, (Langth['l‘ranspose [A[ [medulo [Range| l% + J -1}, "Length[.ﬁj'] ,

i+1+ (2xLengthlA]
2

modulo[Range[l%J +1, l ) I —-.1] . Length{A]]]j]]] -

Leﬂgth[mllSpace[A[[modulo[Ranqe[l-i—] +1, 3 ; L J -1], Lengthfa]],
mdulo[nanqe[l%J +«1, l telr (z‘x;.ength{A]) J - 1], Length{a] ] ] ] ] ]] ]] :

intervalvalues = Table[Ro£A[1, 31, {1, 1, 2 xLength{al},
{4, L+1, 2xLength[A]}] s

bNode = Table[{Pointsize[0.025],
2k ) 2k

7 Polnt [{Cos [———-—-——] . -—Sin[-—-—
Length[A) Length[A)

111}, (x. o, vengthia) - 1}];

bullwinkle = Table[
2kx

Length[4]

] -(1.1) 8in]| J}]- (k. ¢, ength[a] -1}]:

Text[sT {a. 1) co [ 2k
axt . o8 ————
_hl ! LengthlA]
rocky = Table[Text{Ix.., _
2knm : 2kx

{(1 H cos[m], -{1.3) Sin[—szength[A]

11/ (x, -1, - 2xLength(a] -2}]+
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: P x -1 Kol . 2 _1y%l .
geoV(in_] ;:= Table[{COs[ "'L,.l_"':: ) xe ]. .-311:_1[ ,rl J+: ) _]}'l.

¢ - Random{Real, {0.5, 1.5}1, {k, 0, (2xn) ~1}];

. tixedValues = geoV[Length(a]];

geodeéicVarticies' = Thread[Point [fixad\falues]_] ¥

connectidzn{g_} :=Tabla [Part[interval?alues, g, h] -Part[interval?aluas, g+1l,h-1]%¥ 0,

{h, 2 Langth[intervalValues] -g})s
usedverticles = {}:

skipTest tk_] 1= IE[ (Memb_erQ[connectibn{k] . Trual] A
FreeQ[ussdverticles, Part[fixedValues, kj}). k, skipTest[k+1]] /.
useqVerticles - {AppendTo [uéed?erticiss, Part{fixedvalues, kx]]}

:1rstVa1ﬁes = Table[skipTest[k], {k, 1, Length[A] -1}];

firstPairs = Table[{Part[fixedValuea, Part[tirst\falues, k)1,
Part[tixed\ralu.as Langth['l‘aka[connection[l’arl:[!irstValues, k1l.
i Position[connactien[Part[firstvaluea, k1], True, 1, 1] |[1, 1]}] +
Part [firscValues, k]]},
{k, 1 Length[A] -1}];

geodeslcPaths = Thread[Line[firstPairs] .] F

1ast‘L1,nei= Line [Complement [fixedValuea, fixedvalueaf) Platten{firatPalra, 1]]]s

Show[Graphics[{bNode, rocky, bullwinkle,
qab_desic?atha , lastLine, {Pointsize[0.015], geodesicVerticies},

{circle[{0, 0}, 1]}}, AspectRatic -> 1, PlotLabel -> "Medlal Graph“]1|]

Protect [kedia 1Graph]

End?acl:aba[ ]




