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ABSTRACT. This paper will examine a probablistic analog of specific
resistor networks. Transitional probabilities, probabilities which char-
acterize movement from one node to the next, will replace the conduc-
tivities calculated in traditional network problems. While less rigorous
mathematically, the probablistic interpretations present complexity in
requiring that we consider two probabilities per edge, rather than one
conductivity.

1. INTRODUCTION

Studying resistor networks probablistically requires different representa-
tions of data. Frequently, we will find that the data does not line up sym-
metrically as it does in regular resistor networks, which tends to limit the
amount of information that we can recover from the boundary. It is impor-
tant to note that in these representations particles on the boundary cannot
reenter the system. Boundary nodes are considered absorbing nodes.

Moving from one interior node to the next, moving from an interior node
to a boundary node, and staying at an interior node (i.e. no movement)
are the only allowed movements. The probabilities of these movements are
what we will attempt to recover based on the information from the absorbing
nodes.

2. DATA ABSTRACTIONS

Assume that our network contains u total nodes, where u = m+mn and m
and n are boundary and interior nodes respectively. We can then construct a
uxu transitional matriz, which we call P. The entries in P, p;;, represent the
probability that a particle will move directly from node i to node j. Ordering
P so that the rows and columns representing boundary information preceed
those containing interior information, we construct a matrix in the form:

I 0
pP= .
[ R Q ]
I represents the m xm identity matrix, 0 is the mxn matrix whose entries are
all zeros, R is the n X m matrix representing the probabilities of moving from
an interior node to an exterior node, and () is the n X n matrix containing

the probabilities of moving from one interior node to the next.
1
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JFrom the transition matrix P, we would like to derive a matrix B. The
entries in B, b;j, represent the probability that a particle which enters the
system at node ¢ will be absorbed by node j. We begin by defining a new
matrix, N, whose entries n;; represent the expectation that a particle that
starts at ¢ will be absorbed by a node adjacent to j. The matrix N, known
as the fundamental matriz, is an infinite sum defined by (I — Q)~!, where
I is the n x n identity matrix. The absorption probabilites contained in B
are obtained from N by the following

B=(I-Q) 'R
The absorbing probabilites take into calculation the probabilities of moving

from an interior node to an external node weighted by the expectation for
the non-absorbing states. [7]

3. INVERSE PROBLEM

The inverse problem requires that we use the information contained in B
to recover the entries in P. Given B, we must show that a unique solution
for P exists. We do this by showing that certain systems of equations are
solvable in terms of the unknown probabilities p;;.

4. EXAMPLE ONE

Once a particle reaches the boundary, it is absorbed and ceases to move,
therefore, networks with boundary to boundary connections are not very
interesting. The first network that I considered was the following

2 1

3 4

This network has four boundary nodes and two interior nodes. We can
easily construct the transition matrix from this information.

1 0 0 0 0 O
o 1 0 0 0 O
o o 1 0 0 0
P_OOO 1 0 0

ps1 ps2 0 0 pss pse
0 0 pes pea P65 DPo6 |

We can now proceed to define the following matrices:

R— | P51 P52 0 0
0 0 pe3 Dpesa

1 —ps5s —ps6
I—-0Q)=
(I-Q) [ —pes 1 —Dpes
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p_ | bst bs2 b5y bsa
ber bez bez bes |
As stated earlier, B= NRand N = (I-Q)™!,so R = (I —Q)B. Using this
equation for R and the matrix above, we can define the following system of
equations

(4.1) ps1 = bs1 — bsipss — be1pse
(4.2) P52 = bsa — bsapss — beapse
(4.3) 0 = 0b53 — bs3pss — beapse
(4.4) 0 = bss — bsapss — beapse
(4.5) 0 = be1 — bs1pes — be1Pes
(4.6) 0 = be2 — bsapes — be2pes
(4.7) P63 = bes — bs3pes — bespes
(4.8) Pea = bea — bsapes — beaDee
Writing these equations in the form Az = b, we find
(1.0 0 0 bs1 b1 O O | [ ps1 | [ b5y |
01 0 0 b52 b62 0 0 P52 b52
00 00 b53 b63 0 0 P63 b53
(4 9) 0 0 0 O b54 b64 0 0 P64 _ b54
: 000 00 0 b1 ber D55 be1
000 00 0 b2 be2 D56 be2
001 00 0 bs3 bes D65 be3
_0 0O 01 O0 0 b54 b64_ _p66_ _b64_

Using our probabilistic representation, however, we must consider two
additional equations. The sum of the transition probabilities for each node
must add up to one, therefore, we have the following

D51+ P52 + P55 + pse = 1

P63 + pea + Pos + pes = 1

Using these systems of equations, we can begin to characterize the behavior
of this network.

If we assume that we are given certain conditions, delineated by the B
matrix, we will find certain restrictions on the transitional probabilities.

Let the absorbing probability for any one node be zero, say bs; = 0, and
all other absorbing probabilities lie strictly between zero and one. From the
equations, we find

peebe1 = bg1 = be1 = 0,

since if bg; were not zero, then pgg would have to equal 1. We know that
this is not so, because none of the other absorbing probabilities are zero,
which would be a necessary result. Therefore, saying that bs; = 0, we can
say that bg; = 0 as well.
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Using this information and the equation ps1 + psgbg1 = 0, we can conclude
that ps1 = 0. Essentially, if the absorption probability for a node is zero,
then the transition probability to that node must also be zero.

Using similar logic, we can make the following statements:

if bs1 = bs2 = 0, then ps1 = ps2 = 0 and p55 + pse = 1
if bs1 = bsz = 0, then ps; = pg3 = 0
if all b;; = 0, then ps5 + pes = 1, pes + pes = 1, and all other p;; = 0.

The general case, or the case in which the absorptions probabilities, 0 <
bi; < 1 requires that we look at subdeterminants to determine whether or
not we have a unique solution. Exchanging a few of the rows in our system,
we get the form

1 0 0 O b51 b61 0 0 D51 b51
0100 b52 b62 0 0 D52 b52
001 00 0 b3 bes D63 be3
0001 0 0 bsg bes pes | _ | bes
0 0 O 0 bsg bgg O 0 D55 - bs3
0 0 0 0 bsg bga O 0 D56 bs4
00000 0 b5 be D65 be1
00000 0 b2 be D66 b2
We want to look more closely at the subdeterminants
‘ b53 bG3 ‘ 651 bGl
bss  bes bsa  be2

If we write each of the terms from the B matrix in terms of transition and
fundamental probabilities, we find

(4.10) [nll n2 ] [0 0 ] _ [553 bs4 ]

No1  N22 D63 De4 bes  bea

(4.11) _ | Pesmz peamiz |
Pe3n22  Pe4N22

We find quickly, that our equations are not linearly independent and that
our determinants will always be zero. We can, however, define a parameter-
ization for our solutions. We have from (4.4) and (4.5) that

bs3pss + be3pse = bs3

bs1p6s5 + be1pes = be1-
Say that pss and pgg equal x and y respectively. We can then say that

bss — b

(4.12) D56 = 053 — 53T
be3
b1 — b

(4.13) pes = 2L 261

be1
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Further, we can define the parameterization that for0 < z < land0 <y < 1

bs3(1 —
(4.14) Dsg = bs3(1 — x)
be3
be1(1 —
(4.15) pgs = 2L —Y)
bs1

We now have a parameterization in terms of the static probabilities of stay-
ing at a node. This parameterization characterizes the least amount of
information necessary for recovery.

5. EXAMPLE Two

The next example that I considered was the following structure containing
three interior nodes and four boundary nodes.

2 /1
5
6 7
; N,

The transition matrix is

1 0 0o 0 0 0 0 |
0 1 0 0 0 0 0
0 0 1 0 0 0 0
P=10 0 0 1 0 0 0
ps1 ps2 0 0 ps5s pse ps7
0 0 pe3 O pes pe6 DPer
| 0 0 0 pra prs pr6 pr7 |

We can also define the following matrices:

ps1 ps2 0 O
R = 0 0 P63 0
0 0 0 pn

1—ps5 —pse —Ps7
(I—-Q)=| —pes 1—pes —pe7
—P75 —Pp76 1 —prmr

bs1 bs2 bsz  bsa
B = be1 be2 bez bes
bri b b7z bra
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Using these matrices and the equation R = (I — Q)B, we can obtain the
following useful equations

A AN AN AN AN AN
O J O U = W N =
e D D DD O —

AN N N N N N N N N N /N
Ne)
N—

[SLECL I
AN
N = O
— =

bs1 — bs51p55 — be1ps6 — bripst
bs2 — bs2pss — be2pse — brapst
bss — bs3pss — bespse — brapst
bsa — bsapss — beapse — brapst

—bs1p6s5 + be1 — be1pes — br1pe7
—bs2pes + be2 — be2pes — br2per
—bs3pes + bes — bespes — br3per
—bs4pes + bea — beapes — braper
—bs1p75 — be1p76 + br1 — briprr
—bsap7s — be2pre + br2 — braprr
—bs3p7s — bespre + brs — brsprr
—bs4p75 — beapre + bra — braprr

Also, we have the following equations

(5.13)
(5.14)
(5.15)

16)
1

SO H O OO ODOoOOoODOoOOo oo o

OO OO OO oo

O R OO DD OO HODOOOoO oo

HF OO R OO0 oo

bs1
bs2
bs3
bs4

o

SO R OO OOoO O OO

P51+ Ps2 + Pss + Pse + Psr
P63 + P65 + Pes + Per
P74 + P75 + P16 + D77

bg1 br1 O 0
bez br2 O 0
bez brz 0 0
bga brs O 0 0 0
0
0
0

o
o
S
ot
—
S
=)
—
S
N
—

0 0 bs2 bex b2

0 0 bs3 bez Dbr3

0 0 bsa besa bra O

0 0 0 0 0 bs1
0 0 0 0 0 bs2
0 0 0 0 0 bs3
0 0 0 0 0 bs4
1 1 0 0 0 0

0 0 1 1 1 0

0 0 0 0 0 1

0
0
1

P51
D52

P74

0
0
1

Again, writing the equations in matrix form, we obtain the following
(

P51
P51
P63
D74
P55
P56
Pbs7
P65
Pe6
Dbe7
b5
Pre

L D77

[ b51
bs2
bs3
bs4
be1
be2
be3
be4
b7
bra
br3
br4

1

1

Again, we can examine specific cases, but we will not find much useful
information from doing so. Using row reduction, we find that the last three
rows are actually absorbed in our boundary considerations. We obtain the
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following,

(5.17)
[1 0 0 0 a15 a16 a7 0 0O 0 0 0 0 |
01 00 bsg bz brz 0 0 0 0 0 0
00 0 0 bsg bga bra O 0O 0O 0 0 0
00000 0 0 bsa bea bra O 0 0
00000 O O ass asg asio O 0 0
00000 0 0 byg bea bra O 0 0
00100 O O O 0 0 bs2 b2 bra
00000 O O O 0 0 bss b3 brs
00010 0 0 0 0 0 a911 @9,12 09,13

Where a; ; are the following,

ai5 ="bs1+bs2—1, ai6="0be1+bs2—1, ar7=0br1+bra—1

asg =bs3—1, asg="bs3z—1, asi0=>0br3—1,

agi1 =bsa—1, ag12=bsa—1, ag13="bra—1
Our new matrix is not invertible; we have four free variables. Once again,
we can obtain a parameterization for our solutions, but we cannot actually
obtain solutions. It is clear, that we need more than just the boundary
information to determine the transitional probabilities for a network with
this geometry.



