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Abstract. We show that the set of recoverable resistor networks is much

larger than it was previously known to be. We also give a new necessary
condition for the recoverability of such a network.

1. Introduction

The primary purpose of this note is to show that many more networks of electrical
resistors are recoverable from boundary measurements than was previously known.
The problem of recovering the conductances of a network from measurements of

current and voltage taken at the boundary is a specialized, slightly modified, case
of the inverse problem for manifolds described in [Ca]. The network recoverability
problem has been studied extensively by Curtis and Morrow, who present a sum-
mary of their results in [CM]. The central question in [CM] as well as here is the
following: whether conductances on the edges of a known graph G with a designated
set of boundary nodes ∂G ⊂ V (G) can be recovered from the Dirichlet-to-Neumann
(i.e. voltage-to-current) map.
To date the greatest advance on this problem was made by Ingerman, Curtis and

Morrow who gave in [CIM] formulae and an algorithm of sorts for the recovery of the
conductances of a critical circular planar graph. Many of the important definitions
and some other necessary preliminaries were available to these authors from Colin
de Verdiere [CdV1, CdV2]. We recall that a graph is critical if the removal or
contraction of any edge in the graph breaks a connection, where a connection is
set of vertex-disjoint paths from boundary nodes (α1, ..., αn) to boundary nodes
(βπ(1), ..., βπ(n)), with the futher restriction that path k can hit no boundary nodes
other than αk and βπ(k). (The connection is said to be broken if there is no longer a
set of paths satisfying these criteria.) Circular planar graphs are the special graphs
which can be embedded in the plane in such a way that all of their boundary nodes
lie in the unit circle.
Nonetheless, there are various examples which can be recovered by essentially

the same methods as had been applied to the circular planar graphs, but which
did not fall into the same topological class. The examples include certain graphs
which can be embedded in the plane in such a way that their boundary nodes lie in
the boundary of an annulus but which are not circular planar. Also, the complete
graphs, and more generally any graph with only boundary-to-boundary edges, is
recoverable by a formula given in [CIM 4.2, CM 3.15] (which is a fact that will be
relied upon heavily in our work).
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Ours is a “clear box” inverse problem: we make measurements only at the bound-
ary, but we know the graph structure of the network we are attempting to recover.
The task we have set is to understand the necessary and sufficient conditions on
the structure of a graph for its recoverability from boundary measurements. This
note falls short of such a characterization. What we provide is a new framework
for the problem.
The strategy is to use the recoverability of complete graphs to reduce the problem

of recovering a network made up of numerous smaller recoverable networks to a
local problem that we know how to solve. The difficulty lies in the fact that we can
not make measurements on subnetworks directly because current flows everywhere.
Theorem 1 shows how to circumvent this difficulty in a setting in which the graphs
have been glued together in a special way. Theorem 2 shows, in the form of a
necessary condition for recoverability, that this sort of gluing is actually the only
one that works.
The proofs of these theorems are simple. The real difficulty was to find the

right viewpoint, since many of the graphs studied here look, at first, to be nothing
like the those studied by previous researchers. The simplicity of the methods may
also point to their usefulness in other settings. For instance, Alex Postnikov [P]
has worked out the theory of recoverable directed networks (which correspond to
diodes) in a circular planar setting. An extention similar ours in the directed case
looks to be much more difficult to obtain, because cycles do not behave nearly
as well in space as they do in the plane. It is clear that similar methods to ours
may also be brought to bear in some special cases of the analogous problem for
manifolds.
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criticism and guidance during the REU program. In particular, Professor Mor-
row pointed out that there were no known examples of recoverable “flower graphs”
(graphs with neither boundary-to-boundary edges nor boundary-to-interior spikes),
and our present investigation began as an attempt to either find such a graph or
prove that they could not exist. From these special graphs blossomed the rest of
what this note has to offer. Finally, hearty thanks are due to David Ingerman for his
correspondence, and in particular for checking the the proofs in several preliminary
versions, leading to a number of important corrections.

2. Many more recoverable networks

Here we give an extension of the results of [CIM, CM], and discuss some corol-
laries.

Theorem 1. Any graph G that is decomposable into a collection of distinct recov-

erable graphs {Gi}, disjoint except that Gi and Gj may share up to one boundary

node, ∀ i 6= j. Then G is recoverable.

Proof. We will focus our attention on recovering one of the Gi’s; if we can do this,
then we can iterate and recover G. Let N (Gi) be the collection {Gj : |∂Gj∩∂Gi| =
1}.
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We restrict ourselves to making measurements at nodes β ∈ ∂N (Gi) = {∂Gj :
Gj ∈ N (Gi)}. (This set of course includes the boundary nodes of Gi.) We write
G = Gi ∪ N (Gi) ∪R. Each pair of vertices α ∈ ∂Gj − ∂Gi, β ∈ ∂Gk − ∂Gi, where
Gj , Gk are in N (Gi) may (or may not) be connected through R.
Hence for some edge-weighting R is electrically equivalent to

K(∂N (Gi)− ∂Gj)− S,

where S is the set {∂Gj−to−∂Gj edges}∪{self edges in K(∂N (Gi)−∂Gj) induced
by identifications of boundary nodes among the ∂Gj with Gj ∈ N (Gi)}
As constructed, some of the edges in R may have infinite resistance; this happens

when two nodes in ∂Gj , ∂Gk ∈ N (Gi) are not connected through G−Gi−N (Gi).
Since we know the graph structure, we can forget about these edges, which are of
no electrical significance (and we do this now, without changing notation).
We make an important simplification by noting that for our purposes each Gj

in N (Gi) is electrically equivalent to the complete graph on V (Gj). Since for the
time being we are not interested in recovering Gj , henceforward when we speak
of an edge in Gj , we really mean an edge in K(V (Gj)). In addition we forget
about Gj ∈ N (Gi) if there are no edges between ∂Gj − ∂Gi and the rest of the
graph, because then if we make no measurements on ∂Gj − ∂Gi, Gj is electrically
insignificant.
We now show that removing any edge in R or any edge in Gj ∈ N (Gi) breaks

some connection in G. First consider an edge e = α, β in Gj ∈ N (Gi). Removing
e breaks the connection {e}, because all neighbors of α in ∂N (Gi) are boundary
nodes, and moreover if α ∈ ∂Gi, there is no path to β through Gi that avoids
hitting some other boundary node. Similarly, both endpoints of any edge in R have
only boundary nodes as neighbors. Hence removing e ∈ R breaks the connection
{e}.
Hence by [CIM 4.2, CM 3.15] we can recover effective resistances on the edges

in G − Gi as seen by someone making measurements only at the boundary nodes
of Gj ∈ N (Gi). We can collapse this data to get resistances on edges in K(∂Gi),
so that G is seen, by someone making measurements only at nodes in ∂Gi, as
electrically equivalent to Gi ∪K(∂Gi).
Now the problem of recovering Gi is just the problem of recovering a recoverable

graph with added known boundary-to-boundary edges. But by [CIM Section 8]
this is a recoverable graph, and so the proof is complete. ¤

Remark. The reason that this works is that the proof that we can recover boundary-
to-boundary edges whose removal breaks a connection [CIM 4.2, CM 3.15] is purely
linear algebra, and does not rely in any way on the hypothesis that the graph is
circular planar.

Theorem 1 implies the existance of some truly new and interesting examples,
like the following.

Example. Let M be the 4-regular mesh on the torus T2 obtained by identifying
opposite sides of the rectangle pictured in Figure 1. Let the existing vertices of M
be interior nodes, and add a boundary node on each existing edge. By Theorem 1,
the resulting graph is recoverable. Furthermore, it has no boundary-to-boundary
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edges, nor any boundary-to-interior spikes, which were necessary ingredients for
[CIM, CM].

Figure 1. A mesh on the torus

Corollary (Interior Condition on Recoverability). If every decomposition of
G into distinct graphs {Gi}, where a pair Gi and Gj which can share up to one
boundary node, is such that one of the Gi in each decomposition is non-recoverable,
then G is not recoverable.

This corollary is of course only a modest extension of the trivial result that if
one of Gi, Gj is not recoverable, neither is Gi t Gj . But it serves as an example
of the sort of local result that can determine the recoverability of a network. The
following section has a less obvious result in the same vein.

3. A necessary condition

We show that the intersection conditions of Theorem 1 are in some sense char-
acteristic for all recoverable graphs.

Theorem (Exterior Condition on Recoverability). Let G be decomposable
into a collection of distinct connected graphs {Gi : E(Gi) 6= φ}, disjoint except
possibly at the boundary. Suppose that |∂Gi ∩ ∂Gj | > 1 for some i, j with i 6= j.
Then G is not recoverable.

Proof. It is necessary to send current between each pair α and β of distinct bound-
ary nodes to recover the graph. For, suppose that we have a recoverable graph, and
we try to avoid sending current between α and β as long as possible, recovering
the rest of the graph first. We would obtain a single edge between α and β, which
would then have to be recovered.
If α and β are common to the boundaries of two distinct graphs G1 and G2, we

can not send current into α without it flowing through both graphs into β. Hence,
we can not get an accurate measurement of the current at β, and so can not recover
G. ¤
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