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Abstract In[1], David Ingramin introduced a characterization for Dirichlet-
to-Neumann maps of discrete layered networks in terms of their eigenvalues.
Here we introduce an alternate characterization for Dirichlet-to-Neumann
maps of layered networks with 7 radial lines and 2 layers, also in terms of
their eigenvalues, which we find much simpler to evaluate, if less general. We
also explicitly show that the characterization given in [1] holds for layered
networks with n radial lines and 1 layer.

1 Introduction

1.1 Discrete layered networks and the eigenvalues of their
Dirichlet-to-Neumann maps

Discrete layered networks are connected circular planar graphs D(n,!) and
D*(n,1) of the following shapes:

D(7.5) D*(7.4)
Figure 1: Discrete layered networks.
where n denotes the number of radial lines and ! denotes the number

of layers. Each layer of the graphs D(n,I) and D*(n,!) consists of n edges
with equal conductivities. We assume that the conductivity v is constant



on a given layer, so that the layered conductivity is determined by ! positive
numbers.
In [1], David Ingramin determined that if we let n = 2m +1,m €N, and

W =W =5 21 k= —m,...,0,. .. m. (1)
then for both D(n,1) and D*(n,) A,1 =0 and
An,,ei"kg = dpetthl p— -m,...,0,...,m. (2)

The Ay are then the eigenvalues which uniquely determine A.. Further-
more, if we let

R() = 75— — ®)
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Then the eigenvalues /\S‘Jofﬁ,, are

A = Rw!™). (4)

To get the similar formula for other discrete layered networks, simply
make the corresponding §; and/or 51_1 equal to zero.

Note that by definition, w; > w; if |j] > |4,

1.2 Characterization of the Dirichlet-to-Neumann maps

Following again from [1], let A be an » x n,n = 2m + 1 discrete layered
Dirichlet-to-Neumann map with non-zero eigenvalues

AW k=12 m,

and let
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Assuming that W is positive semi-definite, then if W is singular, there
is a unique discrete layered network D(n,{) or D* (n, 1) with unique radially
symmetric conductivity 4 on it, such that

A(D'v) =

and ! is equal to the size of the largest non-singular principal minor of
W,

If W is non-singular, there are unique conductivities, v, v’ on the net-
works D(n, m) and D*(n, m) with

A(D.(n,m)) = A(D%(n,m)) = A

And for every D = D(n,l) or D*(n,{) with { > m there are infinitely
many conductivities v with

A(D,) = A.

Note that from here on out we will denote y; = j—f

2 A, for D(7,2) and D*(7,2)

While the matrix W can be used to characterize all D{n, 1), here we introduce
an alternate and, we think, simpler characterization of A, for D(7,2) and
D*{7,2) which avoids much of the determinental evaIuatlon necessary when
considering W. We will show that the following matrices:

Wl 2 2

Loy v f 1 e wy

L] = 1 ;Ef? w% and Lg = 1 Halz w%
42

1 %3% w§ 1 psws wi

can be used to characterize A, for D(7,2) and D*(7, 2) respectively.
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Figure 2: Discrete layered networks.
2.1 rank 2 condition on L, and [,

Theorem 1.1 If rk(Ly) = 2, then rk(W) = 2.

Proof: Given that rk(L;) = 2, there exists constants @, 3 > 0 such that
%= a+Bwt i=1,2,3
= = ﬁ;:;,i: 1,2,3
Substituting for g; in W yields:
W= ( latBuwy) ),

where ¢; = ;Jrlmf,j =1,2,3.
J

Letting A,B, and C denote the first, second, and third columns of W,
the following linear relationship:

{(~a—Bwd){ws —w3) {or+Buwd Hews —wl)
C= A[ cx+.8w3]j(w12—w2] ] B[(a+8w§](w1—w2]]

shows that W does not have full rank. Now suppose rk{W)}=1. Then

o Fur we
d ! “HBE ) g
et o+Buwiws 1 e
SXpwLs

a+fuwt

atBunwy)?
= B atfa] = L

= (a+ fwi)(e + fwl) = (o + fuwiws)?
= o + aB(wf + wf) + Al = o + 206w1w; + Fhol?
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Aﬁd since @, 3 > 0,
Wi+ wk~ 2wy =0
= (w1 —w2)? =0
= W =Wy
which contradicts the .deﬁnition of w;. Therefore rk(W) =2, O
An analogous theorem for £, also holds.

- Theorem 1.2 If rk(L;) = 2, then rk(W) = 2.

Proof: Given that rk(Ls;) = 2, then there exists @, 8 > 0 such that
My = awf -|—,3,3 = 1,2,-3
= ;= ow; + w%,z‘: 1,2,3

Substituting for 4, in W yields:
3
W = ( o+ ﬁ )
LS 1,7=1
Letting A,B, and C denote the first, second, and third columns of W,
the following linear relationship:

C = A3ul w2w3 2w1 w2 —u w;m;s +w1wgu.r3 wl L""S

wg Wi —2w1 u.rg wg-wl w3-|—2w| wy wg

_B \.uf wowg — w1 wgwa —Zwl w2 +3w1 w2 Lig —w2 w3

wg wg—2u wg' [P —w, Wa +2“"1 Wl

shows that W does not have full rank. Now suppose rk(W) = 1. Then

a-}--éf o+ 2
det( y wlwg)

a+wff:2 o+ &

(ot d) o+ ) = (o)

:>az+&ﬁ(-—lr+—17)+ﬁ2-gl—5—a +228 g2 L

55 0] wl Luly



And since o, 8 > 0,

1 1 1 _
R—f_w% wywg
2
1 _ 1 —
::’(wl '.ug) =0
11

o =E:>w1:wg

which contradicts the definition of w;. Therefore rk(W)=2. 0

2.2 Characterization of A, for D{7,2) and D*(7,2)

1 fi- w12 _
Theorem 2.1 Let L, = 1 ﬁ wf . Then rk(L,) = 2, and L; has
1 w§

a3
the following positive subdeterminants:

1 = : w2 w%
det | b | >0anddet| 2 w2 > 0
12 pz 3

if and only if there are unigue conductivities 8, > 0 on the network
D(7,2) such that

l "
#i= w1, =1,2,3.
6+£w‘

Proof of the forward direction:
Given rk(Ly) = 2, there exists e, § > 0 such that

2?4 fi=1,2,3 (6)

T

= alwf —wj) =% =

w — W
»a= 2ot ™)
Hity (wy — wi)
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tion w{ — w} > 0, then from (7), we know that o > 0.

Given det L9 ) > = EL22L281 5 () and knowing that by defini-

Now consider 8. If we take equation (6) for i = 2,3 then we get the
following equation similar to (7):

o = ,c_zng—uzws)’

2y {wg —wh
And substituting for « in equation {6) for i = 3, we find:

g = wa _ “3(mewa—pgws)
: #3 tapz(wi—ws)

wawo(paws — plgws)
= A= T2 (8)
fajiz (w§ — w3)
Given det % w3 > 0= wawi _ whws > (0 = wewslpaws —uawy) > 0
w3 w‘% H2 3 t 3 ?
3

and knowing that by definition wg — w2 > 0, then from (8) we know that
#>0.
Also, equation (6) = X; = ﬁ, i=1,2,3. So letting o = :51' and 3= %,

we find that

’\i: _1_1_1_|£.:l|213
staT

corresponding to A, for the network D{7,2) with positive conductivities
d and &.

Proof of the reverse direction:
Given 6,¢ > 0 such that

-]
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W w? 1, __
=>;:-:-3L—|—E,z_1,2,3

Since ;— and % are constants, the above equation gives a linear relationship
among the columns of L;. The first two columns of L; are clearly not
dependent, so this relationship shows that rk(L; = 2.

The above equation also gives us the following:

5 — 5“2] Hi
T dwr—p

w2 (Ewy — w
A m]=£+%

&WI M1
2 _ 2 _ 2., 2
= Spawiwy — ppaws = Epiwiuy — pg pipw?

(wh~w})

_ H1Hz
={= wrwy (flatrg — gy )
Since we know that wy > wy, and hence w? —w? > 0, then ¢ > 0 implies:

FENIY] > 0

12wz — i
) >0

1
:det(l

BIEEE

Now consider §.

1__1 _ 1

§ Hawd  Eu2
=1__1 _ wows (aws —pgwg )
¢ T wawd  wlpua (W —wi)

i__ 2W3— i3 we
=> 5= '%—r]

popa(wi—wi

Since we krow that ws > wy > 0, and hence w? — w? > 0, then § > 0
implies:

H2wa = Hawy
H2 L3 > 0

w2 a2
=>det(f_,§_ %))0 a
W3
“a



Now we will show that the conductivities for the dual nextwork D*(7, 2)
are uniquely solvable using the matrix L.

1 MHiuh f..dlz
Theorem 2.2 Let Ly = | 1 powy w? |. Then rk{L;) =2 and L,
i Halds w§
has the following positive subdeterminants:

2
det(l Mwl)>0anddet(’u2w2 w§)>0
L pawn Haws w3

if and only if there are unigue conductivities 6, > 0 on the network
D*(7,2) such that

=8wi+ i =1,2,3.

Proof of the forward direction: Given rk(Ly) = 2, there exists
«, 3 > 0 such that

f""iwi=aw{2+ﬁ|i:1$213 (9)

= ofw] — w}) = paws — pwy

_ Hawr —

7= g (10

Given det( L ) > 0 = powy — pywy > 0, and knowing that by
1 pawa /.
2

definition w3 — wi > 0, then from (10), we know that o > 0.
Now consider 5. If we subract equation (9), i = 2 from the same equation
for ¢ = 3, we get the following equation similar to (10):

o = Haws—iguy

Wy — Ly

And substituting for o in equation (9) for i = 3, we find:



w? (paws —ppwe
B = paws — —Z'(—n—n—l

(ws—w3)

2 2
Waly — Hglugl

=>;3:*U223 #gsz (11]
(w3 — w3)

2
Given det ( izzz i% ) >0= pgwgw§ - pgwgw% and knowing that by
33 3

definition, w3 — w2 > 0, then from (11), we know that 3 > 0.

Also, equation (9) = A; = awf + 4,7 =1,2,3. Soletting @ = € and 3
= 4, we find that

A=t 6,j=1,2,3.

corresponding to the network D*(7, 2) with positive conductivities § and

£.

Proof of the reverse direction:

Given D*(7,2) with poesitive conductivities § and £ such that
pi=Ewi+ 2,7=1,2,3
= pjw; =Ewi+48,7=1,2,3
Then since 4 and £ are constants, the above equation is a linear relation-

ship among the columns of L,. The first two columns of L, clearly are not

dependent, so this relationship shows that rk(Lg) = 2.
Since,

twr = €wi + & and pawy = wd + §
then,
§ = prwy — &w}
= pows = E(wh — wi) + wy
e H2Ll2— WY
- =R

Since £ > 0, and w2 — w? > 0 then,
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prawy — pawy > 0

and therefore,

det( 1w ) > 0.
1 powr

Now consider 4,

2 — [ty
8§ = ugwy — wi(paws—pzwr)

w3 —wy

2 2

why — U3 g W
. 6 B2y g H3 gy

wy—wj

Since § > 0, and w2 — w? > 0 then,
Hatnpw) — piawawd > 0

and therefore,

2
dﬁt(#2w2 E*"2)>(}. o

2
fady Wy

3 D(n,1) and D*(n.1)

31 Casen=7

Theorem 3.1 Given a 3 x 3 matriz W as defined by (5), rk(W)=1 if and
only if there is @ unique positive-valued radially symmetric conductivity -y
on D(7,1) or D*(7,1), such that A(D,) = A.

Proof of the forward direction:
Given D(7,1), all of the eigenvalues \; = 8,7 = 1,2, 3. Hence all of the
B = wi' and substituting for px; in W yields:
& 8

2 Wila

o Syfen
£
£

&
W] w_f [P Ye )
s £

Wiy gz

i
Wi

Letting «;,7 =1, 2, 3 denote the columns of W then

11



o = Rap =

£fs

g

and thus, rk(W) = 1.
Similarly, given D*(7,1), each eigenvalue ; = éw?.i = 1,2,3. Hence all
the p; = &w;, i = 1,2,3 and substituting for ; in W yields:

€ £ ¢
W=1¢ ¢ ¢
£ ¢ ¢

which clearly has rank 1.

Proof of the backward direction:
Now suppose we are given a matrix

H1 itz patpa
usy witwe wy iw:}
W = L1tz H2 Hotpg
wy iz w2 Wz s
#1tps patus Ha
wytwd  wodws w3

such that k(W) = 1. Then

B #!‘l‘ﬁg
det ( #.-L:-iuz w.';-le ) =0,1<i<j<3
witiy why

yielding the following equations:

214 k2 By Mg
wy Lt 2 ﬁl
Wi | w3 _ B2 #a
W3+W‘2 ﬁ3+ﬂ‘2
W g oWl o fz g gl
w1+w.=. .ul+:~a3
If we iet

Y og=M
T uz’a_)q
=9 p=2
y ws’b :\f
— w3 . A
z_wl’c_ﬁ’

then we get the following quadratic equations:

AL Y

1 i
z+;=%z+c—

x
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with the following solutions:
a=z%1 b=y?1 c=2%1

If e = 2% b=y?% and ¢ = 22 then it follows that

===t
and

A =&w?i=1,2,3
corresponding to the layered network D*(7,1).
If ¢ =b=c=1 then it follows that § = Ait=1,2,3 corresponding to
the layered network D(7,1).

Suppose a = b =1 and ¢ = 22, Then

1 1 1 1 i

21/ \a 41/ \an PYAY

_ 1 1 1 ne 1 1
W= 12 w1 H2 wa 2 w3
Ayf1 13( 1 1y f{L

Ha w3 43 W 3 w

which clearly does not have rk(W) = 1. The same is true for all other
combinations of solutions for a, b, c. Q
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