
USING NETWORK AMALGAMATION

AND SEPARATION TO SOLVE THE

INVERSE PROBLEM

Ryan K. Card 1 Brandon I. Muranaka 2

June 18, 2003

1University of Washington Seattle
2University of California Davis

Contents

1 Introduction and Notation 4

1.1 Forward Problem . 4
1.2 Connections . 5
1.3 New Notation . 5

2 Amalgamating Networks 7

2.1 Amalgamating Networks . 7
2.2 Identifying Boundary Nodes in the Same Network 11
2.3 Modified Network . 12

3 Separating Two Networks 15

3.1 Shell Graph and Inner Graph Separation 15
3.2 Amalgamating Networks With Negative Conductances 18

3.2.1 Spike Removal . 19
3.2.2 Boundary to Boundary Edge Removal 20

3.3 Separation Across Boundary Nodes 21
3.4 Separation Across One Interior Node 24

4 Three Examples 28

4.1 The Towers of Hanoi Networks 28
4.1.1 Calculating the Boundary Conductances 29
4.1.2 The Recursive Step . 37
4.1.3 Calculations and Results 38

4.2 Rectangular Networks . 39
4.2.1 Base cases . 40
4.2.2 Spiked case . 42
4.2.3 Square case . 44
4.2.4 Summary . 46
4.2.5 Results and Errors . 47

1

CONTENTS 2

4.3 The Paper Doll Networks . 47

5 Conclusion 51

A Appendix 53

A.1 Derivation of Formulae . 53
A.1.1 The Towers of Hanoi Network 53
A.1.2 The Rectangular Network 59

A.2 Matlab Code . 59
A.2.1 Tower Code . 59
A.2.2 Rectangular Code . 69

ABSTRACT 3

Abstract In this paper we consider the use of network amalgamation
and separation to solve the inverse problem for networks. The amalgamation
process can be used in some cases to determine the recoverability of some
networks. The separation of networks into simpler networks has applications
in the recovery of some networks including; the rectangular, Tower of Hanoi,
and paper doll networks. In general, the use of network amalgamation and
separation is to simplify the recovery process and provide insight in the
recoverability of some networks.

A mathematician is a machine for turning coffee into theorems.

-Paul Erdös

Figure 1 The Golden Spiral

Chapter 1

Introduction and Notation

This chapter describes the forward problem for discrete networks and intro-
duces new notation that will be used in this paper. This chapter will also
briefly describe the inverse problem and how it will be solved.

For notation denote a graph G to have vertices V and edges E, written
G = (V,E). Also, denote the interior nodes of G to be int V and the
boundary nodes of G to be ∂V . For the response matrix of a graph G the
notation Λ and for the Kirchhoff matrix the notation K are used. Given an
edge eij denote the conductance of this edge to be γij . For a network with
conductances γ and a graph G the network is denoted by Γ = (G, γ).

1.1 Forward Problem

Suppose that Γ = (G, γ) is a network with graph G and Kirchhoff matrix
K. Let ∂V be the set of boundary nodes with indices H = {1, 2..., l} and
let int V be the set of interior nodes with indices I = {l+1, ..., n}. Now, let

K =

(

A B
BT C

)

be an n × n positive semidefinite matrix, where A is l × l. To find the
Response matrix Λ of the network Γ we take the Schur Complement of K
with repsect to C. Thus,

Λ = A−B(C)−1BT

is the Response matrix for the network Γ.

4

CHAPTER 1. INTRODUCTION AND NOTATION 5

The Inverse Problem
The inverse problem can be paraphrased as: Given the graph G and its
response matrix Λ can one calculate the Kirchhoff matrix K? This paper
describes a new techniques for constructing new networks from two or more
known networks, and for solving the inverse problem using a recursive ”layer
stripping” process.

1.2 Connections

Connections through graphs play an important role in the amalgamation
and separation of graphs. It is therefore important to include some brief
background about connections from the book by Curtis and Morrow (chapter
2, pp.12-13) [1].

Let P = (p1, . . . , pk) and Q = (q1, . . . , qk) be two sequences of boundary
nodes of a graph, τ be a permutation of (1, . . . , k), and α1, . . . , αk be k
disjoint paths. The paths αi are such that for each i, αi starts at pi and
ends at qτ(i) and passes through no other boundary nodes. When such paths
occuur it is said that there is a connection betweek P and Q.

This concept of connection has an impact on the response matrix and
the subdeterminants when certain connections are broken.

1.3 New Notation

For this paper several new definitions are introduced to simplify the calcu-
lations and the description of the processes.

Definition 1.1 Suppose G = (E, V) is a graph with edges E and vertices,
or nodes, V . The shell edges of the graph, denoted SE, is the set of edges
epq such that

p ∈ ∂V or q ∈ ∂V.

Note that SE ⊆ E.

Definition 1.2 The degree function, dG : V −→ N, maps a node to the
number of edges touching that node in the graph G.

Definition 1.3 The inner graph of G = (E, V) is defined to be:

I(G) = (E − SE , int V) = (E ′, V ′)

CHAPTER 1. INTRODUCTION AND NOTATION 6

The boundary of the inner graph ∂V ′ is the set of vertices p such that
dI(G)(p) < dG(p), that is the number of edges touching p in G is greater
than the number of edges touching p in I(G).

Definition 1.4 The shell graph of a graph G = (E, V) with inner graph
I(G) = (E′, V ′), denoted S(G) is defined as:

S(G) = (SE , ∂V ∪ ∂V ′).

The conductances of the shell edges will be called the shell conductances
of the graph G. The conductances of the inner graph are called the inner
conductances.

Chapter 2

Amalgamating Networks

2.1 Amalgamating Networks

Suppose that there are two networks with known response matrices. This
section will describe a method to amalgamate two networks through n
boundary nodes, and obtain the corresponding response matrix for the new
network.

Let Γ1 = (G1, γ1) and Γ2 = (G2, γ2) be two networks with known re-
sponse matrices Λ1 and Λ2, respectively. Let L1 be the set of boundary
nodes to be connected in G1, and L2 to be the set of boundary nodes to be
connected in G2. Also let H be the set of boundary nodes not to be con-
nected in G1, and J be the set of boundary nodes not to be connected in G2.

The set of n pairs of boundary nodes to be identified is:

L = {(li, l
′
i) : li ∈ L1, l

′
i ∈ L2}.

By ordering the boundary nodes so that H precedes L1 and J precedes
L2, response matrices can be written in this form:

Λ1 =

(

A1 B1

BT
1 C1

)

and Λ2 =

(

A2 B2

BT
2 C2

)

.

Let G? be the graph with pairs of boundary nodes L identified in the
combined graphs of G1 and G2.

After identifying the boundary nodes in the pairs L, the corresponding

7

CHAPTER 2. AMALGAMATING NETWORKS 8

r r r

r r r

r

r

r

r

r

r

G1

h7 h8 h9

h3 h2 h1

h4

h5

h6

l3

l2

l1

H

<

<

<

>

>

>

r r r

r r r

r

r

r

r

r

r

G2

j1 j2 j3

j9 j8 j7

l′3

l′2

l′1

j6

j5

j4

LL1 L2 J

Figure 2.1 Amalgamating Networks

response matrix is:

Λ? =





A1 0 B1

0 A2 B2

BT
1 BT

2 C1 + C2



 .

Where boundary nodes are ordered H first, J next, and L last.

Since the graphs were combined only through boundary nodes, there’s
no connection between H and J , hence the blocks of zeros in the above
matrix.

To internalize the boundary nodes just connected, take the Schur com-
plement of Λ? with respect to the block C1 + C2:

Λ = Λ?/(C1 + C2)

=

(

A1 0
0 A2

)

−

(

B1

B2

)

(C1 + C2)
−1 (BT

1 BT
2

)

CHAPTER 2. AMALGAMATING NETWORKS 9

r r r

r r r

r

r

r

r

r

r

r

r

r

r r r

r r r

G

G1 G2

h7 h8 h9

h3 h2 h1

h4

h5

h6

l3

l2

l1

H

j1 j2 j3

j9 j8 j7

j6

j5

j4

L J

Figure 2.2 Amalgamated Network

Definition 2.3 The response matrix for the combined network is denoted:

Λ1 1 Λ2

This is called Λ1 amalgamated to Λ2 through L. The set of boundary
nodes to be identified, L, must be made clear from the context.

Proposition 2.4 (Limitation of Connections Through Amalgamated
Network) Let Γ1 = (G1, γ1) and Γ2 = (G2, γ2) be two networks with known
response matrices Λ1 and Λ2, respectively. Let L1 be the set of boundary
nodes to be identified in G1, and L2 to be the set of boundary nodes to be
identified in G2. The pairs of boundary nodes to be identified is L. Also let
H be the set of boundary nodes not to be connected in G1, and J be the set
of boundary nodes not to be connected in G2.

Suppose

P = (p1, p2, . . . , pn+1) such that pi ∈ H

and
Q = (q1, q2, . . . , qn+1) such that qi ∈ J

then
det(Λ(P ;Q)) = 0.

Proof: The graphs G1 and G2 were adjoined through the pairs L, so
any connection from H to J must pass through at least one of the nodes in

CHAPTER 2. AMALGAMATING NETWORKS 10

L. Therefore, at least a pair in any set of n + 1 paths from H to J have a
common vertex in L. There is no connection in (P ;Q) because the paths can
not be disjoint. No connection implies det(Λ(P ;Q)) = 0 (for more details
refer [1]). ¥

G1

@@

@@

@@

¡¡

¡¡

¡¡

@@

@@

@@

¡¡

¡¡

¡¡

@@¡¡
HHH

r r r r

r r r r

r r r r

r r r r

r r r r

r r r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r r

r

r

r

p1

p2

p3

p4

l1

l2

l3

G2

@@

@@

@@

¡¡

¡¡

¡¡

@@

@@

@@

¡¡

¡¡

¡¡

¡¡@@
©©©

q1

q2

q3

q4

Figure 2.5 Limitation of Connections Through Amalgamated Network

Theorem 2.6 (Circular Planarity of the Amalgamated Network)
Let G1 and G2 be circular planar graphs with Λ1 and Λ2 as their response
matrices respectively. If these networks were amalgamated through consecu-
tive node pairs L, then the resulting graph G with response matrix Λ1 1 Λ2

will be a circular planar network.

Proof: Circular planar graphs are by definition a graph that can be
drawn so that all boundary node could lie on a closed curve on a plane that
contains the rest of the graph. Set up G1 and G2 as it appears in the Fig-
ure 2.7a. All boundary nodes named li and l

′
i are the consecutive nodes to be

connected. Notice that even if consecutive nodes does not line up between
G1 and G2 (i.e. both ordered clockwise or counter-clockwise), one of the
graphs can be flipped over so it does. Now amalgamate networks with G1

and G2 through {(li, l
′
i)} as it appears in Figure 2.7b. Since all li nodes are

interiorized, resulting graph has all boundary nodes lying on a closed curve
that contains the rest of the graph. Therefore, resulting graph is a circular
planar network. ¥

CHAPTER 2. AMALGAMATING NETWORKS 11

@
@

@
@@

¡
¡
¡
¡¡

¡
¡
¡
¡¡

@
@

@
@@

l4 l′4

l3 l′3

l2 l′2

l1 l′1

r

r

r

r

r

r

r

r

< >

< >

< >

< >

r r

r r

r r

r r
h1 j1

h2 j2

h3 j3

h4 j4

G1 G2H J

@
@

@

¡
¡
¡ ¡¡@@

¡¡ @@ ¡
¡
¡

@
@

@

r r

r r

r r

r r

r

r

r

r

h1 j1

h2 j2

h3 j3

h4 j4

l4

l3

l2

l1

G1 G2 JH

(a) (b)

Figure 2.7 Circular Planarity of the Amalgamated Network

This theorem describes a sufficient condition for the amalgamated net-
work to be a circular planar network.

2.2 Identifying Boundary Nodes in the Same Net-

work

Let Λ be the response matrix for the network Γ = (G, γ). This section
describes a procedure to modify Λ so that it would correspond to a new
network, Γ′, with two boundary nodes in G identified together.

If l1 and l2 are the nodes to be identified, order these nodes last so that
the response matrix can be written in this form:

Λ =















λ1,1 λ1,2 . . . λ1,l1 λ1,l2

λ2,1 λ2,2 . . . λ2,l1 λ2,l2
...

...
. . .

...
...

λl1,1 λl1,2 . . . λl1,l1 λl1,l2
λl2,1 λl2,2 . . . λl2,l1 λl2,l2















The net current through the identified node would be the sum of the

CHAPTER 2. AMALGAMATING NETWORKS 12

current through the nodes l1 and l2, so the response matrix for the modified
network is:

Λ? =











λ1,1 λ1,2 . . . λ1,l1 + λ1,l2

λ2,1 λ2,2 . . . λ2,l1 + λ2,l2
...

...
. . .

...
λl1,1 + λl2,1 λl1,2 + λl2,2 . . . λl1,l1 + 2λl1,l2 + λl2,l2











2.3 Modified Network

This section is about some of the direct applications of amalgamating net-
works and identifying boundary nodes to analyze the recoverability of net-
works.

Definition 2.8 A series of amalgamations, identifying boundary nodes, and
interiorizing boundary nodes is called modification on networks. If modifi-
cationM is operated on networks with response matrices Λ1,Λ2, . . . ,Λn then
the response matrix of the resulting network is denoted M(Λ1,Λ2, . . . ,Λn).

Theorem 2.9 (Recoverability of Modified Networks) Let M be
a modification operated on networks with graphs G1, G2, . . . , Gn and re-
sponse matrices Λ1,Λ2, . . . ,Λn, respectively. Let G be the graph of the
modified network. If G is a recoverable graph given the response matrix,
M(Λ1,Λ2, . . . ,Λn), then all of the graphs Gi involved in the modification M
are recoverable given their response matrices, Λi.

Proof: Given a graph Gi, construct a set of graphs

A = {G1, . . . , Gi−1, Gi+1, . . . Gn}

so that the modification M operated on networks with the graphs A and Gi

will result in a network with the graphG. Then letK1, . . . ,Ki−1,Ki+1, . . .Kn

be the Kirchhoff matrices for the graphs A so that all couductances for the
edges are 1. Solve for the response matrix Λ1, . . . ,Λi−1,Λi+1, . . . ,Λn from
the Kirchhoff matrices. Recover the Kirchhoff matrix K for the graph G
using response matrix M(Λ1,Λ2, . . . ,Λn). Conductances for edges in Gi are

CHAPTER 2. AMALGAMATING NETWORKS 13

all contained in K. ¥

Example 2.10 Suppose G1 is the graph of Figure 2.11a such that all named
verteces are boundary nodes. It is a non-circular planar network, so the
recoverability of this network is not obvious at first. But identifying nodes
l5 and l

?
5 and amalgamating a network with graphG2 of Figure 2.11b through

nodes L = {(li, l
′
i)} will result in well-studied rectangular network, which is

known to be recoverable (see section 4.1.3). Therefore, G1 is a recoverable
given its response matrix by Recoverability of Modified Networks.

G1 G2

r r r

r r r r r

r r r r r r

r

r r r r r

r r r r r r

r r r r

v1 v2 v3 v4

v5

v6

v7

v10v11v12

v13

v14

v16

l1 l2 l3

l4 l5

l?5
l6 l7

r r r r

r r

r

r r

r

v15 l′1 l′2 l′3

l′4 l′5

l′6
l′7 v8

v9

(a) (b)

Figure 2.11 Almost Rectangular Network

Note that amalgamations and identifying nodes can be done only through
boundary nodes, not interior nodes. There are many networks that may look
like it can be modified into rectangular network, when it can not be.

Corollary 2.12 If graph G with response matrix Λ is not recoverable, then
for any modification M involving this network will result in a irrecoverable
network.

Proof: Assume the resulting network from modification M with graph
G′ is recoverable. Then by Recoverability of Modified Networks, graph

CHAPTER 2. AMALGAMATING NETWORKS 14

G with response matrix Λ is also recoverable. A contradiction is derived.
Therefore, graph G can not be recoverable. ¥

Example 2.13 Suppose G1 is the graph of Figure 2.14a so that all of the
nodes are indicated with dots. Boundary nodes of G are those indexed from
1 through 6. Notice that G2 of Figure 2.14b is completely contained in G1.
In fact, identifying correct nodes between two of the graph G2 and a piece of
conductor is a modification that results a network with graph G1. Since G2

is a circular planar graph, methods of medial graphs can be applied, and can
be shown to be not recoverable [1]. Since a network with G1 can be thought
of as a modified network involving graph G2, by the above corollary, network
with graph G1 is not recoverable.

G1

©©
©©

©©
©©

©©
©©

©©
©©

©©
©©

©©
©©

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

HH
HH

r

r

r

r

r

r

r

rv1

v2

v3

v7

v8

v4

v5

v6

G2

©©
©©

©©
©©

©©
©©

HH
HH

HH
HH

HH
HH

v′1

v′2

v′4

v′5

v′7

r

r

r

r

r

(a) (b)

Figure 2.14 An Irrecoverable Network

As previous two examples have shown, modifying networks can help
analyze graphs that are not circular planar by simplifying the problem.
Simplifying the problem into a circular planar one is often useful because
the theory involving circular planar networks is much more developed. In
general, it helps to know large recoverable networks and small irrecoverable
networks.

Chapter 3

Separating Two Networks

For separating two networks first recall the amalgamation. Suppose two
networks Γ1 and Γ2 have the following response matrices:

Λ1 =

(

A1 B1

BT
1 C1

)

Λ2 =

(

A2 B2

BT
2 C2

)

Amalgamate the two networks to get the following:

Λ? =





A1 0 B1

0 A2 B2

BT
1 BT

2 C1 + C2





Λ = Λ1 1 Λ2 = A−B(C−1)BT

where,

A =

(

A1 0
0 A2

)

B =

(

B1

B2

)

C = C1 + C2.

The goal in separating two networks is to start with Λ and Λ1 and recover
Λ2. However, the first question to ask is when can this process be done. One
such way is Shell Graph Removal.

3.1 Shell Graph and Inner Graph Separation

Suppose that G = (E, V) is a graph with response matrix Λ. Also, suppose
that G has the shell graph, S(G), and inner graph, I(G). The goal of this

15

CHAPTER 3. SEPARATING TWO NETWORKS 16

G =

S(G)

∪ I(G)

Figure 3.1 Schematic of Shell Graph and Inner Graph Relationship

network separation is to calculate the response matrix for the shell graph,
remove the the shell graph, and recover the response matrix for the inner
graph. First, it is important to state and prove a theorem about the shell
of a graph.

Theorem 3.2 (Shell-to-Kirchhoff Theorem) Suppose G is a graph
and S(G) is the shell graph. Then the response matrix for S(G) is the Kirch-
hoff matrix for S(G).

Proof: The theorem follows directly from the definition of the shell of a
graph. Suppose G is a graph and S(G) is its shell graph. From the defini-
tion of shell, all of the nodes of S(G) are boundary nodes of S(G). Therefore,
from the defintion of the Kirchhoff matrix and the response matrix the two
matrices are equal. ¥

With this theorem it is possible to immediately get the response matrix
for a shell graph from the Kirchhoff matrix. The key assumption to make
here is that the Kirchhoff matrix for the shell graph is easy to recover from
response matrix of the original graph.

With this assumption we can begin to state when the shell graph and
inner graph separation process if valid. Suppose G = (E, V) and its shell
graph, S(G), are given. Also, suppose that Λ, the response matrix of G, is
given and a calculation can be made to determine the conductances of S(G).

CHAPTER 3. SEPARATING TWO NETWORKS 17

By the Shell-to-Kirchhoff Theorem the Kirchhoff matrix for S(G) is Λ1, the
response matrix for S(G). Since every node of S(G) is a boundary node it
is possible to amalgamate S(G) and I(G) to get G.

Let n be the number of boundary nodes of S(G) and j be the number of
boundary nodes of I(G). The boundary nodes of S(G) need to be reordered
such that the first nodes H = (1, . . . , n − j + 1) are the nodes not being
amalgamated with the boundary nodes of I(G) and the remaining nodes
J = (n − j, . . . , n) are the nodes being amalgamated. With this reordering
the response matrix for I(G),

Λ1 =

(

A B
BT C

)

Note that dimentions of Λ2 and the block C of Λ1 is both j × j.
Since Λ1 1 Λ2 = Λ the following is true from the amalgamation,

Λ? =

(

A B
BT C + Λ2

)

taking the Schur Complement yields

Λ = A−B(C + Λ2)
−1BT .

The following steps show how to solve for Λ2

B(C + Λ2)
−1BT = A− Λ

BTB(C + Λ2)
−1BTB = BT (A− Λ)B

(C + Λ2)
−1 = (BTB)−1BT (A− Λ)B(BTB)−1

C + Λ2 = [(BTB)−1(BT (A− Λ)B)(BTB)−1]−1.

The following formula is now derived

Λ2 = [(BTB)−1(BT (A− Λ)B)(BTB)−1]−1 − C.

However, this formula is only true when BTB and Λ2 +C are invertible.
The following lemma proves the invertibility of Λ2 + C.

Lemma 3.3 (The Fundamental Lemma of Invertibilty) Suppose G
is a graph with response matrix Λ, Λ2 is the response matrix for I(G), and
the response matrix for S(G) is

Λ1 =

(

A B
BT C

)

then Λ2 + C is an invertible matrix.

CHAPTER 3. SEPARATING TWO NETWORKS 18

Proof: Suppose the hypothesis of the theorem. Let n be the number of
boundary nodes of S(G) and j be the number of boundary nodes of I(G).
Let H = (1, . . . , n − j + 1) be the set of nodes of Λ1 that are not being
amalgamated with Λ2 and let J = (n − j, . . . , n) be the set of boundary
nodes of Λ1 that are amalgamated with Λ2. This implies that Λ2 and C are
both j × j matrices. Note that Λ2 is a semi-diagonally dominant matrix by
definition of a response matrix. Since the diagonal entries of C are the sum
of the off diagonal entries of the corresponding row or column of the matrix
Λ1 and C is a submatrix of Λ1. It follows that the diagonal entries of C will
be larger in absolute values than the sum of the off diagonal entries of C.
Thus, C is a diagonally dominant matrix. Since C is diagonally dominant
and Λ2 is semi-dominant it follows that their sum Λ2+C must be diagonally
dominant. Hence, Λ2 + C is an invertible matrix. ¥

The following theorem states when shell graph and inner graph separa-
tion is possible and provides the general formula previously derived.

Theorem 3.4 (The Shell Stripping Formula) Let G be a graph with
response matrix Λ. Suppose that S(G) has n boundary nodes and an n × n
repsonse matrix

Λ1 =

(

A B
BT C

)

such that H = (1, . . . , n−j+1) is the set of nodes not being amalgamated to
I(G) and J = (n− j, . . . , n) is the set of nodes being amalgamated. Suppose
further that (BTB) is a j × j invertible matrix. Then,

Λ2 = [(BTB)−1(BT (A− Λ)B)(BTB)−1]−1 − C

where Λ2 is the j × j response matrix for I(G).

Proof: The proof for this theorem follows from the above arguement about
the existance of the shell stripping formula. ¥

3.2 Amalgamating Networks With Negative Con-

ductances

This section discusses the another process for separating networks using
amalgamation of networks with negative conductances. At this point, how-
ever, this method only works for very specific cases, namely the spike removal

CHAPTER 3. SEPARATING TWO NETWORKS 19

and boundary to boundary edge removal. More research is required to de-
termine when in general this method will work (see conculsion). Despite
this restriction there are two main advantages in choosing this method. The
first being that only one matrix inverse is taken in the calculation, whereas
in the shell removal process several need to be taken. The second advantage
is that this method can be done in parts, that is one spike or edge can be
removed at a time, or in groups.

3.2.1 Spike Removal

The goal of spike removal is to remove a given number of spikes with known
conductances from a graph to possibly make the graph more recoverable.
For example, it is possible to remove the spikes from a rectangular network
to arrive a network (called to square network). Chapter 4 contains an ex-
ample of how spike removal can be used to recover the conductances of a
rectangular network.

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r r

∨

>

∨

<

G =⇒

v1

v2

v3

v4

v′4 v5

v′5

v8

v7

v6

G′

r

r

r

r

r

r

r

r

r

r

r

r

¡
¡
¡

@
@

@

r r

r r

v1

v2

v3

v4 v5

v8

v7

v6

Figure 3.5 Identifying Boundary Nodes

To begin spike removal, suppose that Γ = (G, γ) is a network with a
given number of spikes with known conductances, or conductances which
can be found and Λ is its response matrix. The first step in spike removal
is to look for the spikes with a common interior node. In Figure 3.5 the
spikes with boundary nodes v4 and v′4 have a common interior node, as do

CHAPTER 3. SEPARATING TWO NETWORKS 20

the spikes with boundary nodes v5, and v
′
5. Using § 2.2, the boundary nodes

v4 and v′4 and v5, and v′5 may be identified into just the nodes v4 and v5.
This creates a new graph, call it G′. By § 2.2, call the response matrix for
G′ Λ′. Also, because all of the conductances of the spikes are known, the
new conductances of the newly identified spikes in G′ are also known.

G′

r

r

r

r

r

r

r

r

r

r

r

r

¡
¡
¡

@
@

@

r r

r r

v1

v2

v3

v4 v5

v8

v7

v6

γ1

γ2

γ3

γ4

γ8

γ7

γ6

γ5

¡
¡
¡

@
@

@

r r

r r

r

r

r

r

r

r

r

r

r

r

r

r

v?1

v?2

v?3

v?4 v?5

v?8

v?7

v?6

−γ1

−γ2

−γ3

−γ4

−γ8

−γ7

−γ6

−γ5

Figure 3.6 Removing the Spikes

The next step in the process is to amgalgamate at each spike in G′, a
graph which consists of only an edge and two boundary nodes. Each of these
graphs must have conductance which is the negative of the conductance of
the spike which they are being amalgamated to. By the Shell-to-Kirchhoff
Theorem, the response matrices for these graphs is their Kirchhoff matrices.
In figure 3.6 node v1 is being amagamated to v?1, the conductance of the
spike is γ1, and the conductance of the graph with v?1 as a boundary node is
−γ1. Once these new graphs are amalgamated to G′ the process is complete
and the new graph is G without any spikes and a new response matrix Λ′′.

3.2.2 Boundary to Boundary Edge Removal

Boundary to boundary edge removal, is in effect just the amalgamaiton of
a graph with negative conductance to the boundary to boundary edge of a
give graph.

Suppose that Γ = (G, γ) is a network with a response matrix Λ. Let p

CHAPTER 3. SEPARATING TWO NETWORKS 21

and q be two boundary nodes with an edge epq between them. Also, let this
edge, epq be the edge that is to be removed and have a conductance ξ.

r r r r r

r r r r r

r

r

r

r

r

r

r

r

r

r

p

q

ξ

r

r

−ξ

q?

p?

Figure 3.7 Boundary to Boundary Edge Removal

To remove the edge, another graph which consists of two boundary nodes
an the edge between them must be amalgamated to the graph G at nodes p
and q. Let this graph be an edge e′ with boundary nodes p? and q?. When
the e′ is amalgamated to G, amalgamate p to p? and q to q?. Figure 3.7
shows G and e′. When the process is complete it is possible to remove
other boundary to boundary edges and arrive at spikes. If the conductances
of these spikes can be found it is possible to remove them using the spike
removal process previously described.

3.3 Separation Across Boundary Nodes

For separation across boundary nodes the goal is to separate a graph at a
set of designated boundary nodes as in Figure 3.8 and recover the response
matrices of its parts. Suppose G is a graph as in Figure 3.8 with response
matrix Λ. Let the set of boundary nodes where the separation is to occur
be (l1, . . . , ln) and let the remaining boundary nodes be (j1, . . . , js) and
(h1, . . . , ht). Call G1 and G2 the two graphs that G will be separated into.
Also, let Λ1 and Λ2 be the response matrices for G1 and G2, respectively.
The goal of the separation is to calculate the entries of Λ1 and Λ2 from Λ.

Since (l1, . . . , ln) are the boundary nodes where G1 and G2 would amal-

CHAPTER 3. SEPARATING TWO NETWORKS 22

G

r

r

r

r

r

ln

ln−1

...

l2

l1

G1 G2

r

r

r

r

r

r

r r r r

j1j2. . .

...

js−1

js

h1 h2 . . .

...

ht−1

ht

Figure 3.8 Separation Across Boundary Nodes

gamate at to get G,

Λ1 =

(

A1 B1

BT
1 C

)

Λ2 =

(

A2 B2

BT
2 D

)

where B1 is s×n, B2 is t×n, A1 is s×s, A2 is t× t, and C and D are n×n.
Also, since (l1, . . . , ln) remain boundary nodes after the amalgamtion the

response matrix for G, Λ is found without taking a Schur Complement and
is written:

Λ =





A1 0 B1

0 A2 B2

BT
1 BT

2 C +D





From Λ the entries for B1, B2, A1, and A2 can be found. The only un-
known remaining entries of Λ1 and Λ2 are C and D. Since Λ is a symmetric
matrix its submatrix, C+D, is also symmetric. Thus, C+D can be written
as:

C +D =











c11 + d11 c12 + d12 . . . c1n + d1n

c12 + d12 c22 + d22 . . . c2n + d2n
...

...
. . .

...
c1n + d1n c2n + d2n . . . cnn + dnn











Since C + D is known, knowing entries of C determines the entries of D.
Since C is symmetric, the only unknowns of C are

c11, c12, . . . , c1n, c22, . . . , c2n, . . . , cnn,

CHAPTER 3. SEPARATING TWO NETWORKS 23

by a simple counting arguement there are
n(n+ 1)

2
unknowns. From the

definition of the response matrix, the values of cii are the negative of the
sum of the rows. Thus,

cii =

s
∑

r=1

bir +
∑

r 6=i

cir

for i = 1 to i = n. Therefore, there are n equations and
n(n+ 1)

2
unknowns.

This leaves
n(n− 1)

2
free variables.

Plugging in arbitary values for the free variables does produce a pair of
networks that amalgamates into the original graph, but seperated graphs
may contain negetive conductors. For example, consider separation along
3 boundary nodes as shown in Figure 3.9a. Say that c12, c13, and c23 are
chosen to be the 3 free variables. The value chosen for c12 effects the con-
ductances of γ?12 and γ′12 (see figure 3.10b), but they always maintain the
relationship γ12 = γ?12 + γ′12. Note that even if γ12 = 0 (there is no conduc-
tor between nodes l1 and l2 in the original graph), γ?12 and γ′12 may still be
nonzero. In this case, they will maintain the relationship γ?

12 = −γ′12.

¡
¡
¡@

@
@

@
@
@¡

¡
¡

r

r

rG1 G2

l3

l2

l1

γ23

γ12

γ13

Figure 3.9 Limitations of Separation Along Boundary Nodes (a)

Negetive conductors has exactly the opposite effect of positive conduc-
tors; they push the current up to nodes with higher voltages instead of nodes

CHAPTER 3. SEPARATING TWO NETWORKS 24

¡
¡
¡@

@
@

@
@
@¡

¡
¡

r

r

r

r

r r

G1 G2

l?3 l′3

l?2 l′2

l?1 l′1

γ?23

γ?12

γ?13

γ′23

γ′12

γ′13

Figure 3.10 Limitations of Separation Along Boundary Nodes (b)

with lower voltages. When calculations are being made around negetive con-
ductors, care should be taken not to use any theorems or results obtained by
the assumption of all conductors having positive values. Finding the correct
range of cij so that both γ?ij and γ

′
ij will take on positive values (perhaps by

a numerical method) can be a topic for further research.

A necessary condition for cij to have both γ?ij and γ′ij positive is that:

If i = j, then 0 ≤ cij ≤ (C +D)ij

and
If i 6= j, then (C +D)ij ≤ cij ≤ 0

but this is not sufficient to gurantee positive conductances.

3.4 Separation Across One Interior Node

This section deals with a theorem about separating a graph into two graphs
at an interior node. Some possible applications are given as pictures in the
end of this section.

Theorem 3.11 (Separation at One Interior Node) Let G be a graph
with response matrix Λ. Suppose that Λ = Λ1 1 Λ2 where Λ1 and Λ2

are response matrices for G1 and G2. Also, suppose that G1 and G2 are

CHAPTER 3. SEPARATING TWO NETWORKS 25

amalgamated to produce G at a single interior node of G called p. Finally,
suppose that when G is separated into G1 and G2 at least one 1-connection
in either G1 or G2 is broken. Then, Λ1 and Λ2 can be recovered from Λ.

Proof: Let p be the interior node of G where the separation takes place.
Let H be the set of boundary nodes of G1 that are boundary nodes of G and
J be the set of boundary nodes of G2 that are boundary nodes of G. Say
that H has m elements and J has n elements. Thus, Λ is a (m+n)×(m+n)
matrix. From the amalgamation of networks and Λ1 1 Λ2 = Λ

Λ? =





A1 0 B1

0 A2 B2

BT
1 BT

2 −
∑m+n

i=1 bi





where

Λ1 =

(

A1 B1

BT
1 −

∑m
i=1 bi

)

and Λ2 =

(

A2 B2

BT
2 −

∑m+n
i=m+1 bi

)

and B1 and B2 are column vectors. Completing the amalgamation process
yields,

Λ = A +
1

∑m+n
i=1 bi

BTB

where B =

(

B1

B2

)

and BT =
(

BT
1 BT

2

)

.

With this relationship between Λ and A1, A2, B, and B
T the following equa-

tions are established:

aτε +
bτ bε

∑m+n
i=1 bi

= λτε for τ, ε ∈ H (3.1)

bτ bξ
∑m+n

i=1 bi
= λτξ for τ ∈ H, ξ ∈ J (3.2)

aξν +
bξbν

∑m+n
i=1 bi

= λξν for ξ, ν ∈ J (3.3)

where aij is the ijth entry of the matrix A, and λij is the ijth entry of Λ.

In equation 3.2 if all λij = 0, then this case can be disregarded because
this means that there is not even a 1-connection between H nodes and J

CHAPTER 3. SEPARATING TWO NETWORKS 26

nodes.

Again, in equation 3.2 suppose that there exist ρ or ζ such that λρζ = 0
then one of the following must be true: (i) bρ = 0, or (ii) bζ = 0. If (i) is
true then λρi = 0 for all i. This implies that aρi = λρi = 0 by equation 3.1.
If (ii) is true then λjζ = 0 for all j. Which implies that ajζ = λjζ = 0 by
equation 3.3.

Now take bi 6= 0 for all 1 ≤ i ≤ m+ n. For fixed ζ, ρ ∈ H and any i ∈ J
bζbi

∑m+n
j=1 bj

= λζi and
bρbi

∑m+n
j=1 bj

= λρi by equation 3.2. Taking the ratio of

the first equality to the second yields the following for fixed ζ, ρ ∈ H and
any i ∈ J :

bζ
bρ

=
λζi
λρi

. (3.4)

Apply the same technique for fixed β, δ ∈ J and any j ∈ H
bjbβ

∑m+n
i=1 bi

= λjβ

and
bjbδ

∑m+n
i=1 bi

= λjδ from equation 3.2. Again, taking the ratios of these two

equalities yields for fixed β, δ ∈ J and any j ∈ H

bδ
bβ

=
λδi
λβi

. (3.5)

Now, suppose that the connection through p that must be broken during
separation is the connection inH between µ and µ?. It follows that, aµµ? = 0
because the connection is broken. From equation 3.1 aµµ? = 0 implies

bµbµ?

∑m+n
i=1 bi

= λµµ? . (3.6)

Now dividing equation 3.6 by equation 3.2 with

σ ∈ J and µ ∈ H
bµbσ

∑m+n
i=1 bi

= λµσ

Yields,

bµ?

bσ
=
λµµ?

λµσ
(3.7)

which will be called the Key Ratio.

CHAPTER 3. SEPARATING TWO NETWORKS 27

The Key Ratio combined with equation 3.4 and 3.5 will give a ratio
between bi and bj . Now, to find any bk, simply start with equation 3.2,
bkbσ

∑m+n
i=1 bi

= λkσ. Using the Key Ratio, all of the terms of the summation

can be put in terms of bσ. Factoring out the bσ and canceling yields

bk
ψσ

= λkσ

where ψσ is an expression composed entirely of known λij . Therefore, bk =
λkσψσ.

Since every bk can be found using equations 3.1 and 3.3 all of the aij can
also be found. Therefore, Λ1 and Λ2 can be recovered. ¥

Chapter 4

Three Examples

These three examples utilize several different aspects of network amalgama-
tion, shell graph removal, network separation, and spike and boundary to
boundary edge removals to recover the Kirchhoff matrix from the response
matrix.

4.1 The Towers of Hanoi Networks

The Tower of Hanoi Networks are defined in the paper by Mike Usher in
terms of lattice points [2]. However, the networks are simple enough to
be defined in terms of their pictures. Figure 4.1 is an example of a tower
network with 8 boundary nodes and Figure 4.2 is an example of a tower
network with 7 boundary nodes. The boundary nodes of the tower networks
are always outer most nodes on the top right and left sides of the graph, in
Figures 4.1 and 4.2 the boundary nodes are labeled vi.

When a shell graph is removed from a Tower of Hanoi Network another
tower of smaller size remains. It is through this property that the recovery
of the Kirchhoff Matrix for a Tower of Hanoi Network is possible. The first
step in this recovery process is to calculate the conductances of the shell
edges of the tower. The next step is to remove the shell graph and calculate
the response matrix for the smaller tower network. Once enough shell graphs
are removed a simple recoverable network remains.

28

CHAPTER 4. THREE EXAMPLES 29

r r r r r r r r

v1

r r r r r r

v2

r r r r

v3

r r

v4 v5

v6

v7

v8

Figure 4.1 8 Boundary Node Even Case

r r r r r r r

v1

r r r r r

v2

r r r

v3

r

v4

v5

v6

v7

Figure 4.2 7 Boundary Node Odd Case

4.1.1 Calculating the Boundary Conductances

The Even Case

Assume that there are an even number of boundary nodes. We first calcu-
late the boundary conductances for the rightside of the boundary and then
the leftside of the boundary.

The Rightside

For the rightside we will calculate the conductances between nodes
n

2
and n.

Boundary Conditions

CHAPTER 4. THREE EXAMPLES 30

r rr r

v1 v9

r rr r

v2 v10

r r r r

v3

v11

r r

v4 v5

v6

v12
v7v13

v8v14

Figure 4.3 Even Shell of the 8 Boundary Node Case

For simplicity let n = 2m. Now, impose currents of zero at boundary nodes
1 through m− 1 and impose the following voltages at all other nodes.

αi =







0 if 1 ≤ i ≤ m
1 if i = m+ 1
unknown if m+ 2 ≤ i ≤ n

Setup and Solve Linear System
By imposing currents of zero at nodes 1 to m − 1 we have the following
equations:

0 =
2m
∑

j=m+1

αjλ1,j

0 =
2m
∑

j=m+1

αjλ2,j

0 =
2m
∑

j=m+1

αjλ3,j

...
...

0 =
2m
∑

j=m+1

αjλ2m,j

In order to solve this system, let

CHAPTER 4. THREE EXAMPLES 31

A =











λ1,m+2 λ1,m+3 . . . λ1,2m

λ2,m+2 λ2,m+3 . . . λ2,2m
...

...
. . .

...
λm−1,m+2 λm−1,m+3 . . . λm−1,2m











S =











−λ1,m+1

−λ2,m+1
...

−λm−1,m+1











X =







αm+2
...

α2m







We now have the following:

AX = S

thus,

X = A−1S =







αm+2
...

α2m







We now have the values for αi for i = 1 to i = 2m.

Calculate γij on the Shell
First we need to establish a vector of currents, call it P.

P = Λ







α1
...

α2m






=













∑2m
j=1 αjλ1,j

∑2m
j=1 αjλ2,j

...
∑2m

j=1 αjλ2m,j













Note that the entry Pi is the current at node i due to the voltages αj .
Using this vector P we can calculate the values of the conductance γij using
the following formulae 1.

γi,i+2m−1 =

∑i
j=mPj

αi
γi+1,i+2m−1 =

∑i
j=mPj

−αi+1

for i = m to i = 2m− 1.

1see appendix for details of derivation

CHAPTER 4. THREE EXAMPLES 32

The Leftside

For the leftside we will calculate the conductances for the remaining bound-

ary edges between nodes 1 and
n

2
.

Boundary Conditions
Note n = 2m. Again, impose currents of zero at boundary nodes m + 2
through 2m and impose the following voltages at all other nodes.

αi =







unknown if 1 ≤ i ≤ m− 1
1 if i = m
0 if m+ 1 ≤ i ≤ 2m

Setup and Solve Linear System
By imposing currents of zero at nodes m + 2 to 2m we have the following
equations:

0 =
m
∑

j=1

αjλm+2,j

0 =
m
∑

j=1

αjλm+3,j

0 =
m
∑

j=1

αjλm+4,j

...
...

0 =
m
∑

j=1

αjλ2m,j

In order to solve this system, let

A =











λm+2,1 λm+2,2 . . . λm+2,m−1

λm+3,1 λm+3,2 . . . λm+3,m−1
...

...
. . .

...
λ2m,1 λ2m,2 . . . λ2m,m−1











S =











−λm+2,m

−λm+3,m
...

−λ2m,m











X =







α1
...

αm−1







CHAPTER 4. THREE EXAMPLES 33

We now have the following:

AX = S

thus,

X = A−1S =







α1
...

αm−1







We now have the values for αi for i = 1 to i = 2m.

Calculate γij on the Shell
First, we need to establish a vector of currents, call it P.

P = Λ







α1
...

α2m






=













∑2m
j=1 αjλ1,j

∑2m
j=1 αjλ2,j

...
∑2m

j=1 αjλ2m,j













Note that the entry Pi is the current at node i due to the voltages αj .
Using the vector P we can calculate the values of the conductance γij using
the following formulae 2.

γi,i+2m =

∑i
j=1Pj

αi
γi+1,i+2m =

∑i
j=1Pj

−αi+1

for i = 1 to i = m− 1.

The Odd Case

Suppose there are an odd number of boudary nodes. We first calculate the
rightside conductances and then the leftside conductances.

The Rightside

For the rightside we calculate the conductances between nodes
n+ 3

2
and

n.

Boundary Conditions
Let n = 2l − 1. Now, impose currents of zero at boundary nodes l + 1
through 2l − 1 and impose the following voltages at all other nodes.

2see appendix for details of derivation

CHAPTER 4. THREE EXAMPLES 34

r rr r

v1 v8

r rr r

v2 v9

r r r

v3

r

v4

v10

v5

v6v11

v7v12

Figure 4.4 Odd Shell of 7 Boundary Node Case

αi =







0 if 1 ≤ i ≤ l − 1
1 if i = l
unknown if l + 1 ≤ i ≤ 2l − 1

Setup and Solve Linear System
By imposing currents of zero at nodes l + 1 to 2l − 1 we have the following
equations:

0 =
2l−1
∑

j=l+1

αjλ1,j

0 =

2l−1
∑

j=l+1

αjλ2,j

0 =
2l−1
∑

j=l+1

αjλ3,j

...
...

0 =
2l−1
∑

j=l+1

αjλl−1,j

CHAPTER 4. THREE EXAMPLES 35

In order to solve the system, let

A =











λ1,l+1 λ1,l+2 . . . λ1,2l−1

λ2,l+1 λ2,l+2 . . . λ2,2l−1
...

...
. . .

...
λl−1,l+1 λl−1,l+2 . . . λl−1,2l−1











S =











−λ1,l

−λ2,l
...

−λl−1,l











X =







αl+1
...

α2l−1







We now have the following:

AX = S

thus,

X = A−1S =







αl+1
...

α2l−1







Thus, we now have the values for αi for i = 1 to i = 2l − 1.

Calculate γij on the Shell
First we need to establish a vector of currents, call it P.

P = Λ







α1
...

α2l−1






=













∑2l−1
j=1 αjλ1,j

∑2l−1
j=1 αjλ2,j

...
∑2l−1

j=1 αjλ2l−1,j













Note that the entry Pi is the current at node i due to the voltages αj .
Using this vector P we can calculate the values of the conductance γij using
the following formulae 3.

γi,i+2l−2 =

∑i
j=lPj

αi
γi+1,i+2l−2 =

∑i
j=lPj

−αi+1

3see appendix for details of derivation

CHAPTER 4. THREE EXAMPLES 36

for i = l to i = 2l − 2.

The Leftside

For the leftside we calculate the conductances between nodes 1 and
n− 1

2
.

Boundary Conditions
Note that n = 2l− 1. Impose currents of zero at boundary nodes 1 through
l − 1 and impose the following voltages at all other nodes.

αi =







unknown if 1 ≤ i ≤ l − 1
1 if i = l
0 if l + 1 ≤ i ≤ 2l − 1

Setup and Solve Linear System
By imposing currents of zero at nodes 1 to l − 1 we have the following
equations:

0 =
l−1
∑

j=1

αjλl+1,j

0 =
l−1
∑

j=1

αjλl+2,j

0 =
l−1
∑

j=1

αjλl+3,j

...
...

0 =
l−1
∑

j=1

αjλ2l−1,j

In order to solve the system, let

A =











λl+1,1 λl+1,2 . . . λl+1,l−1

λl+2,1 λl+2,2 . . . λl+2,l−1
...

...
. . .

...
λ2l−1,1 λ2l−1,2 . . . λ2l−1,l−1











CHAPTER 4. THREE EXAMPLES 37

S =











−λ1,l

−λ2,l
...

−λl−1,l











X =







αl+1
...

α2l−1







We now have the following:

AX = S

thus,

X = A−1S =







αl+1
...

α2l−1







Thus, we now have the values for αi for i = 1 to i = 2l − 1.

Calculate γij on the Shell
First we need to establish a vector of currents, call it P.

P = Λ







α1
...

α2l−1






=













∑2l−1
j=1 αjλ1,j

∑2l−1
j=1 αjλ2,j

...
∑2l−1

j=1 αjλ2l−1,j













Note that the entry Pi is the current at node i due to the voltages αj .
Using the vector P we can calculate the values of the conductance γij using
the following formulae 4.

γi,i+2l−1 =

∑i
j=1Pj

αi
γi+1,i+2l−1 =

∑i
j=1Pj

−αi+1

for i = 1 to i = l − 1.

4.1.2 The Recursive Step

The first step in the recursive recovery process is to calculate the conduc-
tances of the shell edges of the tower network. Once this is done the values

4see appendix for details of derivation

CHAPTER 4. THREE EXAMPLES 38

of these conductances can be stored into a matrix which will eventually be-
come the Kirchhoff matrix. Since the conductances of the shell edges will
create the Kirchhoff matrix for the shell graph of the tower, applying the
Shell-to-Kirchhoff Theorem yields the response matrix for the shell graph.

From the shell graph removal section if Λ is the response matrix for
the original tower and Λ1 is the shell graph response matrix, then Λ2, the
response matrix for the inner graph of the original tower, can be found. This
is accomplished with the Shell Stripping Formula.

Since the inner graph of a Tower of Hanoi Network is another Tower of
Hanoi when the shell graph is removed the process can be repeated until
the base are reached. Figure 4.5 (a) is the base case for the even towers and
Figure 4.5 (b) is the base case for the odd towers.

(a) (b)

r r r r r

r

v1 v2

v3

Figure 4.5 Even and Odd Base Cases

In the even base case every node is a boundary node, so the Kirchhoff
Matrix is the response matrix. In the odd base case the boundary nodes are
nodes v1, v2, and v3 in Figure 4.5 (b). By imposing a current and voltage
of 0 at node v1 and by imposing a voltage of 1 at node v3 it is possible
to calculate the potential at node v2. Once all of these conditions are met
it is possible to calcuate the conductance at two of the three edges. To
calculate the conductance of the third edge the impositions are reversed and
the remaining conductance is read off.

4.1.3 Calculations and Results

MATLAB 5 was used to test the shell graph removal and recursive processes
for the calculation of the Kirchhoff matrix for a Tower of Hanoi Network
with various numbers of boundary nodes. According to the results with each
increase in size approximately one decimal of accuracy is lost to rounding

5see appendix for MATLAB code

CHAPTER 4. THREE EXAMPLES 39

error. The error was measured at the by summing the absolutle values of
the entries of the last column of the difference matrix between the original
Kirchhoff Matrix and the calculated Kirchhoff Matrix. The output is listed
as follows:

1 0

2 0

3 0

4 0

5 0.00000000000000

6 0.00000000000001

7 0.00000000000009

8 0.00000000000016

9 0.00000000000109

10 0.00000000000239

11 0.00000000004420

12 0.00000000011421

13 0.00000000102036

14 0.00000000518289

15 0.00000001792795

16 0.00000042297024

17 0.00000058812932

18 0.00000528858973

19 0.00002451756083

20 0.00042311265449

21 0.00296880884973

22 0.00023047406484

23 0.03022278375924

24 1.35906795181771

The first column is the size of the nodes and the second column is the error.

4.2 Rectangular Networks

m by n rectangular networks are grid-patterned networks with outer nodes
designated as boundary nodes (see Figure 4.6). There are two cases: a spiked
case and a square case. Spiked case does not have edges connecting adjacent
boundary nodes, and m and n are the number of the boundary nodes on

CHAPTER 4. THREE EXAMPLES 40

the sides. Adjacent boundary nodes in the square cases are connected with
an edge, and m and n refers to the number of edges on the sides.

Spiked case

r r r

r r r r r

r r r r r

r r r r r

r r r

v1 v2 v3

v4

v5

v6

v9 v8 v7

v10

v11

v12

Square case

r r r r

r r r r

r r r r

r r r r

v1 v2 v3 v4

v5

v6

v10 v9 v8 v7

v12

v11

Figure 4.6 3 by 3 rectangular network

Note that any m by n rectangular network where m 6= n can be modified
into either m by m or n by n rectangular network, whichever one that is the
larger of the two by simply amalgamting an appropriate strip of network
with known conductance (see § 2.3). Therefore, without loss of generality,
this section provides a method to solve for the Kirchhoff matrix K of the
general n by n rectangular network with response matrix Λ.

4.2.1 Base cases

This section will describe how to get the conductances from the Response
matrices for 1 by 1 spiked rectangular network (see Figure 4.7a) and 1 by 1
square rectangular network (see Figure 4.7b).

For 1 by 1 spiked case, let Λ = (λij) be the response matrix for the
network with the graph of Figure 4.7a. Impose voltage of 1 at node v1 and
voltages of 0 at nodes v3 and v4. To find voltage α to place on v2 so that

CHAPTER 4. THREE EXAMPLES 41

Spiked case

r r r

r

r

r

v1

v2

v3

v4
v5

Square case

r r

r r

v1 v2

v4 v3

Figure 4.7 Base cases

the current at node v3 will be 0, solve the equation

αλ32 + λ31 = 0

for α. So

α = −
λ31

λ32

The current flowing out of node v1 is

I = ∆V γ15

= (1− 0)γ15

= γ15

= αλ12 + λ11

= −
λ31

λ32
λ12 + λ11

Therefore, γ15 = −
λ31

λ32
λ12 + λ11. By symmetry, other conductances can be

found in a similar fashion.

No calculations are needed for 1 by 1 square case. Since all of the nodes
in the graph are boundary nodes, response matrix is the same thing as the
Kirchhoff matrix. Conductances are the entries of the Kirchhoff matrix by
definition.

CHAPTER 4. THREE EXAMPLES 42

4.2.2 Spiked case

This section will describe how to solve for the conductances for the shell
edges of n by n spiked case rectangular network and reduce the problem
into n− 1 by n− 1 square case rectangular network.

Let Λ = (λij) be the response matrix for n by n spiked case rectangu-
lar network. Consider a boundary node p on the northern face (let it be
the kth node counted from the eastern face). Let ξ be the conductance of
the spike edge by p. Let W = (w1, w2, . . . , wk) be the first k indexes of
boundary nodes on the western face counted from the northern face. Let
E = (e1, e2, . . . , ek) be the first k indexes of boundary nodes on the eastern
face counted from the northern face. Let voltage at node p be 1, and impose
0 voltages at all other boundary nodes in northern, western, and sounthern
faces. Also let currents at all boundary nodes in the western wall be 0. Volt-
ages of E are uniquely determined from these conditions (see Figure 4.8),
call it vector ~α = (α1, α2, . . . , αk). Notice that all other voltages of eastern
face is already determined to be 0.

Since all of the currents at W is set to be 0,

Λ(W ;E)~α+ Λ(W ; p) = 0

Therefore,
~α = −Λ(W ;E)−1Λ(W ; p)

The current flowing out of node p is

I = ∆V ξ

= (1− 0)ξ

= ξ

= Λ(p;E)~α+ λpp

= −Λ(p;E)Λ(W ;E)−1Λ(W ; p) + λpp

Therefore, ξ = −Λ(p;E)Λ(W ;E)−1Λ(W ; p) + λpp. Since node p is arbitary
(and the definition of northern face can be rotated), conductances for other
spikes can be solved in a similar fashion. Let Λout be the response matrix
for the shell network.

To obtain the response matrix Λin for n − 1 by n − 1 square case rect-
angular network, one of the two methods can be used:

CHAPTER 4. THREE EXAMPLES 43

Spiked case

r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r r r

r r r r

0 0
p

ξ

1 0

e1

e2

α1

α2

0

0

0 0 0 0

w1

w2

(0)0

(0)0

(0)0

(0)0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∨ ∨

∧

> >

<

Figure 4.8 Solving for conductance of a spike

Spike removal. First identify boundary nodes at each of the four cor-
ners in Λ and Λout and obtain Λ′ and Λ′out, respectively. Now use the spike
removal technique described in § ??

Λin = Λ′ 1 (−Λ′out)

to obtain Λin.

Shell stripping formula. Using the Shell stripping formula described
in § ??

If

Λout =

(

A B
BT C

)

where nodes are ordered so that boundary nodes of the original graph pre-
cedes the boundary nodes of the inner graph, then

Λin = [(BTB)−1(BT (A− Λ)B)(BTB)−1]−1 − C

CHAPTER 4. THREE EXAMPLES 44

After obtaining Λin as the response matrix for n−1 by n−1 square case
rectangular network, proceed to section 4.2.3

4.2.3 Square case

This section will describe how to solve for the conductances of the outer
square of n by n square case rectangular network and reduce the problem
into n− 1 by n− 1 spiked case rectangular network.

Conductances of the edges that has one end as the corner boundary node
is easy to find. Let corner boundary node be q and the non-corner boundary
node of the same edge be p. Impose voltage of −1 at q, and 0 everywhere
else. Current at p is

Ip = ∆V ξ

= [0− (−1)]ξ

= ξ

= −λpq

Therefore, ξ = −λpq.

Let Λ = (λij) be the response matrix for n by n square case rectangular
network. Consider neighbor boundary nodes p and q on the northern face
(let p and q be the k+1th and kth non-corner node counted from the eastern
face, respectively). Let ξ be the conductance of the boundary to boundary
edge that connects p and q. Let W = (w1, w2, . . . , wk) be the first k indexes
of non-corner boundary nodes on the western face counted from the northern
face. Let E = (e1, e2, . . . , ek) be the first k indexes of non-corner boundary
nodes on the eastern face counted from the northern face. Let voltage at
node q be 1, and impose 0 voltages at all other boundary nodes in northern,
western, and sounthern faces. Also let currents at all non-corner boundary
nodes in the western wall be 0. Voltages of E are uniquely determined from
these conditions (see Figure 4.9), call it vector ~α = (α1, α2, . . . , αk). Notice
that all other voltages of eastern face is already determined to be 0.

Since all of the currents at W is set to be 0,

Λ(W ;E)~α+ Λ(W ; q) = 0

Therefore,
~α = −Λ(W ;E)−1Λ(W ; q)

CHAPTER 4. THREE EXAMPLES 45

Square case

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

0 0 0
p q

ξ 1 0 0

e1

e2

α1

α2

0

0

0 0 0 0 0 0

w1

w2

(0)0

(0)0

(0)0

(0)0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∨ ∨ ∨

∧ ∧

∨

< >

> >

<

Figure 4.9 Solving for conductance of a boundary to boundary edge

The current flowing out of node p is

Ip = ∆V ξ

= (0− 1)ξ

= −ξ

= Λ(p;E)~α+ λpq

= −Λ(p;E)Λ(W ;E)−1Λ(W ; q) + λpq

Therefore, ξ = Λ(p;E)Λ(W ;E)−1Λ(W ; q) − λpq. Since nodes p and q are
placed arbitary (and the definition of northern face can be rotated), con-
ductances for other non-corner boundary to boundary spikes can be solved
in a similar fashion. Let Λout be the response matrix for the outer square
network.

Taking off the edges of outer square is simply the subtraction of response
matrices (see § ??).

Λin = Λ− Λout

CHAPTER 4. THREE EXAMPLES 46

Removing isolated boundary nodes in Λin (the rows and columns of zeros
that correspond to the corner boundary nodes) will result in response matrix
for the n− 1 by n− 1 spiked case rectangular network.

Repeat steps in section 4.2.3 and this section until network is reduced
to the base case.

4.2.4 Summary

By induction, this algorithm solves any n by n rectangular network. The
algorithm flowchart (see Figure 4.10) summarizes the steps of the algorithm
graphically.

n by n spiked case

∨

n by n square case

∨
obtain conductances

for spikes

∨

∨

<

obtain conductances

for outer square

∨
done if base case done if base case

∨spike removal

>

shell stripping formula

∨

boundary to boundary

edge removal

∨
n− 1 by n− 1

square case

>

n− 1 by n− 1

spiked case

<

Figure 4.10 Algorithm flowchart

CHAPTER 4. THREE EXAMPLES 47

4.2.5 Results and Errors

MATLAB was used to calculate the Kirchhoff Matrix for the rectangular
networks of various sizes. Like the Tower of Hanoi Networks as the number of
boundary nodes increased by one, approximately a decimal of accuracy was
lost to rounding errors. The error was approximated by summing the entries
of the last column of the difference matrix between the original Kirchhoff
Matrix and the calculated Kirchhoff Matrix. The errors are listed as follows:

1 0

2 0.00000000000000

3 0.00000000000000

4 0.00000000000000

5 0.00000000000003

6 0.00000000000007

7 0.00000000000068

8 0.00000000000482

9 0.00000000008866

10 0.00000000063123

11 0.00000003006876

12 0.00000074820295

13 0.00002143300129

14 0.00014559938951

15 0.01737611939126

16 0.08385562267891

17 30.43242863872625

The first column is the size of the rectangular network and the second column
is the error.

4.3 The Paper Doll Networks

One example where the separation across one boundary node is used is the
”paper doll” network. In this network there is a finite string of recoverable
networks which look like a set of paper dolls standing in a line holding sticks
(see Figure 4.11). The recoverable graph is a pentagon with spikes, and the
added spike, or stick, at each interior node where the networks are connected
is there to make a connection which will be broken during separation (see
§ ??).

The first step in the recovery process is to apply Theorem 3.4 the separa-
tion across one interior node theorem to the string of networks in Figure 4.11

CHAPTER 4. THREE EXAMPLES 48

¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

. . . Gn
¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

G1 G2v1 v2 vn−1vn−2

b11

b12

b13 b14

b21

b22

b23 b24

bn1

bn2

bn3 bn4

bn5

Figure 4.11 Paper Doll Network

at the interior nodes vi for i = 2 to i = n−1. Note that the boundary nodes
of the graph are labeled bjk in Figure 4.11. The resulting networks are as
in Figure 4.12. Note that there are now n graphs G1 to Gn and in each of
these graphs the node vi for i = 1 to i = n− 1 is a boundary node and the
nodes bjk are still boundary nodes. Now, it is easy to recover each of these
graphs once the extra spikes at the v′is (the ”sticks”) are removed.

¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

. . . Gn
¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

G1 G2v1 v2 vn−1v′2 v′3

b11

b12

b13 b14

b21

b22

b23 b24

bn1

bn2

bn3 bn4

bn5

Figure 4.12 Paper Doll Network After Separation

Figure 4.13 shows how to remove the extra spike or ”stick” from the
graph Gi. Before a ”stick” can be removed its conductance must be known.
Since the vi are all boundary nodes, and the bi1 are also boundary nodes,
to find the conductance of the ”stick” one just needs to read off the entry
from the response matrix, by setting the voltage at node vi to be zero and
the voltage at node bi1 to be 1. The next step is the same process described
in Chapter 3 called boundary to boundary removal. Once the ”stick” is

CHAPTER 4. THREE EXAMPLES 49

γ

v1

bi1

v?1

b?i1
−γ

Gi
¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r

r r

r

r

=⇒ G′i
¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r r

r

r

Figure 4.13 Single Paper Doll Network

removed the recovery process for the new graphs G′i are very simple and can
also be done with the spike removal process.

To remove the spikes from the graph as in Figure 4.14, the conductances
of the spikes must be known. In Figure 4.14 the interior nodes are nodes
zk and the boundary nodes are still bik. Since the graph G′i is symmetric it
suffices to only show how to find one of the spikes. Imposing the conditions
as in Figure 4.14, the unknown voltages α and β can be uniquely determined
from the response matrix and the two zero current impositions at nodes bi1
and bi5. Thus, the current at node bi2 is I = αλ23+βλ24. But, the voltage at
bi2 is 1 and the voltage at z2 is zero so the voltage drop and the current are
known. Therefore, the conductance at the edge between bi2 and z2 can be
calculated. Now that the conductance of every spike is known, with the spike
removal process the spikes may be removed. If the spikes are removed then
the remaining graph is a pentagon with all of its nodes as boundary nodes,
from the Shell-to-Kirchhoff Theorem the response matrix of this graph is
the Kirchhoff matrix. Thus, the graph is completely recovered.

CHAPTER 4. THREE EXAMPLES 50

bi2

bi3

bi4bi5

bi1

z2

z1

z3z4

z5
G′i

¡
¡
¡@

@
@

A
A
A

¢
¢
¢

¢
¢

A
A

r

r

r

rr

r

r r

r

r

0

0 β

α

1

(0)

(0)

0

0

0

0

−?

Figure 4.14 Single Paper Doll Network With Boundary Conditions

Chapter 5

Conclusion

This investigation has shown that through network amalagamation and sep-
aration different recovery processes are possible. The use of amalgamation
to provide insight into the recoverability of a network was also revealed. In
a similar way, network separation was shown to be directly useful in the
recovery of the conductances of a network.

The results of the investigation reveal that it is possible to use separation
to recover the conductances of a network. However, this particular inves-
tigation was unable to determine whether or not this particular method of
recovery is the most accurate for circular planar networks. It is here that
more research in the area of accuracy is required.

Further investigation is also needed in the area of the amalgamation op-
eration on networks. From a theoretical stand point it is possible to ask
about the operator it self. What kind of an operator is the amalgamation
(1)? Does this operator have a direct inverse and when can the inverse be
taken? Is the separation of networks the inverse operator? The amalgama-
tion operation also requires more research in the area of its application, or
more precisely how can it be used in various other problems in the area of
the inverse problem.

***separation along boundary nodes, how determine the range to pick
values to not get negative

In the separation of networks section, there are several places where
further research is necessary. In particular, when can network separation
be used in general? This investigation only covers the very specific cases of
shell graph removal, spike removal, and boundary to boundary edge removal.
In general, the use of the Shell Stripping Formula requires the inveritablity
of the matrix BTB, further research can be made to determine precisely

51

CHAPTER 5. CONCLUSION 52

when this matrix is invertible. Also, this investigation has presented the
separation across one interior nodes, it may also be possible that separation
can be made across several interior nodes.

Finally, there is one example which was left unfinished by this inves-
tigation. The recovery of the hexagonal networks is possible and it is in
theory possible to use the shell graph removal and spike removal processes
to recover the conductances of the graph. This example would be another
way to show the usefulness of the algorithms and methods described in this
investigation.

-R.K.C. & B.I.M.

Appendix A

A.1 Derivation of Formulae

A.1.1 The Towers of Hanoi Network

r rr r

r r
2

1 2m+ 1

2m+ 2

r r

r r

3
2m+ 3
r r

r r

r r

m− 1

3m− 1
r r

m m+ 1

m+ 2

3m

2m− 2
3m+ 1

2m− 1

2m4m− 2

4m− 3

. . .
. . .
. . .

. . .
. . .
. . .

Figure A.1 n = 2m Boundary Node Case

The Even Case

Note for the even case, n = 2m for simplicity of the calculation and notation.

The Rightside

For this calculation, currents and voltages of zero are imposed at boundary
nodes 1 to m and a voltage of 1 is imposed at boundary node m+1. By the
calculation done in chapter 4, all of the αi are known for each 1 ≤ i ≤ 2m.

53

APPENDIX A. APPENDIX 54

The column vector P is also important here, the Pi entry is the current at
node i due to voltages of αj at every boundary node j. To start the deriva-
tion of the formula it is necessary to do several of the base cases to see how
the pattern develops into the formula.

Pm = (αm+1 − 0)γm,m+1

thus, γm,m+1 =
Pm

−αm+1

Pm+1 = (αm+1 − 0)γm,m+1 + (αm+1 − 0)γm+1,3m

thus, γm+1,3m =
Pm+1 + Pm

αm+1

(αm+1 − 0)γm+1,3m = −(αm+2 − 0)γm+2,3m

thus, γm+2,3m =
Pm+1 + Pm

−αm+2

Pm+2 = (αm+2 − 0)γm+2,3m + (αm+2 − 0)γm+2,3m+1

thus, γm+2,3m+1 =
Pm+2 + Pm+1 + Pm

αm+2

Following this pattern yields,

γ2m−2,4m−4 =

∑2m−3
j=m Pj

−α2m−2

P2m−2 = (α2m−2 − 0)γ2m−2,4m−4 + (α2m−2 − 0)γ2m−2,4m−3

thus, γ2m−2,4m−3 =

∑2m−2
j=m Pj

α2m−2

(α2m−2 − 0)γ2m−2,4m−3 = −(αm−1 − 0)γ2m−1,4m−3

thus, γ2m−1,4m−3 =

∑2m−2
j=m Pj

−α2m−1

P2m−1 = (α2m−1 − 0)γ2m−1,4m−3 + (α2m−1 − 0)γ2m−1,4m−2

thus, γ2m−1,4m−2 =

∑2m−1
j=m Pj

α2m−1

(α2m−1 − 0)γ2m−1,4m−2 = −(α2m − 0)γ2m,4m−2

thus, γ2m,4m−2 =

∑2m−1
j=m Pj

−α2m

Finally, using these patterns the following formulae are derived:

γi,i+2m−1 =

∑i
j=m Pj

αi
γi+1,i+2m−1 =

∑i
j=m Pj

−αi+1

APPENDIX A. APPENDIX 55

for i = m+ 1 to i = 2m− 1.

The Leftside

For this calculation, currents and voltages of zero are imposed at boundary
nodes m to 2m and a voltage of 1 is imposed at boundary node m. By the
calculation done in chapter 4, all of the αi are known for each 1 ≤ i ≤ 2m.
The column vector P is also important here, the Pi entry is the current at
node i due to voltages of αj at every boundary node j. To start the deriva-
tion of the formula it is necessary to do several of the base cases to see how
the pattern develops into the formula.

P1 = (α1 − 0)γ1,2m+1

thus, γ1,2m+1 =
P1

α1

P1 = (α1 − 0)γ1,2m+1 = −(α2 − 0)γ2,2m+1

thus, γ2,2m+1 =
P1

−α2

P2 = (α2 − 0)γ2,2m+1 + (α2 − 0)γ2,2m+2

thus, γ2,2m+2 =
P1 + P2

α2

(α2 − 0)γ2,2m+2 = −(α3 − 0)γ3,2m+2

thus, γ3,2m+2 =
P1 + P2

−α3

Following this pattern yields,

γm−2,3m−2 =

∑m−2
j=1 Pj

αm−2

(αm−1 − 0)γm−1,3m−2 = −(αm−2 − 0)γm−2,3m−2

thus, γm−1,3m−2 =

∑m−2
j=1 Pj

−αm−1

Pm−1 = (αm−1 − 0)γm−1,3m−2 + (αm−1 − 0)γm−1,3m−1

thus, γm−1,3m−1 =

∑m−1
j=1 Pj

αm−1

(αm−1 − 0)γm−1,3m−1 = −(αm − 0)γm,3m−1

thus, γm,3m−1 =

∑m−1
j=1 Pj

−αm

APPENDIX A. APPENDIX 56

Finally, using these patterns the following formulae are derived:

γi,i+2m =

∑i
j=1 Pj

αi
γi+1,i+2m =

∑i
j=1 Pj

−αi+1

for i = 1 to i = m.

r rr r

2

1 2l 4l − 8

2l + 1

2l − 1

r rr r

3 2l − 3

3l − 3

r r

r rr r

r r r

l − 1

r

l

3l − 2

l + 1

l + 2l − 2

3l − 1

2l − 24l − 7

. . .
. . .
. . .

. . .
. . .
. . .

Figure A.2 n = 2l - 1 Boundary Node Case

The Odd Case

Note for the odd case, n = 2l − 1 for simplicity of the calculation and the
notation.

The Rightside

For this calculation, currents and voltages of zero are imposed at boundary
nodes 1 to l − 1 and a voltage of 1 is imposed at boundary node l. By the
calculation done in chapter 4, all of the αi are known for each 1 ≤ i ≤ 2l−1.
The column vector P is also important here, the Pi entry is the current at
node i due to voltages of αj at every boundary node j. To start the deriva-
tion of the formula it is necessary to do several of the base cases to see how
the pattern develops into the formula.

Pl = (αl − 0)γl,3l−2

thus, γl,3l−2 =
Pl

αl

APPENDIX A. APPENDIX 57

Pl = (αl − 0)γl,3l−2 = −(αl+1 − 0)γl+1,3l−2

thus, γl+1,3l−2 =
Pl

−αl+1

Pl+1 = (αl+1 − 0)γl+1,3l−2 + (αl+1 − 0)γl+1,3l−1

thus, γl+1,3l−1 =
Pl + Pl+1

αl+1

(αl+1 − 0)γl+1,3l−1 = −(αl+2 − 0)γl+2,3l−1

thus, γl+2,3l−1 =
Pl + Pl+1

−αl+2

Following this pattern yields,

γ2l−3,4l−5 =

∑2l−3
j=l Pj

α2l−3

(α2l−3 − 0)γ2l−3,4l−4 = −(α2l−2 − 0)γ2l−2,4l−5

thus, γ2l−2,4l−5 =

∑2l−3
j=l Pj

−α2l−2

P2l−2 = (α2l−2 − 0)γ2l−2,4l−5 + (α2l−2 − 0)γ2l−2,4l−4

thus, γ2l−2,4l−4 =

∑2l−2
j=l Pj

α2l−2

(α2l−2 − 0)γ2l−2,4l−4 = −(α2l−1 − 0)γ2l−1,4l−4

thus, γ2l−1,4l−4 =

∑2l−2
j=l Pj

−α2l−1

Finally, using these patterns the following formulae are derived:

γi,i+2l−2 =

∑i
j=l Pj

αi
γi+1,i+2l−2 =

∑i
j=l Pj

−αi+1

for i = l to i = 2l − 2.

The Leftside

For this calculation, currents and voltages of zero are imposed at bound-
ary nodes l + 1 to 2l − 1 and a voltage of 1 is imposed at boundary node
l. By the calculation done in chapter 4, all of the αi are known for each
1 ≤ i ≤ 2l − 1. The column vector P is also important here, the Pi entry is
the current at node i due to voltages of αj at every boundary node j. To
start the derivation of the formula it is necessary to do several of the base

APPENDIX A. APPENDIX 58

cases to see how the pattern develops into the formula.

P1 = (α1 − 0)γ1,2l

thus, γ1,2l =
P1

α1

P1 = (α1 − 0)γ1,2l = −(α2 − 0)γ2,2l

thus, γ2,2l =
P1

−α2

P2 = (α2 − 0)γ2,2l + (α2 − 0)γ2,2l+1

thus, γ2,2l+1 =
P1 + P2

α2

(α3 − 0)γ3,2l+1 = −(α2 − 0)γ2,2l+1

thus, γ3,2l+1 =
P1 + P2

−α3

Following this pattern yields,

γl−2,3l−3 =

∑l−2
j=1 Pj

αl−2

(αl−2 − 0)γl−2,3l−3 = −(αl−1 − 0)γl−1,3l−3

thus, γl−1,3l−3 =

∑l−2
j=1 Pj

−αl−1

Pl−1 = (αl−1 − 0)γl−1,3l−3 + (αl−1 − 0)γl−1,3l−2

thus, γl−1,3l−2 =

∑l−1
j=1 Pj

αl−1

(αl−1 − 0)γl−1,3l−2 = −(αl − 0)γl,3l−2

thus, γl,3l−2 =

∑l−1
j=1 Pj

−αl

Finally, using these patterns the following formulae are derived:

γi,i+2l−1 =

∑i
j=1 Pj

αi
γi+1,i+2l−1 =

∑i
j=1 Pj

−αi+1

for i = 1 to i = l − 1.

APPENDIX A. APPENDIX 59

A.1.2 The Rectangular Network

A.2 Matlab Code

A.2.1 Tower Code

Shell Code: Even Case Rightside

function shell=shelleright(L) %RIGHTSIDE SOLUTION EVEN

%Input: Response For Even Tower

%Output: Kirchhoff For Shell Graph

n=size(L,1);

A = zeros((n-2)/2, (n-2)/2);

S = zeros((n-2)/2, 1);

X = zeros(1, (n-2)/2);

alpha = zeros(n, 1);

gamma = zeros(2*n-2, 2*n -2);

P = zeros(1,n);

for i=1:n

if 1 <= i & i <= n/2

alpha(i) = 0;

elseif i == (n+2)/2

alpha(i) = 1;

elseif ((n+4)/2) <= i & i <= n

alpha(i) = 0;

end

end

for k=1:(n-2)/2

for j=(n+4)/2:n

A(k, j - (n+2)/2) = L(k, j);

end

end

for i=1:(n-2)/2

S(i) = -L(i, (n+2)/2);

end

APPENDIX A. APPENDIX 60

X = A\S;

for i=1:(n-2)/2

alpha(i + (n+2)/2) = X(i);

end

P = L*alpha;

gamma(n/2, (n+2)/2) = -P(n/2) ;

for i=(n+2)/2:n-1

gamma(i, i + n-1) = (sum(P(n/2:i)))/alpha(i) ;

end

for i=(n+2)/2:n-1

gamma(i +1, i + n - 1) = (sum(P(n/2:i)))/-alpha(i+1);

end

shell = -gamma;

Shell Code: Even Case Leftside

function shell=shelleleft(L) %LEFTSIDE SOLUTION EVEN

%Input: Response For Even Tower

%Output: Kirchhoff For Shell Graph

n=size(L,1);

A = zeros((n-2)/2, (n-2)/2);

S = zeros((n-2)/2, 1);

alpha = zeros(n, 1);

gamma = zeros(2*n-2, 2*n -2);

P = zeros(1,n);

for i=1:n

if 1 <= i & i <= (n-2)/2

alpha(i) = 0;

elseif i == n/2

alpha(i) = 1;

APPENDIX A. APPENDIX 61

elseif ((n+2)/2) <= i & i <= n

alpha(i) = 0;

end

end

for k=(n+4)/2:n

for j=1:(n-2)/2

A(k - (n+2)/2, j) = L(k, j);

end

end

for i=1:(n-2)/2

S(i) = -L(i + (n+2)/2, n/2);

end

X = A\S;

for i=1:(n-2)/2

alpha(i) = X(i);

end

P = L*alpha;

for i=1:(n-2)/2

gamma(i, i + n) = (sum(P(1:i))) /alpha(i) ;

end

for i=1:(n-2)/2

gamma(i + 1, i +n) = (sum(P(1:i))) /-alpha(i+1) ;

end

shell = -gamma;

Shell Code: Odd Case Rightside

function shell=shelloright(L) %RIGHTSIDE SOLUTION ODD

%Input: Response For Odd Tower

%Output: Kirchhoff For Shell Graph

APPENDIX A. APPENDIX 62

n=size(L,1);

A = zeros((n-1)/2, (n-1)/2);

S = zeros((n-1)/2, 1);

alpha = zeros(n, 1);

gamma = zeros(2*n-2, 2*n -2);

P = zeros(1,n);

for i=1:n

if 1 <= i & i <= (n-1)/2

alpha(i) = 0;

elseif i == ((n+1)/2)

alpha(i) = 1;

elseif ((n+3)/2) <= i & i <= n

alpha(i) = 0;

end

end

for k=1:(n-1)/2

for j=(n+3)/2:n

A(k, j - (n+1)/2) = L(k, j);

end

end

for i=1:(n-1)/2

S(i) = -L(i, (n+1)/2);

end

X = A\S;

for i=1:(n-1)/2

alpha(i + (n+1)/2) = X(i);

end

P = L*alpha;

for i=(n+1)/2:n-1

gamma(i, n+i - 1) = sum(P((n+1)/2:i)) /alpha(i);

end

for i=(n+1)/2:n-1

APPENDIX A. APPENDIX 63

gamma(i+1,i+n-1) = sum(P((n+1)/2:i)) /-alpha(i+1);

end

shell = -gamma;

Shell Code: Odd Case Leftside

function shell=shelloleft(L) %LEFTSIDE SOLUTION ODD

%Input: Response For Odd Tower

%Output: Kirchhoff For Shell Graph

n=size(L,1);

A = zeros((n-1)/2, (n-1)/2);

S = zeros((n-1)/2, 1);

alpha = zeros(n, 1);

gamma = zeros(2*n-2, 2*n -2);

P = zeros(1,n);

for i=1:n

if 1 <= i & i <= (n-1)/2

alpha(i) = 0;

elseif i == ((n+1)/2)

alpha(i) = 1;

elseif ((n+3)/2) <= i & i <= n

alpha(i) = 0;

end

end

for k=(n+3)/2:n

for j=1:(n-1)/2

A(k - (n+1)/2, j) = L(k, j);

end

end

for i=1:(n-1)/2

S(i) = -L((i + (n+1)/2), (n+1)/2);

end

APPENDIX A. APPENDIX 64

X = A\S;

for i=1:(n-1)/2

alpha(i) = X(i);

end

P = L*alpha;

for i=1:(n-1)/2

gamma(i, n+i) = sum(P(1:i)) /(alpha(i)) ;

end

for i=1:(n-1)/2

gamma(i+1,n+i) = sum(P(1:i)) /-(alpha(i+1));

end

gamma((n+1)/2, (3*n - 1)/2) = 0;

shell = -gamma;

APPENDIX A. APPENDIX 65

Recursive Code

function LL=complete(L)

% input: Upper right trianguler response matrix

% output: Complete response matrix

n=size(L,1);

LL=zeros(n,n);

LL=L;

for i=1:n

for j=1:i

LL(i,j)=0;

end

end

LL=LL+LL’;

for i=1:n

sum=0;

for j=1:n

sum=sum+LL(i,j);

end

LL(i,i)=-sum;

end

function L=forward(K,n)

% input: K = Kirchhoff matrix

% n = Number of boundary nodes

% output: L = Response matrix

m=size(K,1);

A=K(1:n,1:n);

B=K(1:n,n+1:m);

C=K(n+1:m,n+1:m);

L=A-B*inv(C)*B’;

APPENDIX A. APPENDIX 66

function K=onetower(n)

K=randtower(n);

for i=1:length(K)

for j=i:length(K)

if K(i,j)~=0

K(i,j)=-1;

end

end

end

K=complete(K);

function K=randtower(n)

% input: n = Size of the tower to be generated

% output: K = Kirchhoff matrix for the generated tower

% m = Size of the Kirchhoff matrix

if mod(n,2)==0

m=(n*n/2+n)/2;

else

m=(n-1)*(n-1)/4+n;

end

K=zeros(m,m);

if n>=4

if mod(n,2)==0

% Even towers

for i=1:n/2-1

K(i:i+1,i+n)=-10*rand(2,1);

end

K(n/2,n/2+1)=-10*rand(1,1);

for i=n/2+1:n-1

K(i:i+1,i+n-1)=-10*rand(2,1);

end

APPENDIX A. APPENDIX 67

else

% Odd towers

for i=1:(n-1)/2

K(i:i+1,i+n)=-10*rand(2,1);

end

K((n+3)/2,(3*n-1)/2)=-10*rand(1,1);

for i=(n+3)/2:n-1

K(i:i+1,i+n-1)=-10*rand(2,1);

end

end

% Recursive step

K(n+1:m,n+1:m)=randtower(n-2);

elseif n==2

% Base case for even towers

K(1,2)=-10*rand(1,1);

elseif n==3

% Base case for odd towers

K(1:3,4)=-10*rand(3,1);

end

K=complete(K);

function K=tower(L)

% input: L = Response matrix for a tower

% output: K = The original Kirchhoff matrix

n=size(L,1);

% m = Size of the Kirchhoff matrix

if mod(n,2)==0

m=(n*n/2+n)/2;

else

m=(n-1)*(n-1)/4+n;

end

K=zeros(m,m);

% Find Lout

APPENDIX A. APPENDIX 68

if mod(n,2)==1

% Odd case

Lout=complete(shelloright(L)+shelloleft(L));

else

% Even case

Lout=complete(shelleright(L)+shelleleft(L));

end

K(1:2*n-2,1:2*n-2)=Lout;

% Recursive step.

if n>=4

A=Lout(1:n,1:n);

C=Lout(1:n,n+1:2*n-2);

D=Lout(n+1:2*n-2,n+1:2*n-2);

B=inv(C’*C);

Lin=inv(B*C’*(A-L)*C*B)-D;

K(n+1:m,n+1:m)=tower(Lin);

end

K=complete(K);

function [K,L,KK,diff]=towertesttwo(n)

K=onetower(n);

L=forward(K,n);

KK=tower(L);

diff=K-KK;

sum(abs(diff(length(diff),1:length(diff)-1)))

% diff(length(diff),length(diff))

APPENDIX A. APPENDIX 69

A.2.2 Rectangular Code

APPENDIX A. APPENDIX 70

Spike Code

function K=spike(L)

% Input: L = Response matrix for the "spiked" rectangular network

% Output: K = Kirchhoff matrix for the same network

% n = Size of the rectangular network

n = length(L)/4;

% m = Size of the Kirchhoff matrix

m = n*(4+n);

K=zeros(m,m);

for i = 1:4*n

% find sect, the section boundary node i belongs to

sect = ceil(2*i/n);

% find the following case by case:

% len, the size of the condition that must be set

% zerovec, vector of the indexes of the nodes to be set to zero current

% unknvec, vector of the indexes of the nodes with unknown voltages

switch sect

case 1

len = i;

zerovec = n+1:n+len;

unknvec = 4*n:-1:4*n-len+1;

case 2

len = n+1-i;

zerovec = 4*n:-1:4*n-len+1;

unknvec = n+1:n+len;

case 3

len = i-n;

zerovec = 2*n+1:2*n+len;

unknvec = n:-1:n-len+1;

case 4

len = 2*n+1-i;

zerovec = n:-1:n-len+1;

unknvec = 2*n+1:2*n+len;

case 5

APPENDIX A. APPENDIX 71

len = i-2*n;

zerovec = 3*n+1:3*n+len;

unknvec = 2*n:-1:2*n-len+1;

case 6

len = 3*n+1-i;

zerovec = 2*n:-1:2*n-len+1;

unknvec = 3*n+1:3*n+len;

case 7

len = i-3*n;

zerovec = 1:len;

unknvec = 3*n:-1:3*n-len+1;

case 8

len = 4*n+1-i;

zerovec = 3*n:-1:3*n-len+1;

unknvec = 1:len;

end

% find the conductance and store it in Kirchhoff matrix

K(i,in(n,i))=L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))-L(i,i);

end

K=complete(K);

% Lout = Response matrix for the outer shell

% l = Size of Lout

l = in(n,4*n-1);

Lout = K(1:l,1:l);

% Recursive step

if n > 1

A=Lout(1:4*n,1:4*n);

C=Lout(1:4*n,4*n+1:l);

D=Lout(4*n+1:l,4*n+1:l);

B=inv(C’*C);

Lin=inv(B*C’*(A-L)*C*B)-D;

K(4*n+1:m,4*n+1:m)=square(Lin);

end

APPENDIX A. APPENDIX 72

K=complete(K);

function K=newspike(L)

% Input: L = Response matrix for the "spiked" rectangular network

% Output: K = Kirchhoff matrix for the same network

% n = Size of the rectangular network

n = length(L)/4;

% m = Size of the Kirchhoff matrix

m = n*(4+n);

K=zeros(m,m);

for i = 1:4*n

% find sect, the section boundary node i belongs to

sect = ceil(2*i/n);

% find the following case by case:

% len, the size of the condition that must be set

% zerovec, vector of the indexes of the nodes to be set to zero current

% unknvec, vector of the indexes of the nodes with unknown voltages

switch sect

case 1

len = i;

zerovec = n+1:n+len;

unknvec = 4*n:-1:4*n-len+1;

case 2

len = n+1-i;

zerovec = 4*n:-1:4*n-len+1;

unknvec = n+1:n+len;

case 3

len = i-n;

zerovec = 2*n+1:2*n+len;

unknvec = n:-1:n-len+1;

case 4

len = 2*n+1-i;

zerovec = n:-1:n-len+1;

unknvec = 2*n+1:2*n+len;

APPENDIX A. APPENDIX 73

case 5

len = i-2*n;

zerovec = 3*n+1:3*n+len;

unknvec = 2*n:-1:2*n-len+1;

case 6

len = 3*n+1-i;

zerovec = 2*n:-1:2*n-len+1;

unknvec = 3*n+1:3*n+len;

case 7

len = i-3*n;

zerovec = 1:len;

unknvec = 3*n:-1:3*n-len+1;

case 8

len = 4*n+1-i;

zerovec = 3*n:-1:3*n-len+1;

unknvec = 1:len;

end

% find the conductance and store it in Kirchhoff matrix

K(i,in(n,i))=L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))-L(i,i);

end

K=complete(K);

% Lout = Response matrix for the outer shell

% l = Size of Lout

l = in(n,4*n-1);

Lout = K(1:l,1:l);

% Recursive step

if n > 1

% Old code :)

% A=Lout(1:4*n,1:4*n);

% C=Lout(1:4*n,4*n+1:l);

% D=Lout(4*n+1:l,4*n+1:l);

% B=inv(C’*C)

% Lin=inv(B*C’*(A-L)*C*B)-D;

Lprime = Lout;

APPENDIX A. APPENDIX 74

Lprime(n,in(n,n)) = 0;

Lprime(2*n,in(n,2*n)) = 0;

Lprime(3*n,in(n,3*n)) = 0;

Lprime(4*n,in(n,4*n)) = 0;

Lprime = complete(Lprime);

Lstar = [L,zeros(4*n,4*n-4);zeros(4*n-4,8*n-4)] - Lprime;

Lstar = spforward(Lstar,[1:n-1,n+1:2*n-1,2*n+1:3*n-1,3*n+1:4*n-1]);

Lstar(1,4+n) = 0;

Lstar(2,3+2*n) = 0;

Lstar(3,2+3*n) = 0;

Lstar(4,5) = 0;

Lstar = complete(Lstar);

Lin = Lstar(5:4*n,5:4*n);

K(4*n+1:m,4*n+1:m)=newsquare(Lin);

end

K=complete(K);

function K=onespike(n)

% Input: n = Size of the spike matrix to be generated

% Output: K = Kirchhoff matrix for spike with all conductance 1

% m = Size of the Kirchhoff matrix

m = n*(n+4);

K = zeros(m,m);

% Add conductors of outer spike

for i = 1:4*n

K(i,in(n,i))=-1;

end

% Recursive case

if n > 1

K(4*n+1:m,4*n+1:m)=onesquare(n-1);

APPENDIX A. APPENDIX 75

end

K=complete(K);

APPENDIX A. APPENDIX 76

Square Code

function K=square(L)

% Input: L = Response matrix for the "square" rectangular network

% Output: K = Kirchhoff matrix for the same network

% n = Size of the rectangular network

n = length(L)/4;

% m = Size of the Kirchhoff matrix

m = (n+1)*(n+1);

K=zeros(m,m);

Lout = zeros(4*n, 4*n);

if n==1

Lout(1, 2) = L(2, 1);

Lout(1, 4) = L(4, 1);

Lout(2, 3) = L(2, 3);

Lout(3, 4) = L(4, 3);

elseif n ~= 1

for i = 2:4*n-1

if mod(i,n) > 1

% find sect, the section boundary node i belongs to

sect = ceil(2*(i-1)/n);

% find the following case by case:

% len, the size of the condition that must be set

% zerovec, vector of the indexes of the nodes to be set to zero current

% unknvec, vector of the indexes of the nodes with unknown voltages

switch sect

case 1

len = i-1;

zerovec = n+2:n+1+len;

unknvec = 4*n:-1:4*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 2

len = n-i;

zerovec = 4*n:-1:4*n-len+1;

APPENDIX A. APPENDIX 77

unknvec = n+2:n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

case 3

len = i-n-1;

zerovec = 2*n+2:2*n+1+len;

unknvec = n:-1:n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 4

len = 2*n-i;

zerovec = n:-1:n-len+1;

unknvec = 2*n+2:2*n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

case 5

len = i-2*n-1;

zerovec = 3*n+2:3*n+1+len;

unknvec = 2*n:-1:2*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 6

len = 3*n-i;

zerovec = 2*n:-1:2*n-len+1;

unknvec = 3*n+2:3*n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

case 7

len = i-3*n-1;

zerovec = 2:1+len;

unknvec = 3*n:-1:3*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 8

len = 4*n-i;

zerovec = 3*n:-1:3*n-len+1;

unknvec = 2:1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

end

end

end

% Read off the corners here

Lout(1, 2) = L(2,1);

Lout(1, 4*n) = L(4*n, 1);

Lout(n, n+1) = L(n, n+1);

APPENDIX A. APPENDIX 78

Lout(n+1, n+2) = L(n+2, n+1);

Lout(2*n, 2*n+1) = L(2*n, 2*n+1);

Lout(2*n+1, 2*n+2) = L(2*n+2, 2*n+1);

Lout(3*n, 3*n+1) = L(3*n, 3*n+1);

Lout(3*n+1, 3*n+2) = L(3*n+2, 3*n+1);

end

Lout = complete(Lout);

K(1:4*n,1:4*n) = Lout;

if n > 1

% Rip off the conductors around the edge

temp = L-Lout;

% Take out the extra zero rows and cols

a = [2:n,n+2:2*n,2*n+2:3*n,3*n+2:4*n];

Lin = temp(a,a);

% Obtain the Kirchhoff matrix of inside and insert the zeros back

m = length(K);

Kin = zeros(m,m);

Kin(2:m-3,2:m-3) = spike(Lin);

Kin(:,n+2:m) = Kin(:,n+1:m-1);

Kin(:,n+1) = zeros(m,1);

Kin(:,2*n+2:m) = Kin(:,2*n+1:m-1);

Kin(:,2*n+1) = zeros(m,1);

Kin(:,3*n+2:m) = Kin(:,3*n+1:m-1);

Kin(:,3*n+1) = zeros(m,1);

Kin(n+2:m,:) = Kin(n+1:m-1,:);

Kin(n+1,:) = zeros(1,m);

Kin(2*n+2:m,:) = Kin(2*n+1:m-1,:);

Kin(2*n+1,:) = zeros(1,m);

Kin(3*n+2:m,:) = Kin(3*n+1:m-1,:);

Kin(3*n+1,:) = zeros(1,m);

K = K+Kin;

elseif n==1

K = Lout;

end

K=complete(K);

APPENDIX A. APPENDIX 79

function K=newsquare(L)

% Input: L = Response matrix for the "square" rectangular network

% Output: K = Kirchhoff matrix for the same network

% n = Size of the rectangular network

n = length(L)/4;

% m = Size of the Kirchhoff matrix

m = (n+1)*(n+1);

K=zeros(m,m);

Lout = zeros(4*n, 4*n);

if n==1

Lout(1, 2) = L(2, 1);

Lout(1, 4) = L(4, 1);

Lout(2, 3) = L(2, 3);

Lout(3, 4) = L(4, 3);

elseif n ~= 1

for i = 2:4*n-1

if mod(i,n) > 1

% find sect, the section boundary node i belongs to

sect = ceil(2*(i-1)/n);

% find the following case by case:

% len, the size of the condition that must be set

% zerovec, vector of the indexes of the nodes to be set to zero current

% unknvec, vector of the indexes of the nodes with unknown voltages

switch sect

case 1

len = i-1;

zerovec = n+2:n+1+len;

unknvec = 4*n:-1:4*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 2

len = n-i;

zerovec = 4*n:-1:4*n-len+1;

unknvec = n+2:n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

APPENDIX A. APPENDIX 80

case 3

len = i-n-1;

zerovec = 2*n+2:2*n+1+len;

unknvec = n:-1:n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 4

len = 2*n-i;

zerovec = n:-1:n-len+1;

unknvec = 2*n+2:2*n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

case 5

len = i-2*n-1;

zerovec = 3*n+2:3*n+1+len;

unknvec = 2*n:-1:2*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 6

len = 3*n-i;

zerovec = 2*n:-1:2*n-len+1;

unknvec = 3*n+2:3*n+1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

case 7

len = i-3*n-1;

zerovec = 2:1+len;

unknvec = 3*n:-1:3*n-len+1;

Lout(i,i+1)=-L(i+1,unknvec)*(L(zerovec,unknvec)\L(zerovec,i))+L(i,i+1);

case 8

len = 4*n-i;

zerovec = 3*n:-1:3*n-len+1;

unknvec = 2:1+len;

Lout(i,i+1)=-L(i,unknvec)*(L(zerovec,unknvec)\L(zerovec,i+1))+L(i,i+1);

end

end

end

% Read off the corners here

Lout(1, 2) = L(2,1);

Lout(1, 4*n) = L(4*n, 1);

Lout(n, n+1) = L(n, n+1);

Lout(n+1, n+2) = L(n+2, n+1);

Lout(2*n, 2*n+1) = L(2*n, 2*n+1);

APPENDIX A. APPENDIX 81

Lout(2*n+1, 2*n+2) = L(2*n+2, 2*n+1);

Lout(3*n, 3*n+1) = L(3*n, 3*n+1);

Lout(3*n+1, 3*n+2) = L(3*n+2, 3*n+1);

end

Lout = complete(Lout);

K(1:4*n,1:4*n) = Lout;

if n > 1

% Rip off the conductors around the edge

temp = L-Lout;

% Take out the extra zero rows and cols

a = [2:n,n+2:2*n,2*n+2:3*n,3*n+2:4*n];

Lin = temp(a,a);

% Obtain the Kirchhoff matrix of inside and insert the zeros back

m = length(K);

Kin = zeros(m,m);

Kin(2:m-3,2:m-3) = newspike(Lin);

Kin(:,n+2:m) = Kin(:,n+1:m-1);

Kin(:,n+1) = zeros(m,1);

Kin(:,2*n+2:m) = Kin(:,2*n+1:m-1);

Kin(:,2*n+1) = zeros(m,1);

Kin(:,3*n+2:m) = Kin(:,3*n+1:m-1);

Kin(:,3*n+1) = zeros(m,1);

Kin(n+2:m,:) = Kin(n+1:m-1,:);

Kin(n+1,:) = zeros(1,m);

Kin(2*n+2:m,:) = Kin(2*n+1:m-1,:);

Kin(2*n+1,:) = zeros(1,m);

Kin(3*n+2:m,:) = Kin(3*n+1:m-1,:);

Kin(3*n+1,:) = zeros(1,m);

K = K+Kin;

elseif n==1

K = Lout;

end

K=complete(K);

APPENDIX A. APPENDIX 82

function K=onesquare(n)

% Input: n = Size of the square matrix to be generated

% Output: K = Krichhoff matrix for square with all conductance 1

% m = Size of the Kirchhoff matrix

m = (n+1)*(n+1);

K=zeros(m,m);

temp=K;

% Add conductors of outer square

for i = 1:4*n-1

K(i,i+1)=-1;

end

K(1,4*n)=-1;

% Recursive case

if n > 1

temp(2:m-3,2:m-3)=onespike(n-1);

temp(:,n+2:m)=temp(:,n+1:m-1);

temp(:,n+1)=zeros(m,1);

temp(:,2*n+2:m)=temp(:,2*n+1:m-1);

temp(:,2*n+1)=zeros(m,1);

temp(:,3*n+2:m)=temp(:,3*n+1:m-1);

temp(:,3*n+1)=zeros(m,1);

temp(n+2:m,:)=temp(n+1:m-1,:);

temp(n+1,:)=zeros(1,m);

temp(2*n+2:m,:)=temp(2*n+1:m-1,:);

temp(2*n+1,:)=zeros(1,m);

temp(3*n+2:m,:)=temp(3*n+1:m-1,:);

temp(3*n+1,:)=zeros(1,m);

K=K+temp;

end

K=complete(K);

APPENDIX A. APPENDIX 83

Recursive Code

function LL=complete(L)

% input: Upper right trianguler response matrix

% output: Complete response matrix

n=size(L,1);

LL=zeros(n,n);

LL=L;

for i=1:n

for j=1:i

LL(i,j)=0;

end

end

LL=LL+LL’;

for i=1:n

sum=0;

for j=1:n

sum=sum+LL(i,j);

end

LL(i,i)=-sum;

end

function L=forward(K,n)

% input: K = Kirchhoff matrix

% n = Number of boundary nodes

% output: L = Response matrix

m=size(K,1);

A=K(1:n,1:n);

B=K(1:n,n+1:m);

C=K(n+1:m,n+1:m);

L=A-B*inv(C)*B’;

APPENDIX A. APPENDIX 84

function i=in(n,b)

% Input: n = Size of the lattice

% b = Index of boundary node on the spike

% Output: i = Index of the interior node just inside of b

if b <= n

i = 4*n+b;

elseif b <= 2*n

i = 4*n+b-1;

elseif b <= 3*n

i = 4*n+b-2;

elseif b < 4*n

i = 4*n+b-3;

elseif b == 4*n

i = 4*n+1;

end

function L=spforward(K,v)

% input: K = Kirchhoff matrix

% v = Vector of nodes to be internalized

% output: L = Response matrix

% u = Vector of boundary nodes (complement of v)

u = [];

for i = 1:length(K)

found_in_v = 0;

for j = 1:length(v)

if v(j) == i

found_in_v = 1;

end

end

if found_in_v == 0;

u(length(u)+1) = i;

end

end

L = forward([K(u,u),K(u,v);K(v,u),K(v,v)],length(u));

REFERENCES 85

References

[1] Edward B. Curtis and James A. Morrow, Inverse Problems for Electrical Networks,
World Scientific, 13 (2000).
[2] Mike Usher, Determining Current Sources in a Network, unpublished.

