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DETERMINING CURRENT SOURCES IN A NETWORK

MIKE USHER

Abstract. We consider the problem of determining the current sources in a network with
known resistances given boundary data. Some restrictions on the values of the sources
are generally required for them to be uniquely determined by the boundary data. For
certain small networks, an assumption on the spread of the possible values of the sources
is sufficient, while for our results which extend to arbitrarily large networks of a certain
type, the sources are required to all have the same size. The uniqueness results in this
paper which allow there to be multiple sources in a network each require the resistances
on each edge to be one, but if we make the assumption that the network contains only one
source, the resistances may take on arbitrary values, and only a partial set of boundary
data is required to uniquely determine the location of the source. We also briefly explore
the properties of the Green’s function, which could potentially be employed in algorithms
to locate the sources. Results about the general behavior of the Green’s function have
been difficult to come by, and in some specific cases the Green’s function behaves in a
surprising fashion, but we conclude by offering conjectures about the Green’s function
which have held in each of the special cases we have examined and which are analagous to
known results about the Green’s function in the continuous case.

1. Introduction

For an electrical network with vertex set Γ, boundary ∂Γ, interior intΓ = Γ \ ∂Γ and with
conductivities γpq on the edge connecting two adjacent points p, q ∈ Γ, denote the voltage at any
point p ∈ Γ by v(p). Ohm’s Law states that, for any edge pq, the current flowing from p to q is

Ipq = γpq(v(p)− v(q)). Where for any point p the set of neighbors of p is denoted N (p), we may
then define the net current at p as

(1) I(p) =
∑

q∈N (p)

γpq(v(p)− v(q))

In most problems, it is assumed that, for p ∈ ∂Γ, v(p) and I(p) are directly measurable quantities,

while for p ∈ intΓ the relation I(p) = 0, known as Kirchhoff’s Law, holds. In the present paper,

we consider problems where Kirchhoff’s Law is not known to hold at each point in the interior.

Ordering the nodes in such a way that the boundary nodes precede the interior nodes, and denoting
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the voltages and currents on the boundary by, respectively, u∂ and I∂ and those on the interior

by uint and Iint, we have, where

K =

[

A B

Bt C

]

is the Kirchhoff matrix,

(2)

[

A B

Bt C

] [

u∂

uint

]

=

[

I∂

Iint

]

Thus I∂ = Au∂ + Buint and uint = C−1(Iint + Btu∂), demonstrating that, even when Kirch-

hoff’s Law does not hold, the forward problem of determining the boundary currents and interior

voltages given the boundary voltages and interior currents always has a unique solution. This

paper considers the inverse problem of finding the interior currents (assumed to be nonnegative

and, when positive, referred to as current sources) given boundary measurements. Most of the

paper is dedicated to finding sufficient conditions on the values the current sources and in some

cases the conductivities can take for the current sources to be uniquely determined by boundary
measurements in various types of networks. To prove uniqueness, it is assumed that two networks,
Γ and Σ, with identical boundary measurements are given. We then consider the difference net-
work ∆ = Γ−Σ, in which the net current at any point is the difference of the net currents at that
point in Γ and Σ, i.e., I∆ = IΓ − IΣ. So, where the subscripts refer to the network, Kirchhoff’s
equations in ∆,Γ, and Σ give

(3) Ku∆ = IΓ − IΣ = KuΓ −KuΣ

Thus K[u∆ − (uΓ − uΣ)] = 0. Now any Kirchhoff matrix K has the property that Kv = 0 if and
only if v is a constant vector. By assumption, uΓ − uΣ is zero on the boundary, so this implies
that u∆ is constant on the boundary; since the voltages in a network are always undetermined up
to an additive constant, we may then assume that the boundary voltages in ∆ are all zero. Since
Γ and Σ have the same boundary currents, the boundary currents in ∆ are all zero. Uniqueness

of sources may then be shown by proving that a network with boundary voltages and currents
zero must have net current zero at each interior node.

2. Uniqueness of multiple sources in 3, 4, and 5-hexagon networks

We prove here that, subject to certain restrictions on the number or on the relative sizes of

the current sources in 3, 4, or 5-hexagon networks, the distribution of the sources in the network
is uniquely determined by boundary data. We begin with the three-hexagon case. As we will

see, the same basic method applies to the proofs for the larger networks, but the mathematical
details become more involved, and require us to restrict our attention to networks with identical

resistances along each edge.

Uniqueness theorem 1 (3-hexagon networks). Suppose Γ and Σ are two 3-hexagon networks

with the same boundary voltages and boundary currents and no sinks anywhere. Suppose also
that it is known that either

(1) With known arbitrary resistors, Γ and Σ have at most five sources each, or

(2) Each resistor has the same magnitude, and the ratio of the size of largest source in the

difference network of Γ and Σ to that of the smallest source is strictly smaller than six.

Then the current sources in Γ and Σ are identical.

Proof. Let ∆ be the difference network of Γ and Σ, that is, ∆ has sources where Γ has sources

and sinks where Σ has sources. Then the voltages and currents on the boundary of ∆ will be zero,

as will the net current at each boundary node. From Kirchhoff’s Law at boundary nodes 2, 5,

and 8, the voltages at the interior nodes denoted by asterisks (*) (see figure 1) are zero. Knowing

this, applying Kirchhoff’s Law to nodes 3, 6, and 9, the voltages at the interior nodes denoted by
pound signs (#) are zero. Thus the voltage is zero at every node except possibly the node in the

center.
Suppose there is a source or a sink of value I at the center node; if it is a sink, we may take

∆ = Σ − Γ to make it a source, so we may assume without loss of generality that I is positive.
Then current flows from the center to at least one of the surrounding nodes, each of which has

voltage zero, so the voltage, v, at the center is positive. But then the voltage at the center is

greater than each of the surrounding voltages, so current flows from the center into all 6 of the

surrounding nodes. Since no current flows in any of the other edges which are connected to these
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Figure 1. Labelling of vertices in the three-hexagon network

surrounding nodes, this implies that each of these nodes is a sink. There are six such nodes, so
there must then be at least 6 sources in Σ, contradicting the first assumption in the theorem.

Meanwhile, if all resistances are the same, there will be current I/6 flowing into each of the
surrounding nodes, so each of these nodes is a sink of magnitude I/6, while the center node is a

source of magnitude I. This contradicts the second assumption.
Thus, under either of the two assumptions, there must be no source at the center node. Ap-

plying Kirchhoff’s Law at the center node, we see that the voltage there must be zero. Hence the
voltage at every point in ∆ is zero, so no current flows in any edge of the graph, and there may

be no sources in ∆, implying that all the sources in Γ and Σ are identical. ¤

Uniqueness theorem 2 (4-hexagon networks). Let Γ and Σ be two four-hexagon networks with
the same boundary voltages and boundary currents and no sinks anywhere, and each having unit

conductance on each edge. Suppose also that it is known that the ratio of the size of the largest
current source in the difference graph to that of the smallest source is strictly smaller than five.

Then the current sources in Γ and Σ are identical.

Proof. As in the previous proof, let ∆ = Γ− Σ, so that the voltages and currents on ∂∆, as well

as the net currents at each boundary node, are all zero. With the nodes of ∆ numbered as in
Figure 2, Kirchhoff’s Law at nodes 2 and 7 shows that the voltages at nodes A and E are zero.

With this information, applying Kirchhoff’s Law to nodes 1,3,6, and 8 shows that the voltages at
B, D, F, and H are all zero, and then Kirchhoff’s Law at nodes 4 and 9 shows that the voltages

at C and G are zero. So the voltages at every point in the graph except possibly J and K are

zero. Kirchhoff’s Law at nodes J and K then yield

(4) I(J) = 6v(J)− v(K) I(K) = 6v(K)− v(J)

This implies

(5) v(J) =
1

35
(6I(J) + I(K)) v(K) =

1

35
(I(J) + 6I(K))

Now nodes A through H all have zero voltage, and J is the only node with nonzero voltage

neighboring any of A, B, or H, and hence is the only node into which current from any of these
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Figure 2. Labelling of vertices in the four-hexagon network

nodes may flow. So since the current along any edge XY is just I(XY ) = v(X) − v(Y ), the
currents at A, B, and H are given by

(6) I(A) = I(B) = I(H) = −v(J) = −
1

35
(6I(J) + I(K))

Likewise, since the only node with nonzero voltage neighboring nodes D, E, or F is K, we have

(7) I(D) = I(E) = I(F ) = −v(K) = −
1

35
(I(J) + 6I(K))

It hence follows that

(8) min{|I(A)|, |I(D)|} ≤
1

5
max{|I(J)|, |I(K)|}

So if either I (J ) or I (K ) is nonzero, the ratio of the magnitude of the largest current source in ∆

to that of the smallest is at least five, contradicting our assumption. So both I (J ) and I (K ) are

zero, implying that

(9) v(J) = v(K) = 0

Then every voltage in ∆ is zero, so no current flows in ∆, so ∆ must have no current sources.

Hence the current sources in Γ and Σ are identical. ¤

Uniqueness theorem 3 (5-hexagon networks). Let Γ and Σ be two five-hexagon networks with

the same boundary voltages and boundary currents and no sinks anywhere, and each having unit

conductance on each edge. Suppose also that it is known that the ratio of the magnitude of the

largest current source in the difference graph to that of the smallest source is strictly smaller than
34
7
. Then the sources in Γ and Σ are identical.

Proof: The proof is quite similar to the proof for the 4-hexagon network. Where ∆ = Γ − Σ,
Kirchhoff’s Law first at nodes 2 and 6 (see Figure 3), then at 1,3,5, and 7, then at nodes 4, 8, and
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Figure 3. Labelling of vertices in the five-hexagon network

11, and finally at node 10 of ∆ establish that the voltage is zero at nodes B, F, A, C, E, G, D,

H,K, and J, respectively. So nodes L, M, and N are the only nodes at which the voltage might
be nonzero, and no current flows on any edge connecting two of nodes A through K. We then see
that

(10) v(L) = −I(B) v(M) = −I(J) v(N) = −I(F )

Denote I1 = I(B), I2 = I(J), and I3 = I(F ). We find then that the currents at nodes A through
H are as follows:

(11) I(A) = I(B) = I(C) = I1 I(D) = I1 + I2 + I3 I(E) = I(F ) = I(G) = I3

(12) I(H) = I2 + I3 I(J) = I2 I(K) = I1 + I2

Kirchhoff’s Law at nodes L, M, and N then yields

(13) I(L) = −6I1 + I2 I(M) = I1 − 6I2 + I3 I(N) = I2 − 6I3

Solving for I1, I2, and I3 then yields

(14) I1 = −
1

204
(35I(L) + 6I(M) + I(N)) I2 = −

1

34
(I(L) + 6I(M) + I(N))

(15) I3 = −
1

204
(I(L) + 6I(M) + 35I(N))

We see from this that

(16) min{|I1|, |I2|, |I3|} ≤
7

34
max{|I(L)|, |I(M)|, |I(N)|}

So if any of I (L), I (M ), or I (N ) is nonzero, the ratio of the magnitude of the largest current

source in ∆ to that of the smallest current source is at least 34
7
, contradicting our assumption. So

each of I (L), I (M ), and I (N ) is zero, implying I1 = I2 = I3 = 0. We’ve seen that each current

source in ∆ is a linear combination of I1, I2, and I3, so each current source in ∆ is zero. Thus

the current sources in Γ and Σ are identical. ¤
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Figure 4. A spiked hexagonal network with 8 hexagons in two rows

The hypotheses of each of the above uniqueness theorems contained a requirement that the
ratio of the largest source to the smallest source be smaller than a certain number, r. This
translates to a requirement on the spread of the possible values of the sources in the original
network; if S is the subset of real numbers of which each of the possible magnitudes of the sources
in the original network must be a member, the ratio of the largest value in S to the smallest
difference between any two members of S must be smaller than r.
In each case above, the proof of uniqueness depended on the fact that all but relatively few

nodes in the difference network may immediately be shown to have voltage zero as a consequence
of the boundary conditions. As this does not remain true for similar but larger networks, this

result is difficult to generalize, at least using the above approach. Similar methods may be used to
show uniqueness for small networks of different shapes, but for larger networks, other approaches

must be used, and these approaches require assuming that all sources in the network have the
same magnitude.

3. Uniqueness of multiple unit sources in spiked and unspiked hexagonal networks

3.1. Spiked Networks. We show here that in a network of hexagons which are arranged in two

rows, such as in Figure 4, if all the conductances and sources are assumed to have value one,
the locations of the sources are uniquely determined by the values of the boundary voltages and

currents. To do this, we will consider the difference network ∆ of two such networks with identical
boundary measurements. The boundary voltages and currents in ∆ will then all be zero, and the

current at each interior point will be -1, 0, or 1. Where the nodes are denoted as in Figure 4 (so, if

the number of hexagons in the network is N, we have nodes a1, . . . , aN , b0, . . . , bN−1, c0, . . . , cN+1),

the voltages at all the nodes ai and also at b0, bN−1, c0, cN+1 and at all the unlabeled nodes are

zero. Uniqueness will be proven if we can show all other voltages to be zero. We will first show

that they must all take on values -1, 0, or 1.

Lemma 1. Every voltage in ∆ is either -1, 0, or 1.

Proof. The bulk of the proof proceeds by induction on the subscripts of the points bi and cj . Our

inductive hypothesis is as follows:

For each i < n and j < n− 1, v(bi), v(cj) ∈ {−1, 0, 1}
Now the claim holds trivially for n = 1 (since, as mentioned above, v(b0) = 0). For n = 2,
the only nodes in question are b1 and c0. But v(c0) = 0, and by Kirchhoff’s law at a1,

v(b1) = −I(a1) ∈ {−1, 0, 1}. Thus the claim holds for n = 2. Likewise, by Kirchhoff’s Law
at nodes c0 and a2 we have v(c1) = −I(c0) ∈ {−1, 0, 1} and v(b2) = −I(a2) ∈ {−1, 0, 1}, so the
claim holds for n = 3.

Now suppose the inductive hypothesis holds for some n, where n ≥ 3. We must show v(bn), v(cn−1) ∈
{−1, 0, 1}. Since

(17) I(an) = −v(bn−2)− v(bn) ∈ {−1, 0, 1}
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and by the inductive hypothesis v(bn−2) ∈ {−1, 0, 1}, we must have v(bn) ∈ {−2,−1, 0, 1, 2}.
Suppose, to get a contradiction, that v(bn) = 2. By equation 17 this requires I(an) = −1 and
v(bn−2) = −1. Kirchhoff’s Law at bn−2 then gives

(18) I(bn−2) = 3v(bn−2)− v(cn−1) = −3− v(cn−1) ∈ {−1, 0, 1}

This implies

(19) −4 ≤ v(cn−1) ≤ 2

Applying Kirchhoff’s Law at cn−1, in combination with equation 19 and the fact that, by the

inductive hypothesis, v(bn−2), v(cn−2) ∈ {−1, 0, 1}, we have

(20) −1 ≤ I(cn−1) = 3v(cn−1)− v(bn−2)− v(cn−2)− v(cn) ≤ − 6 + 1 + 1− v(cn)

so that

(21) v(cn) ≤ − 3

Meanwhile, since v(an) = v(an+2) = 0 and by assumption v(bn) = 2, Kirchhoff’s Law at bn gives

(22) −1 ≤ I(bn) = 3v(bn)− v(cn+1) = 6− v(cn+1) ≤ 1

so that

(23) 5 ≤ v(cn+1) ≤ 7

By the inductive hypothesis, v(bn−1) ∈ {−1, 0, 1}, so by equations 19, 21, and 23, Kirchhoff’s
Law at cn yields

(24) I(cn) = 3v(cn)− v(cn−1)− v(cn+1)− v(bn−1) ≤ − 9 + 4− 5 + 1 = −9

This contradicts the fact that I(cn) must not have magnitude greater than 1. Hence v(bn) 6= 2.
Negating every number in the above argument shows that v(bn) 6= − 2. Thus v(bn) ∈ {−1, 0, 1}.
It remains to show that v(cn−1) ∈ {−1, 0, 1}. Now Kirchhoff’s Law at node cn−1 gives

(25) v(cn) = 3v(cn−1)− v(bn−2)− v(cn−2)− I(cn−1)

But v(bn−2), v(cn−2), I(cn−1) ∈ {−1, 0, 1}, so by the reverse triangle inequality this implies

(26) |v(cn)| ≥ 3|v(cn−1)| − 3

Likewise, Kirchhoff’s Law at node cn gives

(27) v(cn+1) = 3v(cn)− v(cn−1)− I(cn)− v(bn)

So since I(cn), v(bn) ∈ {−1, 0, 1},

(28) |v(cn+1)| ≥ |3v(cn)− v(cn−1)| − 2

But by equation 26 and the reverse triangle inequality,

(29) |3v(cn)− v(cn−1)| ≥ 8|v(cn−1)| − 9

So equation 28 yields

(30) |v(cn+1)| ≥ 8|v(cn−1)| − 11

By Kirchhoff’s Law at node bn,

(31) I(bn) = 3v(bn)− v(cn+1)

Now I(bn), v(bn) ∈ {−1, 0, 1}, so this implies |v(cn+1)| ≤ 4. Hence by equation 30,

(32) 8|v(cn−1)| − 11 ≤ 4

Since v(cn−1) is an integer (this may be seen by applying Kirchhoff’s Law at node bn−2), this

implies that v(cn−1) ∈ {−1, 0, 1}. Thus the inductive hypothesis holds for n+ 1.
This establishes that the voltages at nodes b1, . . . , bN−2 and at c0, . . . , cN−3 are all -1, 0, or 1.

The lemma wil be proven when we’ve shown that this holds for the remaining nodes ci. A quick
examination of the argument that led to equation 30 shows that, since all the nodes bi have voltage

-1, 0, or 1, we have, for all i,

(33) |v(ci+2)| ≥ 8|v(ci)| − 11 |v(ci−2)| ≥ 8|v(ci)| − 11

(We note both these relations since for some i only one of ci−2 and ci+2 exists.) Also, for any j

Kirchhoff’s Law at node bj−1 shows that the voltage at cj is an integer no larger in magnitude

than four. Equation 33 then implies that v(ci) ∈ {−1, 0, 1}. ¤
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We now prove that every voltage in ∆ is in fact zero, which establishes that no currents flow

in ∆, so there are no sources in the difference network of two networks with identical boundary

measurements, implying that any two networks with identical boundary measurements have the

same sources.

Uniqueness theorem 4 (Spiked hexagonal networks). Every voltage in ∆ is zero.

Proof. As noted in the opening paragraph of this section, the voltages at all nodes other than
b1, . . . , bN−2 and c1, . . . , cN are already known to be zero. For all i, Kirchhoff’s Law at node bi

gives

(34) I(bi) = 3v(bi)− v(ci+1)

But I(bi), v(bi), v(ci+1) ∈ {−1, 0, 1}, so the only way the above equation can hold is if v(bi) = 0.

Knowing this, for 1 ≤ j ≤ N , Kirchhoff’s Law at cj gives

(35) I(cj) = 3v(cj)− v(cj−1)− v(cj+1)

For j = 1, since v(c0) = 0 and all voltages and currents are 1, 0, or -1, equation 35 requires
v(c1) = 0. Then if, for some j, v(cj−1) = 0, again equation 35 implies v(cj) = 0. Hence by
induction v(cj) = 0 for all j from 1 to N . Thus every voltage in ∆ is zero, and uniqueness is

proved. ¤

Remark 1. Uniqueness fails, in general, if we allow the sources to take on different values. For

example, if I(c1) = I(cN ) = 2, I(c2) = · · · = I(cN−1) = 1, and I(c0) = I(cN+1) = I(b0) =
· · · = I(bN−1) = −1, all boundary measurements are zero (the voltages are 1 at c1, . . . , cN and
zero elsewhere), so a network with sources of value 2 at c1 and cN and of value 1 at c2, . . . , cN−1

cannot be distinguished from a network with sources of value 1 at c0, cN+1 and each of the bi.

Remark 2. Uniqueness also tends to fail in more complicated spiked hexagonal networks, even
when all sources are restricted to having unit size. For example, in the network shown in figure 5,
the same boundary measurements result if unit sources are placed at points B,C,G,H, J, and K

as result if the sources are placed at points 3,4,A,D,E, and F . Note that this network is the
simplest spiked hexagonal network in which the hexagons are not arranged in two rows, and in

fact a network of this form (call it Γ) is embedded as a subnetwork in any other spiked hexagonal
network Σ which is at least two hexagons wide everywhere and in which the hexagons are not

arranged in two rows. Since the measurements on ∂Γ do not suffice to determine the sources
on the interior of Γ, one would expect that measurements on ∂Σ would not suffice to determine

the sources on int Γ, so since the interior of Γ is contained in the interior of Σ, some sources
in Σ would be left undetermined by the measurements on ∂Σ. As such, one suspects that the
only spiked hexagonal networks which are at least two hexagons wide everywhere in which the
boundary measurements determine the locations of the sources are those in which the hexagons

are arranged in two rows, that is, precisely those networks for which uniqueness has been proven

in Theorem 4. To show that this reasoning is valid, we prove the following lemma.

Lemma 2. Suppose Γ is a network with nonempty boundary which is embedded as a subnetwork

in a network Σ in such a way that intΓ ⊂ intΣ, Σ \ intΓ is connected, and no point in Σ \ Γ
neighbors a point in intΓ. Let sources in Γ be arranged so that, when Γ is isolated from the rest

of the large network Σ, the voltages and currents on ∂Γ are zero, and let there be no sources in

Σ \ intΓ. Then all the currents and voltages on ∂Σ are zero.

Proof. Let p be any node in Ω = Σ\intΓ such that v(p) ≥ v(q) for all q ∈ Ω (such a node exists
since Ω is finite). Since there are no sources in Ω (in particular, there is no source at p), Kirchhoff’s

Law requires that each neighbor of p have voltage v(p) (this is true even if p ∈ ∂Γ, since we know

the net current from p into all of Σ and the net current from p into intΓ are both zero, so the net

current from p into Ω = Σ \ intΓ is also zero; for points in Σ \ Γ = Ω \ ∂Γ, the current into intΓ is
not an issue since such points do not have neighbors in intΓ.). If p0 is a node which maximizes v

on Ω, let r be any point in Ω. By the hypothesis, there is a path p0, p1, . . . , pn = r in Ω. Now p0
maximizes v on Ω, and if pi maximizes v on Ω then since pi+1 is a neighbor of pi, pi+1 maximizes

v on Ω. So by induction pn = r maximizes v on Ω. As r was an arbitrary point in Ω, the voltage
is hence constant on Ω. By the assumption on the distribution of the sources, v is zero on ∂Γ, so

v is zero throughout Ω = Σ \ intΓ; in particular the voltage is zero on ∂Σ. ¤
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Figure 5. A relatively simple spiked network in which uniqueness fails

So if Γ is any network, such as that in figure 5, such that there exists a nontrivial arrangement

of unit sources and sinks in intΓ giving zero voltages and currents on ∂Γ, and Σ is a larger
network which has Γ as a subnetwork in such a way that intΓ ⊂ intΣ, Σ \ intΓ is connected,
and no node in Σ \ Γ neighbors a node in intΓ, this arrangement of sources in Γ, along with
sources zero in Σ \Γ, will give voltages and currents of zero on ∂Σ. Viewing Γ and Σ as difference
networks, this shows that if sources are not uniquely determined by boundary measurements in a

smaller network, and this smaller network is contained in a larger network in the sense described
in Lemma 2, sources in the larger network are also not determined by boundary measurements.

As mentioned in remark 2, the network shown in figure 5 is contained, in the sense of Lemma 2,
in any spiked hexagonal network which is at least two hexagons wide everywhere in which the
hexagons are not all arranged in two rows. This, combined with Theorem 4, gives the following

characterization of spiked hexagonal networks in which unit sources are uniquely determined by
boundary measurements.

Corollary 5. If all the sources in a spiked hexagonal network with unit resistors are assumed

to have value one, and the network is at least two hexagons wide everywhere, the sources are
uniquely determined by boundary measurements if and only if the hexagons are arranged in only

two rows.

3.2. Unspiked Networks. We now turn to networks similar to those discussed in the previous
section, but with no spikes; the boundary nodes will be precisely those nodes which belong to

only one hexagon. In the spiked case, the boundary data gave us only the voltage at these nodes

(using Ohm’s Law), so since in the unspiked case the boundary data consists of both the voltage

and the currents at these nodes, one would expect the boundary data to determine the location
of unit sources for a larger class of unspiked networks than spiked ones. This is indeed the case,

as is shown by the following theorem.

Uniqueness theorem 6 (Unspiked hexagonal networks). In an unspiked hexagonal network with

unit resistors which is exactly two hexagons wide everywhere in which every source has value one,

the locations of the sources are uniquely determined by boundary measurements.

Proof. As in the proof of Theorem 4, we consider the difference network ∆ between two networks

with identical boundary measurements, so the boundary voltages and boundary currents on ∆
will be zero. We label the nodes of ∆ as in figure 4 (note that even if the network has “bends” as

in figure 5, the same labelling system may be used). Then c0, cN+1, b0, bN−1, and a1, . . . , aN are
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all boundary nodes and hence have current and voltage zero. Now no current flows on boundary-

to-boundary edges, so since b1 is the only interior node connected to a1 and I(a1) = v(a1) = 0,

we have v(b1) = 0. Likewise b2 is the only interior node connected to the boundary node a2, so

v(b2) = 0. For 3 ≤ i ≤ N − 1, the node ai is connected only to the interior nodes bi−2 and bi, so

we have

(36) 0 = I(ai) = v(bi−2) + v(bi)

Using the fact that v(b1) = v(b2) = 0, it readily follows by induction that v(bi) = 0 for all i.

We now turn to the nodes ci. For 1 ≤ i ≤ N , ci has neighbors bi−1 (which we’ve shown to have

voltage zero), ci−1, and ci+1, so

(37) I(ci) = 3v(ci)− v(ci−1)− v(ci+1)

For all j, Kirchhoff’s Law at node bj+1 gives

(38) I(bj+1) = −v(cj) ∈ {−1, 0, 1}

Hence each term in equation 37 has value 1, 0, or -1. But then for any i, if v(ci−1) = 0, for
equation 37 to be satisfied we must have v(ci) = 0. Since c0 is a boundary node, v(c0) = 0,
so it follows by induction that v(ci) = 0 for all i. We have thus shown that each node in ∆
has voltage zero, so in the difference network between any two networks with identical boundary
measurements, no current flows. Hence the sources in the network are uniquely determined by
boundary measurements. ¤

Remark 3. Just as in the spiked case, uniqueness fails if we allow the sources to take on different

values. To show this, we use a slight modification of the arrangement in remark 1. Assuming
N ≥ 4, setting I(c2) = I(cN−1) = 2, I(c3) = · · · = I(cN−2) = 1, I(c1) = I(cN ) = I(b1) =
· · · = I(bN−2) = −1 and all other net currents zero (so that the voltages are 1 wherever there
is a source and zero elsewhere), we see that the boundary measurements are zero. Thus if the
sources are allowed to take values in a 2-to-1 ratio, they are not uniquely determined by boundary

measurements. For N = 3, if the sources are in a 2-to-1 ratio they are uniquely determined, but
if a source of value 3 is located at the center node c2 and sinks of value -1 are at each of its

neighbors, the boundary measurements are again zero, so even in this rather small network, if
the sources are allowed to vary signifcantly from each other, they are not determined by boundary

measurements.

Remark 4. Again, as in the spiked case, once the network becomes more complicated than the
networks covered by the uniqueness theorem, uniqueness begins to break down. In the network in

figure 6, if sources of value 1 are placed at nodes G,H, J,K,L, and M and sinks of value -1 are
placed at A,B,C,D,E, and F , the boundary measurements are zero, so uniqueness does not hold

in this network. This network is contained as a subnetwork in any unspiked hexagonal network
of width everywhere at least two which contains a column of three hexagons, each of which has

hexagons both to its left and to its right. Lemma 2 may hence be used to show that uniqueness
does not hold in any such network.

4. Uniqueness of multiple unit sources in triangular and towers of Hanoi networks

4.1. Triangular networks. We consider triangular networks ΣN in which the nodes are arranged

in N concentric hexagons around a center node p0, such as the network in figure 7, and in which

the conductance on each edge is one. The hexagons are numbered 1, . . . , N going out from the

center, and hexagon k will have nodes (k, r) where 0 ≤ r ≤ 6k − 1. We adopt the cyclic labeling
convention (k, r) = (k, r + 6k), and in general any node labelled (0, r) will refer to node p0. For

1 ≤ k ≤ N − 1 and 0 ≤ l ≤ 5, the neighbors of node (k, lk) are (k, lk − 1),(k, lk + 1),(k − 1, l(k −
1)),(k+1, l(k+1)),(k+1, l(k+1)−1), and (k+1, l(k+1)+1), and for 1 ≤ m ≤ k−1 the neighbors
of node (k, lk+m) are (k, lk+m−1),(k, lk+m+1),(k−1, l(k−1)+m−1), (k−1, l(k−1)+m+1),
(k+1, l(k+1)+m), and (k+1, l(k+1)+m+1). Note in particular that if k ≤ N − 1, each node
in hexagon k has at least two neighbors in hexagon k + 1.

Lemma 3. Suppose the voltages on the boundary hexagon (k = N) of ΣN are all integers, and
suppose it is known that every source in ΣN has integer value. Then the voltage at any node

inside ΣN is an integer.
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Figure 6. A relatively simple unspiked network in which uniqueness fails
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Figure 7. A network of three concentric hexagons
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Proof. The proof will proceed by induction on j = N − k, where k is the label of the hexagon on

which the node lies. The case j = 0 is contained in the hypothesis of the lemma. Suppose that,

where 1 ≤ k ≤ N − 1, the voltages on hexagons k + 1, . . . , N are all integers (i.e., suppose the

lemma holds for all natural numbers smaller than j) . Now for 0 ≤ l ≤ 5, all neighbors of the
node (k + 1, l(k + 1)) except node (k, lk) lie on hexagon k + 1 or k + 2, and hence have integer

voltages, as does node (k+1, l(k+1)) itself. By assumption, the net current at (k+1, l(k+1)) is

an integer, so since the conductances are all one, Kirchhoff’s Law at node (k+1, l(k+1)) requires

that v(k, lk) be an integer. Now let 1 ≤ m ≤ k − 1 and suppose v(k, lk +m − 1) is an integer.
Then (k+1, l(k+1)+m) and all of its neighbors except possibly (k, kl+m) have integer voltage,

so since I(k + 1, l(k + 1) +m) is an integer, by Kirchhoff’s Law v(k, kl +m) is an integer. So by

induction on m, every node on hexagon k has integer voltage. Thus by induction on j = N − k,

the voltage at every point in ΣN except possibly p0 has integer voltage. Applying Kirchhoff’s

Law at (1, 0) shows that p0 must also have integer voltage, proving the lemma. ¤

We now show that if it is known that all current sources in ΣN must have value 1, the location

of the sources in uniquely determined by the voltages and net currents on the boundary (hexagon

N). To do this, we consider the difference network ∆ of two such networks with identical boundary
data, so that the voltages and currents on the boundary of ∆ are zero, and the net current at any
node is 1, 0, or -1. Uniqueness will be established if we can prove that every voltage in ∆ is zero.
The method of this proof, and also the proof of Theorem 8, was motivated by the technique used
by Chaffee and Whitley in [1] to prove the uniqueness of multiple sources in rectangular networks.

Uniqueness theorem 7 (Triangular networks). The voltage at every node in ∆ is zero. Thus
the locations of unit current sources in ΣN are uniquely determined by boundary data.

Proof. Since there are only finitely many nodes in ΣN , the maximum value V of the voltage on
∆ is attained at some node in the network; suppose it is attained at node (k, r), and suppose

k < N . We will show that the maximum voltage is also attained on hexagon k + 1. Since the
voltage at (k, r) is a maximum, no current flows into (k, r), so (k, r) must not be a sink. If the net
current at (k, r) is zero, since none of its neighbors have voltage higher than V , Kirchhoff’s Law

shows that the voltage at each neighbor of (k, r), in particular at the two (or more) neighbors on
hexagon k + 1, must be V . Hence the maximum is attained on hexagon k + 1. If the net current
at (k, r) is one, by Kirchhoff’s Law the sum of the voltages at the six neighbors of (k, r) must be

6V − 1. Now by Lemma 3, V is an integer, as is the voltage at each neighbor of (k, r). Hence 5
of the neighbors of (k, r) have voltage V , and the other one has voltage V − 1. Since (k, r) has at
least two neighbors on hexagon k+1, at least one of these must have voltage V , so the maximum
is attained on hexagon k + 1. Induction on k shows that the maximum must then be attained
on hexagon N . But hexagon N is the boundary of ∆, and so all of its nodes have voltage zero.

Hence V = 0. An identical argument shows that the minimum voltage in the network is also zero.
Thus every node in ∆ has voltage zero. ¤

Remark 5. In lemma 2 it was shown that if a small network Γ is embedded in a larger network

Σ in such a way that intΓ ⊂ intΣ, Σ \ intΓ is connected, and no node in Σ \ Γ neighbors a node
in intΓ, and if the boundary data of Γ do not determine the sources in Γ, then the boundary data

of Σ do not determine the sources in Σ. Equivalently, if the boundary data of Σ do uniquely
determine the sources in Σ (as in the case Σ = ΣN ), then the boundary data of Γ uniquely

determine the sources in Γ. Using this fact, since Theorem 7 shows uniqueness of sources for
arbitrarily large N , we also have uniqueness for a whole range of triangular networks which may

be embedded in networks ΣN for which a direct uniqueness proof would be difficult because they

lack the symmetry properties of ΣN , such as the network shown in figure 8.

4.2. Towers of Hanoi networks. We will now show a similar result for Towers of Hanoi net-
works, using the same basic approach. We divide the network into layers, as follows: the innermost

layer (layer 1) consists only of the center point if there are an odd number of boundary nodes and

of the two center points if there are an even number of boundary nodes, and for k > 1 layer k

consists of the neighbors of points in layer k − 1 which do not lie in layer k − 2, as illustrated in
Figure 9. The outermost layer (layer N if there are either 2N − 1 or 2N boundary nodes) will

then consist of the boundary nodes of the network. We observe that, for 1 ≤ k < n, each node
in layer k has at least two neighbors in layer k + 1. This and the fact that, as proven in the

following lemma, each voltage in the difference network will be an integer, are the basic properties
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Figure 8. Theorem 7 also establishes uniqueness for this network

Figure 9. Towers of Hanoi networks, with layers indicated by dotted lines

which allow uniqueness of multiple sources to be proven in these networks, and uniqueness in

other networks with these properties may be proven just as easily.

Lemma 4. Let Γ be a towers of Hanoi network with unit resitances on each edge, and suppose

each of the voltages on ∂Γ and each of the net currents in intΓ are known to be integers. Then
the voltage at any node in Γ is an integer.

Proof. We will prove the result for a network with an odd number, say 2N − 1, of boundary
nodes; the analagous result for networks with an even number of boundary nodes may be proven
similarly. The kth layer of the network will have 2k − 1 nodes; we will index these nodes as
(k,−k + 1), . . . , (k, k − 1) moving from left to right in the network. The neighbors of the center
point (1, 0) are then (2,−1), (2, 0), and (2, 1). For 2 ≤ k ≤ N − 1, the neighbors of (k, 0) are
(k−1, 0), (k+1,−1), (k+1, 0), and (k+1, 1), and for 1 ≤ j ≤ k−2, the node (k,±j) has neighbors
(k − 1,±(j − 1)), (k − 1,±j), (k + 1,±j), and (k + 1,±(j + 1)), while the node (k,±(k − 1)) has
neighbors (k − 1,±(k − 2)), (k + 1,±(k − 1)), and (k + 1,±k). Finally, node (N, 0) neighbors

only node (N − 1, 0); for 1 ≤ j ≤ N − 2 node (N,±j) neighbors nodes (N − 1,±(j − 1)) and
(N − 1,±j), and node (N,±(N − 1)) neighbors only node (N − 1,±(N − 2)). We now prove the
lemma, proceeding, as in the proof of Lemma 3, by induction on N − k where k is the index of

the layer. By assumption, each voltage on layer N is an integer. Suppose all voltages of nodes
on layers k, . . . , N are integers. Then v(k, 0) and the voltages of each neighbor of (k, 0) except

possibly (k − 1, 0) are known to be integers, so Kirchhoff’s Law at (k, 0) implies v(k − 1, 0) ∈ Z.

Now suppose that, where j ≤ k − 2, we have v(k − 1,±j) ∈ Z. Then (k,±(j + 1)) and each of its
neighbors except possibly (k−1,±(j+1)) have integer voltage, so Kircchoff’s Law at (k,±(j+1))
implies v(k − 1,±(j + 1)) ∈ Z. Hence by induction on j, each node in layer k − 1 has integer
voltage, so by induction on N − k, each node in the entire network has integer voltage. ¤
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We now show that, if all sources in a towers of Hanoi network are known to be of unit size,

their locations are uniquely determined by boundary measurements. As usual, we assume two

such networks Γ and Σ have the same boundary measurements, so that ∆ = Γ−Σ has boundary
voltages and currents zero, and the net current at any node in ∆ is 1, 0, or -1.

Uniqueness theorem 8. The voltage at every node in ∆ is zero. Thus the locations of unit

sources in Γ are uniquely determined by boundary data.

Proof. Suppose that the maximum value, V , of the voltage is assumed at some point p on layer

k, where k < N , of ∆. Then no current flows into p, so p must not be a sink. If p is a harmonic

node, the average value of the voltages of the neighbors of p is then V . Since V is the maximum

value of the voltage on the entire network, none of the neighbors of p has a voltage exceeding

V , so that also none of the neighbors of p may have a voltage less than V . In particular, each

neighbor of p which lies on layer k + 1 has voltage V . Thus the maximum value of the voltage is

also assumed at layer k + 1. The only remaining case is that in which there is a unit source at p.

If p has np neighbors (np will be either three or four), the sum of the voltages of the neighbors

of p will then be, by Kirchhoff’s Law at p, npV − 1. Since each of these voltages are integers, the
only way this is possible is for one of the neighbors of p to have voltage V − 1 and the others have
voltage V . Since p has two neighbors on layer k + 1, at least one of these must have voltage V ,
so that the maximum is attained on layer k + 1. Thus is any case, if the maximum value of the
voltage is attained on layer k < N , it is also attained on layer k+1. Hence by induction on k, the

maximum voltage is attained on layer N , i.e., on the boundary. An identical argument shows that
the minimum voltage is also attained on the bounday. But every voltage on ∂∆ is zero, implying

that every voltage in ∆ is zero, proving the theorem. ¤

5. Uniqueness of individual sources in various networks

5.1. Introduction. We now examine the question of what boundary data are required to uniquely

determine the location of a single source in various resistor networks, including the towers of Hanoi
network, circular networks, rectangular networks, and triangular networks. In each case, we find

that only a partial set of boundary currents is required to uniquely determine the node at which the
source lies. Unlike our results for multiple sources, these results will not require each conductivity

to be one. In general we will assume we have two networks, each known to have a single unit
source in their interiors, with a certain amount of identical boundary data. The difference network

∆ of these two networks will then satisfy the hypotheses of the following lemma, which plays an
important role in all of the uniqueness results seen below.

Lemma 5. Let Θ be a network with at most one unit sink and one unit source, such that the
voltage is zero at each node of ∂Θ and the sum of the boundary currents from Θ is zero. Suppose

that for any p, q ∈ Θ with q distinct from p there exists a path from q to some boundary node r
which does not pass through p. Let p be an interior node in Θ with voltage zero. Then p is a
harmonic node.

Proof. Suppose p is not harmonic. Since if Θ satisfies the hypotheses of the lemma then so
does −Θ, we will assume p is a unit source. Since v(p) = 0, p is the only source in the circuit,
and each boundary node has voltage zero, the maximum principle implies that 0 is the highest

voltage attained anywhere in Θ. There is then a unit sink somewhere in intΘ, say at the point
q. Due to the assumption on the geometry of the network, we may construct a disjoint path

q = q0, q1, . . . , qn, where q0, . . . , qn−1 ∈intΘ, qn ∈ ∂Θ, and p does not appear in the path. Thus
each of the nodes q1, . . . , qn−1 is harmonic. Since no points in Θ have voltage higher than zero

and net current flows in to q, we must have v(q) < 0. Let qi be the first node in the path to

have voltage zero; then i ≥ 1, and since all boundary voltages are zero, i ≤ n. Suppose i < n.

Then qi is harmonic, and by assumption v(qi−1) < 0, so since qi−1 is a neighbor of qi, qi must

have a neighbor with positive voltage. But this is impossible since no node in the network has
positive voltage. So we must have i = n, and in particular v(qn−1) < 0. qn−1 is a neighbor to

the boundary node qn, which has zero voltage, so some net current flows into the circuit from qn

to qn−1. Since each boundary node has voltage zero and no node in all of Θ has positive voltage,

this current may not be compensated for by any current flowing toward the boundary in some

other boundary-interior connection. But the sum of the net currents in the boundary nodes was

assumed to be zero, so this is a contradiction. Hence p must be harmonic. ¤
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Figure 10. Labelling of nodes in a 10-boundary node Towers of Hanoi network

We now turn to the specific networks under examination, beginning with the Towers of Hanoi
network.

5.2. Towers of Hanoi networks.

Uniqueness theorem 9 (Towers of Hanoi). Let Γ and Σ be two 2n-boundary node towers of

Hanoi networks, each with one unit source. Suppose Γ and Σ have the same voltage at every
boundary node and identical currents at some set of n − 1 contiguous boundary nodes. Then Γ
and Σ have their source at the same node.

Proof. Consider the difference network ∆ = Γ − Σ. The hypotheses of the theorem show that
∆ will have voltage zero at each point on the boundary and current zero at n − 1 contiguous
boundary nodes, that the sum of the boundary currents on ∆ is zero, and that ∆ has at most one
unit source and one unit sink. We wish to show that the voltage at every point in ∆ is zero. Noting

that ∆ satisfies the hypotheses of Lemma 5, let us number the nodes of ∆, as in Figure 10, so that
the boundary nodes are (0, n − 1), (1, n − 2), . . . , (n − 1, 0), (n, 0), (n + 1, 1), . . . , (2n − 1, n − 1).
By symmetry we need only consider cases where at least half of the nodes on which the current
is given to be zero lie on the left side of the graph. We will first consider the case where the

n− 1 boundary nodes known to have current zero are (0, n− 1), . . . , (n− 2, 1). Kirchhoff’s Law at
(0, n− 1) then gives v(1, n− 1) = 0, and if, for 1 ≤ i ≤ n− 3, v(i, n− i) = 0, applying Kirchhoff’s
Law to (i, n − i − 1) gives v(i + 1, n − (i + 1)) = 0. Hence by induction for 1 ≤ i ≤ n − 2,
v(i, n− i) = 0. Now suppose that for all j ≤ k, where k ≥ 0, we have, for all i such that the node
(i + j, n − i) exists, v(i + j, n − i) = 0. Then (1 + k, n − 1) has voltage zero and has neighbors
(k, n− 1), (1 + k, n− 2), and (2 + k, n− 1), of which all but the latter are known to have voltage
zero. So by Kirchhoff’s Law (which holds at (1 + k, n − 1) by Lemma 5), v(2 + k, n − 1) = 0.
Then if v(i + 1 + k, n − i) = 0, Kirchhoff’s Law at (i + 1 + k, n − i − 1) (which exists as long as
(i+2+ k, n− i− 1) exists and is not a boundary node; if (i+2+ k, n− i− 1) is a boundary node,
we already know it has voltage zero), we have v(i + 2 + k, n − i) = 0. So by induction on i, for

each i such that the node (i+1+ k, n− i) exists, v(i+1+ k, n− i) = 0. By induction on k, then,

each voltage in ∆ is zero, as desired.

Note that, in general, if we can establish that the voltage at each point (i, n − i) is zero

(1 ≤ i ≤ n−1), this will imply that the current at each of the boundary nodes (n, 0), . . . , (n−2, 1)
is zero, which is all we need to show since we’ve already established the result for that case.

Consider the case in which the n − 1 boundary nodes known to have current zero are (1, n −
2), . . . , (n− 1, 0). Kirchhoff’s Law at (n− 1, 0) shows that v(n− 1, 1) = 0, and if v(n− j, j) = 0,

then Kirchhoff’s Law at (n−j−1, j) implies v(n−(j+1), j+1) = 0, so by induction, v(n−j, j) = 0
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for 1 ≤ j ≤ n− 1, or equivalently v(i, n− i) = 0 for 1 ≤ i ≤ n− 1, from which the result, by the
above remark, follows.

In the remaining cases, the current is given to be zero at the nodes (j, n− j− 1), (j+1, n− j−
2), . . . (n−1, 0),(n, 0), . . . , (n+ j−2, j−2) for some j ≥ 2. Since we restrict our attention to cases
where a majority of the given nodes are on the left side of the graph, we will have 2j ≤ n − 1.
Kirchhoff’s Law at nodes (n − 1, 0) and (n, 0) gives v(n − 1, 1) = v(n, 1) = 0. Moving down

inductively, similarly to the case discussed in the preceding paragraph, we obtain

v(j, n− j) = v(j + 1, n− j − 1) = · · · = v(n− 1, 1) =

= v(n, 1) = · · · = v(n+ j − 2, j − 1) = 0(39)

Now generally if, for some k, we have I(n− k− 1, k) = I(n+ k, k) = 0 (note that (n− k− 1, k)
and (n + k, k) are the two boundary nodes with y-coordinate k), and v(x, k) = 0 for all x such

that the node (x, k) exists (i.e., for n − k − 1 ≤ x ≤ n + k), Kirchhoff’s Law at (x, k) gives

v(x, k + 1) = 0 for n − k − 1 ≤ x ≤ n + k. Since the voltage is zero on the boundary, we

have v(n − (k + 1) − 1, k + 1) = v(n + (k + 1), k + 1) = 0. So since for k ≤ j − 2 we have
I(n − k − 1, k) = I(n + k, k) = 0, and since for all x such that the node (x, 1) exists we have
v(x, 1) = 0, it follows by induction that for all (x, k) with k ≤ j− 1 we have v(x, k) = 0. Applying
Kirchhoff’s Law to the nodes (n− j + 1, j − 1), . . . , (n+ j − 2, j − 1) then gives

(40) v(n− j + 1, j) = . . . = v(n+ j − 2, j) = 0

Now v(n − j − 1, j) = 0 since (n − j − 1, j) is a boundary node, and v(n − j, j) = 0 by 39, so
applying Kirchhoff’s Law to nodes (n− j, j), . . . , (n+ j − 3, j) gives

(41) v(n− j, j + 1) = · · · = v(n+ j − 3, j + 1) = 0

Continuing in this fashion, we eventually obtain

(42) v(j − 1, n− j) = · · · = v(3j − 2, n− j) = 0

Now generally if l < m − 1, r < n − 1, and v(l, r) = · · · = v(m, r) = 0, Kirchhoff’s Law at

(l+ 1, r), . . . , (m− 1, r) gives

(43) v(l+ 1, r + 1) = · · · = v(m− 1, r + 1) = 0

Applying this fact repetitively, starting with equation 42, gives, for all k ≤ j − 1,

(44) v(j − 1 + k, n− j + k) = · · · = v(3j − 2− k, n− j + k) = 0

In particular, for k = j − 1, we have v(2j − 2, n − 1) = v(2j − 1, n − 1) = 0. Kirchhoff’s Law at
node (2j − 2, n− 1) then yields v(2j − 3, n− 1) = 0. If, where l ≥ 0, v(2j − 3− l, n− 1− l) = 0,
Kirchhoff’s Law at node (2j − 3 − l, n − 2 − l) (which has voltage zero by equation 44) gives

v(2j − 3− (l + 1), n− 1− (l + 1)) = 0. So by induction on l, we have v(2j − 3− l, n− 1− l) = 0

for 0 ≤ l ≤ j − 2; equivalently, v(j − 2 + k, n − j + k) = 0 for all k. Suppose that for some

m ≥ 2, whenever 1 ≤ r ≤ m we have v(j − r + k, n − j + k) = 0 for all k such that the node

(j−r+k, n−j+k) exists. Kirchhoff’s Law at (2j−m−1, n−1) (corresponding to r = m, k = j−1)
then gives v(2j−m−2, n−1) = 0. If, where l ≥ 0, v(2j−m−2− l, n−1− l) = 0, Kirchhoff’s Law

at node (2j−m−2− l, n−2− l) (which can be seen to have voltage zero by the hypothesis of the

present induction on m), gives v(2j−m− 3− l, n− (l+1)) = 0. So by induction on l, for all l we
have v(2j− (m+1)− 1− l, n− l) = 0; equivalently, v(j− (m+1)+ k, n− j+ k) = 0 for all k. By

induction on m, it then follows that for all m ≥ 2 and all k such that the node (j−m+k, n−j+k)
exists, v(j −m+ k, n− j + k) = 0. Taking m = 2r and k = r, this gives v(j − r, n− (j − r)) = 0

for each r ≥ 1. Since by equation 39 we have v(j, n− j) = · · · = v(n− 1, 1) = 0, this shows that
each point of form (i, n− i) has voltage zero. By the remark after the first case, this finishes the

proof. ¤

A similar result holds for towers of Hanoi networks with an odd number of boundary nodes;

if such a network has 2n + 1 boundary nodes, then all of the boundary voltages, along with the

currents at n contiguous boundary points determine the location of the source.
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Figure 11. Labelling of nodes in a circular network

5.3. Circular networks. We show here that, for a spiked circular network with p layers, all
of the boundary voltages and any p contiguous boundary currents are sufficient to determine

the location of a single source. To prove this, we suppose Γ and Σ are two circular networks,
each having exactly one source of unit size, with identical voltages at each boundary node and

p identical contiguous boundary currents. The difference network ∆ = Γ − Σ will then have
boundary voltages zero and currents zero at each boundary node for which the currents of Γ and

Σ are known to be identical, and the sum of all the boundary currents in ∆ will be zero. ∆ hence
satisfies the hypotheses of Lemma 5.
We consider both networks with a center node and ones without. We assume the network has

m circles and n rays, and number the node on the jth circle from the center and the kth ray
clockwise from the vertical as (j, k). The boundary nodes are (m+ 1, 1), . . . , (m+ 1, n), and the
center node, if present, is (0, 0), as shown in Figure 11. If a center node is present, there are

2m+ 1 layers; otherwise there are 2m layers.

Uniqueness theorem 10 (Spiked circular networks with center node). Let Γ and Σ be two spiked

circular networks with a center node with m circles and n rays, each known to have exactly one

unit source. Suppose the voltages at each boundary node of Γ and Σ are identical, and that Γ and

Σ have identical boundary currents at 2m + 1 contiguous boundary nodes. Then Γ and Σ have

their source at the same node.

Proof. Without loss of generality we may assume that the boundary nodes on which Γ and Σ have

identical currents are (m+1, 1), . . . , (m+1, 2m+1). Then in ∆ = Γ−Σ, each boundary voltage
is zero and I(m + 1, 1) = · · · = I(m + 1, 2m + 1) = 0. By Ohm’s Law, then, v(m, 1) = · · · =
v(m, 2m+1) = 0 Suppose that, where 0 ≤ k < m, we have v(m−j, j+1) = · · · v(m−j, 2m+1−j) =
0 for all j ≤ k. Then nodes (m − k, k + 1), . . . , (m − k, 2m + 1 − k) are harmonic, and for

k + 2 ≤ r ≤ 2m − k, each neighbor of (m − k, r) except (m − k − 1, r) is known to have voltage
zero. Hence Kirchhoff’s Law at (m− k, r) gives v(m− k − 1, r) = 0 for k + 2 ≤ r ≤ 2m− k, i.e.,

v(m− (k + 1), (k + 1) + 1) = · · · = v(m− (k + 1), 2m+ 1− (k + 1)) = 0. Hence by induction on
k we have, for all k,

(45) v(m− k, k + 1) = · · · = v(m− k, 2m+ 1− k) = 0

In particular, for all k ≤ m − 1, the three middle terms in equation 45 give v(m − k,m) =

v(m−k,m+1) = v(m−k,m+2) = 0. So, where j = m−k, for all j ≥ 1, v(j,m) = v(j,m+1) =

v(j,m+ 2) = 0. Kirchhoff’s Law at v(1,m+ 1) then gives v(0, 0) = 0. Now suppose that, where
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Figure 12. An unspiked circular network

k ≥ 0, we have, for all j, v(j,m − k) = · · · = v(j,m + k + 2) = 0. Since also v(0, 0) = 0, for all

j Kirchhoff’s Law at (j,m − k) and (j,m + k + 2) gives v(j,m − k − 1) = v(m + k + 3) = 0. So
v(j,m − (k + 1)) = · · · = v(j,m + (k + 1) + 2) = 0. By induction on k we then have v(j, k) = 0

for all k. Since this holds for all j, every voltage in ∆ is zero, so ∆ must have no sources, whence
the sources in Γ and Σ are located at the same node. ¤

Uniqueness theorem 11 (Spiked circular networks without center node). Let Γ and Σ be two

spiked circular networks without center node with m circles and n rays, each known to have
exactly one unit source. Suppose the voltages at each boundary node of Γ and Σ are identical,

and that Γ and Σ have identical boundary currents at 2m contiguous boundary nodes. Then Γ
and Σ have their source at the same node.

Proof. Let ∆ = Γ−Σ, so the voltages on ∂∆ are all zero. Assuming, without loss of generality, that
the currents which are known to be identical on Γ and Σ are those at (m+1, 1), . . . , (m+1, 2m),
we then have, in ∆, I(m + 1, 1) = · · · = I(m + 1, 2m) = 0, so v(m, 1) = · · · = v(m, 2m) = 0.

Repeated application of Kirchhoff’s Law, similar to that in the proof of Theorem 10, gives, for all

k, v(m−k, k+1) = · · · = v(m−k, 2m−k) = 0. So in particular, for all j, v(j,m) = v(j,m+1) = 0.

If, for some k ≥ 0, we have that for all j, v(j,m − k) = · · · = v(j,m + k + 1) = 0, Kirchhoff’s

Law at (j,m − k) and (j,m + k + 1) then gives v(j,m − k − 1) = v(j,m + k + 2) = 0. So
v(j,m− (k + 1)) = · · · = v(j,m+ (k + 1) + 1) = 0. Hence by induction on k every voltage in ∆

is zero. Thus the sources in Γ and Σ are located in the same node. ¤

Remark 6. For unspiked layered circular networks, such as those in Figure 12, the boundary

data required for uniqueness of individual sources are the same as that for the spiked network

which is obtained by removing the boundary-boundary edges. This is the case because, since all
boundary voltages in the difference network are zero, no current flows through the boundary-

boundary edges, so that the current flow properties in the difference network are unaffected by
the removal of these edges. This and theorems 10 and 11 lead to the general statement that

the number of boundary currents required for uniqueness of individual sources in layered circular

networks is at most equal to the number of layers if the network is spiked, or one less than the

number of layers if it is unspiked.
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Figure 13. Labelling of nodes in a 5x4 rectangular network

Remark 7. Examination of individual cases shows that considerably less data than that dictated
by theorems 10 and 11 are often required for uniqueness of individual sources. I have yet to come
across a network with unit conductivities on each edge in which two contiguous boundary currents

do not suffice to locate a single source, and even if the boundary currents are not contiguous, only
one example has been found (namely the spiked network with center node and four circles and
five rays) in which two non-antipodal boundary currents were insufficient.

5.4. Rectangular networks. Let us considermxn rectangular networks, taking the boundary to

consist of only the west, south, and east faces, that is, of nodes (0, 1), . . . , (0,m), (1, 0), . . . , (1, n),
and (n+1, 1), . . . , (n+1,m), where the nodes are designated as in figure 13. We will show that, if
there is assumed to be exactly one unit source in the network, this source is uniquely determined

by the all of the boundary voltages and the boundary currents on the south face. If Γ and Σ are

two networks, each known to have a single unit source, with identical voltages on the boundary
and identical currents on the south face, the difference network ∆ = Γ−Σ will then have voltage
zero on the boundary and currents zero on the south face, and the sum of the boundary currents

in ∆ will be zero. ∆ hence satisfies the hypotheses of the Lemma 5.

Uniqueness theorem 12 (Rectangular networks). Let Γ and Σ be two mxn rectangular net-

works, each known to have exactly one unit source. Suppose the voltages at each boundary node

(that is, each node on the west, south, and east faces) of Γ and Σ are identical, and that the
boundary currents of Γ and Σ are identical on the south face. Then Γ and Σ have their source

at the same node.

Proof. Let ∆ = Γ − Σ. So, in ∆, v(0, 1) = · · · = v(0,m) = 0, v(1, 0) = · · · = v(n, 0) = 0,

v(n + 1, 1) = · · · = v(n + 1,m) = 0, and I(1, 0) = · · · = I(n, 0) = 0. Kirchhoff’s Law at nodes

(1, 0), . . . , (n, 0) then gives v(1, 1) = · · · = v(n, 1) = 0. Suppose that, for some j ≤ m, we have

v(1, i) = · · · = v(n, i) = 0 for all i ≤ j (note this holds for j = 1). Each of nodes (1, j), . . . , (n, j)

is then harmonic by Lemma 5, and so, using the fact that v(0, j) = v(n + 1, j) = 0, Kirchhoff’s
Law at nodes (1, j), . . . , (n, j) gives v(1, j+1) = · · · = v(n, j+1) = 0. By induction on j it hence

follows that v(1, j) = · · · = v(n, j) = 0 whenever 1 ≤ j ≤ m+ 1. Since all boundary voltages are
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Figure 14. A chevron network with m=2, n=4, and p=4, with boundary
nodes labelled

Figure 15. The proof of Theorem 13 may easily be modified to apply to this network.

zero, this means every voltage in ∆ is zero, so that no current flows anywhere in ∆. Thus there

are no sources in ∆, so that Γ and Σ must have their source at the same node. ¤

Note that if we instead take Γ and Σ to be semi-infinite networks of width n bounded on the

south by (1, 0), . . . , (n, 0) but unbounded on the north, the above proof remains valid.

5.5. Triangular networks. Let us now turn to triangular networks. To keep the details of the

arguments simple, we will consider “chevron” networks such as those in figure 14, with boundary
consisting of the nodes (−m, 0), . . . , (n, 0), (−m, 1), . . . , (−m, p), and (n, 1), . . . , (n, p). It is easily

seen that the uniqueness result below applies equally well to certain subnetworks of these chevron

networks, such as that in figure 15, and also to the semi-infinite network obtained by taking

p→∞.

Uniqueness theorem 13 (Triangular networks). Let Γ and Σ be two chevron networks of the

same dimensions, each known to have exactly one unit source. Suppose that the voltages at each
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boundary node of Γ and Σ are identical, as are the currents at nodes (−m, 0), . . . , (n, 0). Then Γ

and Σ have their source at the same node.

Proof. As usual, let ∆ = Γ − Σ, so that the boundary voltages of ∆ are zero, the currents at
nodes (−m, 0), . . . , (n, 0) are zero, and the sum of the boundary currents in ∆ are zero. ∆ then

satisfies the hypotheses of Lemma 5. The neighbors of (0, 0) are (−1, 0), (1, 0) and (0, 1), and we
have I(0, 0) = v(0, 0) = v(−1, 0) = v(1, 0) = 0, so by Kirchhoff’s Law at (0, 0), v(0, 1) = 0. Where

0 ≤ k < m, suppose v(−k, 1) = 0. Now the neighbors of (−k − 1, 0) are (−k, 0), (−k − 1, 1), and,
if it exists, (−k − 2, 0). If (−k − 2, 0) exists, v(−k − 2, 0) = 0, and I(−k − 1, 0) = v(−k − 1, 0) =
v(k, 0) = 0, so by Kirchhoff’s Law at (−k−1, 0), v(−k−1, 1) = 0. Hence by induction on k we have
v(−m, 1) = · · · = v(0, 1) = 0. A similar argument shows v(0, 1) = · · · = v(n, 1) = 0. Now suppose

that for some j with 1 ≤ j < p, we have, for all i ≤ j, v(−m, i) = · · · = v(n, i) = 0. The node (0, j)

and all its neighbors except (0, j+1) (namely the nodes (−1, j), (1, j), (−1, j−1), (0, j−1), (1, j−1))
are each known to have voltage zero, and by Lemma 5 I(0, j) = 0, so by Kirchhoff’s Law at (0, j)

we have v(0, j + 1) = 0. Where 0 ≤ k < m, suppose v(−r, j + 1) = 0 for each nonnegative r ≤ k.

Now v(−k, j) = 0, and by Lemma 5 I(−k, j) = 0. Of the neighbors of (−k, j), only (−k−1, j+1)
is not known to have voltage zero. Hence by Kirchhoff’s Law at (−k, j), v(−k − 1, j + 1) = 0. So
by induction on k, v(−m, j + 1) = · · · = v(0, j + 1) = 0. Since an identical argument shows that

v(0, j + 1) = · · · = v(n, j + 1) = 0, induction on j shows that every voltage in ∆ must be zero, so
that the sources in Γ and Σ must be at the same node. ¤

6. Recovery of sources and the Green’s function

6.1. Recovery of Sources. Until now, we have focused on proving that, subject to certain
restrictions, the distribution of sources in various networks is uniquely determined by certain sets
of boundary data, but we have yet to consider the problem of actually finding the sources from
the given boundary data.

Where u∂ and I∂ are the vectors representing the voltages and currents on the boundary and
uint and Iint represent the voltages and currents on the interior, Kirchhoff’s equations take the

block form

(46)

[

A B

Bt C

] [

u∂

uint

]

=

[

I∂

Iint

]

Thus

(47) I∂ = Au∂ +Buint uint = C−1(Iint −Btu∂)

Substitution then gives

(48) I∂ = Au∂ +BC−1(Iint −Btu∂)

Thus where Λ = A−BC−1Bt is the response matrix, we have

(49) I∂ = Λu∂ +BC−1Iint

Since Λ and u∂ are independent of the arrangement of sources, we may take u∂ = 0, so that

I∂ = BC−1Iint. So if the boundary voltages are held at zero, a unit source at interior node j

gives rise to a current of (BC−1)rj at boundary node r. Numbering the interior nodes i = 1, . . . , n,
then, if each interior node has a source of value αi, the current out of boundary node r will be
∑n

i=1 αi(BC−1)rj . This gives rise to a very general but also rather inefficient way of locating the

sources in a network: for each combination of αi which satisfy some given restriction (such as that

each αi be either 0 or 1 or that only one of the αi be nonzero) and for which
∑n

i=1 αi is equal to

the total current flowing out of the network, the numbers
∑n

i=1 αi(BC−1)rj are compared to the

measured boundary currents (I∂)r, and the arrangement of sources is the collection of values αi

for which these numbers match. Because there will be a large number of possible choices of αi for

which equality will need to be checked, this algorithm is undesirably complex. However, we have
been unable to come up with a more efficient algorithm, partly due to the difficulty of proving

results about the Green’s function, which is discussed in the next section.
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Figure 16. Green’s function with source at (2,1)

6.2. The Green’s function. The Green’s function gj centered at the interior node j is defined

as the function which assigns to each interior node p the voltage at p when a unit source is placed
at node j and all boundary voltages are zero. From equation 47, when the boundary voltages are

zero we have uint = C−1Iint, so, for all interior nodes j and p, gj(p) = (C
−1)pj . A result of

Duffin in [2] states that in infinite lattice networks, the value of the Green’s function decreases

as one travels further from the source node. One might wonder if a similar result holds for finite
networks. If the result were true for rectangular networks, as Chaffee and Whitley point out in [1],

this would provide a very simple algorithm for locating unit sources in rectangular networks, since
the x coordinate of the source could be determined by finding the largest boundary current on the
north and south faces, and the y coordinate could be determined by finding the largest boundary

current on the west and east faces. However, this result does not, in general, hold, as is indicated
by figures 16 and 17. We see that in a spiked circular network with center node, 2 circles, 5 rays,

and unit resistances on each edge, the Green’s function centered at node (2,1) takes a larger value
at node (1,2) than at (2,2). Likewise, in a 5x5 rectangular network with unit resistances, the
Green’s function centered at (3,1) takes a larger value at (1,2) than at (1,1). This latter example

illustrates that the algorithm proposed in [1] will not work, since the largest boundary current

on the west and east faces occurs in row 2, despite the fact that the source is located in row

1. Calculation of individual examples demonstrates that similar anomalous behavior persists in

larger rectangular networks and also in circular networks with relatively few rays.
The fact that the Green’s function does not always decrease with distance if the source node

is not at the center of the graph should not be completely surprising. Indeed, in the continuous
case, the level sets for the Green’s function on the unit disk with source at some point z 6= 0
are circles centered at a point distinct from z (specifically, the level sets are the images of circles

centered at the origin under the Mobius transformation which takes 0 to z and maps the disk

onto itself). Consequently, there will exist points w1 and w2 such that |z − w1| > |z − w2| but
gz(w1) > gz(w2). Certain propositions about the behavior of the Green’s function which would

be expected in analogy with the continuous case do appear to hold true based on examination of
certain representative cases, although we have been unable to prove any of them. We list some of

them among the following conjectures.
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Figure 17. Green’s function with source at (3,1)

Conjecture 1. In a rectangular network, the restriction of the Green’s function with source at p
to either of the two lines which pass through p decreases as distance from p increases. Likewise,

in a circular network, the restriction of the Green’s function with source at p to either the circle
passing through p or the ray passing through p decreases as distance from p increases.

Conjecture 2. In a rectangular network, the Green’s function gp with source at p has the
property that the difference between the values of gp at successive nodes on either of the lines

passing through p decreases as distance from p increases.

Conjecture 3. In a rectangular network with 2n− 1 columns, if p is a node on the nth column,
the maximum of the restriction of gp to any row of the network occurs on the nth column (i.e.,
gp has a “ridge” on the nth column).

Conjecture 4. In a (2n-1)x(2n-1) square network, with center node p = (n, n), the restriction
of gp to any square with center p takes its minima on the corners of the square and its maxima

on the midpoints of the sides of the square, and has no local extrema elsewhere. In a triangular
network with concentric hexagons, such as that in figure 15, with center node p, the restriction

of gp to one of the hexagons centered at p takes its minima at the corners of the hexagons and

its maxima at the nodes nearest the midpoints of each of the sides, and has no local extrema

elsewhere.
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