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Abstract

This paper discusses the inverse conductivity problem for annular net-
works, those networks that are defined inside an annulus. In particular,
we examine networks formed by intersecting lines with concentric circles.
A simple recovery algorithm that calculates the conductances, γ, directly
from the response matrix, Λ, has been produced for the network with
twice as many rays as circles. This network appears to be the cutoff point
for recoverable annular networks. Conductivities from graphs with fewer
rays were not necessarily recoverable from the response matrix. A de-
tailed analysis is given for the network with three rays intersecting two
circles. It can be shown that this is a non-recoverable network and nu-
merical evidence suggests that the map γ−→Λ is in fact infinite to one.
Several methods are given for finding relations in the response matrix,
and a characterization of this network’s response matrix is also suggested.
Finally there is a brief discussion on how methods for analyzing these an-
nular networks might prove useful for analyzing other planar, non-circular
planar graphs.
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1 Introduction

1 The purpose of this research is to find methods for analyzing the inverse
conductivity problem for annular networks with circular symmetry and to see if
these methods can be generalized. Since the shape of the graph is determined
by the number of rays and circles, specific annular graphs will be referred to as
G(rays, circles).

The forward problem is to produce the response matrix from known conduc-
tors. For a network with n nodes, the Kirchhoff matrix K is an n×n symmetric
matrix formed by taking for i 6= j

K(i, j) =
{ −γ(i, j) if there is an edge from i to j

0 if no such edge exists

}

Then the diagonal entries are chosen such that each row sums to zero. K
operates on the vector of potentials u to give a vector of currents φ coming out
of each node. (Ku = φ) Naturally the current out of interior nodes is set to
zero to agree with Kirchhoff’s Law. It’s useful to write the Kirchhoff matrix in
the following block form:

K =
[
A B
BT C

]

If all interior nodes are numbered such that they appear in the C block and all
boundary nodes are in the A block, then the response matrix is just the Schur
Compliment of K in C.

Λ = A−BC−1BT

It is shown in [1] that C is invertible because K is positive semi-definite. Λ acts
on the vector of boundary potentials to give the vector of boundary currents.
This is the Dirichlet to Neumann map.

The inverse problem is to see if K, which contains all the information about
the network, can be recovered from Λ and the shape of the graph. One of
the most useful tools for doing this is the averaging property for γ-harmonic
networks, which follows directly from Kirchhoff’s Law. (A γ-harmonic function
in this discrete case is one that satisfies Kirchhoff’s Law at each interior node.)
If p is any interior node and q is a neighboring node, then

u(p) =

∑

q∈N(p)

γ(p, q)u(q)

∑

q∈N(p)

γ(p, q)
(1)

This formula is used extensively both in creating current patterns in a network
and in showing that imposed boundary conditions are legal. It is used repeat-
edly, for example, in the recovery algorithm for all networks of the form G(2n, n)
that appears in the next section.

1Background information for forward and inverse problems is taken from [1].
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The other main tool is the formula which relates connections in the graph to
sub-determinants of the response matrix. If P = (p1, ..., pk) and Q = (q1, ..., qk)
are two sets of disjoint boundary nodes, a k-connection from P to Q is the set
of all disjoint paths α = (α1, ..., αk) through the graph where each element in
P is connected to a different element in Q. For every 1 ≤ i ≤ k, αi is the
path from Pi to Qτ(i) where τ is a permutation of Q in the permutation group
Sk. Then for each k-connection in the set of connections from P to Q : τα
is the permutation of the nodes (q1, ..., qk) that matches the endpoints of the
paths (α1, ..., αk); Eα is the set of edges in α; Jα is the set of interior nodes
which are not endpoints of any edge in α; I is the set of all interior nodes; and
Dα = detK(Jα;Jα). Then

detΛ(P ;Q) · detK(I; I) = (−1)k
∑

τ∈Sk
sgn(τ)





∑
α

∏

e∈Eα
γ(e) ·Dα

τα = τ



 (2)

The network G(3, 2), discussed in sections 2 and 3, is interesting because in
many ways it behaves similarly to a graph that has two edges in series but is
not Y − ∆ equivalent to any such graph. G(3, 2) is an unrecoverable network
despite the fact that there are as many edges in the network as parameters
in Λ, which is 15. In fact strong numerical evidence suggests that although
Λ ⊆ <15, Λ is actually 14 dimensional. This is consistent with the discovery of
a determinantal relation among the 15 parameters in Λ that along with some
sign conditions may characterize this response matrix.

Section 4 examines ways in which some of the methods used might be gener-
alized and also includes some conjectures about annular networks not discussed
in detail. Included in Appendix A is some of the MATLAB code used to produce
the numerical results.
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2 Generally Recoverable Annular Networks

2.1 Current Patterns for the Network with Twice as Many
Rays as Circles

All G(n, n/2) networks are completely recoverable. (n = 4, 6, 8, ...) The current
patterns used in the recoverability algorithm are identical for any size of these
networks. Figure 1 shows the numbering of the nodes as well as the conditions
that are imposed on the boundary to produce the general current patterns.
Although n = 6 in that example, the numbering is left in terms of n to show the
general numbering system. Parenthesis signify current conditions. A potential
of zero and a current of zero are both imposed at boundary nodes one through
n. Potentials of zero and then one are imposed at nodes 4 + n and 5 + n
respectively. In the most general case those nodes would be labeled 1 + 3n/2
and 2 + 3n/2. When Kirchhoff’s Law is forced to be true at all interior nodes,

Figure 1: G(6, 3)

the zero potentials propagate through the network as shown in figure 2. Most
of the zeros follow directly from the averaging property. The zero potentials at
nodes relabeled p1 through p5 follow in a slightly less direct manner.

Lemma 2.1 Given the initial boundary conditions of figure 1, the voltage po-
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tentials at nodes labeled (p1, ..., p5) in figure 2 must be identically zero.

Proof: By equation 1, if u1 is the voltage at p1, u1u2 ≤ 0. Otherwise zero could
not be the average of the surrounding potentials weighted against all positive
conductors. Similarly u2u3 ≤ 0, u3u4 ≤ 0, u4u5 ≤ 0 and u1u5 ≤ 0. But
0 ≤ u1u2u2u3u3u4u4u5u1u5 ≤ 0 because it is both a product of squares and a
product of 5 non-positive numbers. Therefore (u1, ..., u5) = 0. 2

Figure 2: All zero potentials for G(n, n/2)

2.2 Existence and Uniqueness of Unknown Boundary Po-
tentials

The unknown boundary potentials of figure 2 are labeled A,B,C,D and E. They
need to exist for the imposed boundary conditions to be legal and they should
be unique if this current pattern is to be useful in recovering the conductances.

Theorem 2.1 If the boundary conditions described in figure 1 are imposed on
any size annular network G(n, n/2), then all the unknown boundary potentials
exist and are uniquely determined.

Proof:
1. One proof of this fact is by way of the averaging property (equation 1).
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By applying this equation at p2+n/2+(n/2+1)n, the potential on the same circle
but one ray counterclockwise is determined by the surrounding conductivities.
(The specific number of that node depends on the size of the network.) From
p2+n/2+(n/2+1)n, move in one circle and counterclockwise one ray. Applying the
averaging property at this new node will again determine another node in terms
of its surrounding conductivities. Continuing in this fashion will eventually de-
termine u1. (The numbering is now the numbering of the nodes in figure 1.) At
this point, (u1, ..., un) and (u1+2n, ..., u4n) will all be determined. Now with the
potentials on the inside two circles determined, there is only one way to deter-
mine the rest of the potentials. Applying the averaging property at any node
p on the outermost circle to be completely determined will yield the potential
on the same ray as p but one circle outward. Proceeding in this fashion will de-
termine the potentials at all the nodes. Thus the imposed boundary conditions
are legal because it’s possible to satisfy Kirchhoff’s Law at each interior node.
All unknown potentials are also uniquely determined because there is only one
way to express them in terms of the conductances.

2. Another interesting proof of the same fact goes by way of equation 2.
Let Q be the boundary nodes at which the potential is unknown and P be
the boundary nodes for which known currents are imposed. The boundary
potentials can be found in the following way:

U(Q) = Λ(P ;Q)−1 · −Λ(P ; p2+3n/2)

It only needs to be shown that Λ(P ;Q) is non-singular. By equation 2,
det Λ(P ;Q) 6= 0 if for all τ ∈ Sk sgn(τ) remains the same. For G(n, n/2),
there are only two connections from P to Q. The path α1 that starts at P1

must terminate at either p2 or pn, which correspond to the two possible per-
mutations of Q1. With n rays, there will always be n − 1 unknown potentials.
The other paths are all determined by α1. With n − 2 remaining paths and
only n/2 − 1 remaining circles, half the paths must go to one side of α1 while
the other half goes to the other side. Since the only possible permutation shifts
every element in Q by one, it will always take n − 2 permutations to get from
one connection to the other. Since n is an even number, sgn(τ) is the same for
both connections. So Λ(P ;Q) is invertible and U(Q) can be uniquely solved for.
2

2.3 Recoverability Algorithm

The following is a sketch of the recovery algorithm for G(n, n/2) networks:

•1 The first step is to calculate the unknown potentials as done in the previous
section. U(Q) = Λ(P ;Q)−1 · −Λ(P ; p2+3n/2)

•2 Then calculate the conductance of the boundary spike which has a poten-
tial difference of one.

γ(2 + 3n/2, 2 + n(n/2 + 1)) = φ(2 + 3n/2)
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φ(2 + 3n/2) = Λ(2 + 3n/2; p1, ..., p2n) · U(p1, ..., p2n)

•3 Rotate the current patterns and follow the previous steps to calculate all
the boundary conductors (conductors on the first layer).

•4 Use Ohm’s Law, (u = φ/γ), to calculate the potentials one circle in (the
second layer).

•5 Now on this circle there are two edges for which the potential difference and
current are known. Again, use Ohm’s Law to calculate the conductances
there and rotate the current patterns to get solve for all edges on that
circle.

•6 At each node on the circle, the current that flows towards the center of
the network can be found by applying Kirchhoff’s Law. Then there are
two edges on the third layer for which the current flow and potential
difference are known. Again, solve for all conductances on this layer by
rotating current patterns.

•7 Repeat steps 4,5, and 6 until more than half of the conductances have
been recovered.

•8 Invert the current pattern and follow the same sequence of steps to solve
the rest of the network.
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3 Annular Network with Three Rays and Two
Circles

3.1 Recovering Conductances When One Boundary Con-
ductor is Known

When the conductance of a boundary spike is known for G(3, 2), the remaining
conductances are recoverable. Figure 3 shows all the imposed conditions and
the zero potentials that propagate inside the network. In the case of Figure 3,
γ(4, 10) is known to equal a. Setting the current equal to the conductance forces
the voltage difference to be one, but since u4 already equals one, u10 becomes
zero. Equation 3 shows how the three unknown potentials can be found:

Figure 3: G(3, 2)



u1

u2

u3


 =



λ4,1 λ4,2 λ4,3

λ5,1 λ5,2 λ5,3

λ6,1 λ6,2 λ6,3



−1 

a− λ4,4

−λ5,4

−λ6,4


 (3)

The above matrix Λ(4, 5, 6; 1, 2, 3) is invertible because there is only one con-
nection from (p4, p5, p6) to (p1, p2, p3). Therefore by equation 2 we see that
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det Λ(4, 5, 6; 1, 2, 3) 6= 0. So the potentials exit for the given boundary condi-
tions and are uniquely determined. It is then simple to solve for the boundary
conductances. For example:

γ(2, 8) =
1
u2

[λ2,4 + u1λ2,1 + u2λ2,2 + u3λ2,3]

γ(3, 9) =
1
u3

[λ3,4 + u1λ3,1 + u2λ3,2 + u3λ3,3]

The current pattern can be rotated and inverted as long as the conductor that
must be known corresponds to one that has been solved for. Once all the
boundary conductors have been found, Ohm’s Law can be used to determine
for any rotation or inversion the voltage at the one interior node which wasn’t
determined at the start. In figure 3 that node is p7. The complete recoverability
algorithm can be found in Appendix A.

3.2 Non-Recoverability of G(3,2)

Numerically, it’s possible to find multiple sets of conductivities for G(3, 2) that
result in the same response matrix, thus proving that the conductivities are not
recoverable.

Example 1: Let (γ1(4, 10), γ1(6, 12), γ1(5, 11), γ1(10, 11), γ1(10, 12), γ1(11, 12), ...
γ1(7, 10), γ1(8, 11), γ1(9, 12), γ1(7, 8), γ1(7, 9), γ1(8, 9), γ1(1, 7), γ1(2, 8), γ1(3, 9))
= (1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5) be a set of conductivities for G(3, 2) as
numbered in figure 3. When the recovery algorithm is run with γ(4, 10) = 1
replaced by γ(4, 10) = 7, the set of γ2s is

(7, 7, 7,
14
241

,
14
241

,
14
241

,
210
241

,
210
241

,
210
241

,
2800
241

,
2800
241

,
2800
241

,
70
17
,

70
17
,

70
17

)

Now by a symbolic calculation with all rational numbers,

Λγ1 = Λγ2 =
1

4393




11765 −4450 −4450 −1185 −840 −840
−4450 11765 −4450 −840 −1185 −840
−4450 −4450 11765 −840 −840 −1185
−1185 −840 −840 3577 −356 −356
−840 −1185 −840 −356 3577 −356
−840 −840 −1185 −356 −356 3577




To illustrate that the conductances are all found in terms of the known con-
ductor, here is the MATLAB output for when γ(4, 10) = 1 is replaced by
γ(4, 10) = a. Λγ1 is used.

symgetcond(L,a);
gamma4_10 =
a
gamma6_12 =
a
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gamma5_11 =
a
gamma10_11 =
4*a^2/(-150*a+89*a^2+63)
gamma10_12 =
4*a^2/(-150*a+89*a^2+63)
gamma11_12 =
4*a^2/(-150*a+89*a^2+63)
gamma7_10 =
3*(-21+23*a)*a/(-150*a+89*a^2+63)
gamma8_11 =
3*(-21+23*a)*a/(-150*a+89*a^2+63)
gamma9_12 =
3*(-21+23*a)*a/(-150*a+89*a^2+63)
gamma7_8 =
2*(-21+23*a)^2/(-150*a+89*a^2+63)
gamma7_9 =
2*(-21+23*a)^2/(-150*a+89*a^2+63)
gamma8_9 =
2*(-21+23*a)^2/(-150*a+89*a^2+63)
gamma1_7 =
5/2*(-21+23*a)/(14*a-13)
gamma2_8 =
5/2*(-21+23*a)/(14*a-13)
gamma3_9 =
5/2*(-21+23*a)/(14*a-13)

It is important that this calculation was done symbolically. Λ changes so
little when conductances are changed that even with double precision roundoff
error would normally make it difficult to see that Λγ1 and Λγ2 are exactly the
same.

Appendix A includes MATLAB programs that execute the following series
of steps:

•1 Compute K and Λ from a known set of conductivities.

•2 Choose a conductance for a (see figure 3) and compute the other 14 con-
ductors based on Λ.

•3 Make a new Kirchhoff matrix K ′ and calculate the new response matrix
Λ′.

•4 Compare Λ and Λ′.

In every instance, the two response matrices have been identical with no upper
bound on the choice for a. However, if the conductors are forced to be positive
as they should be, there is then a range that the choice of a must fall into.
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Conjecture 3.1 The map γ −→ Λ is infinite to one. Starting with known K
and Λ, any choice of a boundary conductor within some range about the original
value will lead to a new set of conductors for the network which will then have
the same Λ.

This behavior is similar to the example of two edges connected in series.
When one edge changes within a small enough range, the other edge can adjust
itself in order to keep the same response matrix. Similarly, for G(3, 2) it appears
that for any choice of a boundary conductance within a certain range, the other
14 conductors can adjust themselves to again retain the same response matrix.

This is especially interesting in the layered case. When the initial set of
conductivities are equal on each of the five layers, the response matrix always
has a special form. There are blocks which have the same value. When one of

Λ =




Σ α α β δ δ
α Σ α δ β δ
α α Σ δ δ β
β δ δ Σ ε ε
δ β δ ε Σ ε
δ δ β ε ε Σ




Figure 4: Response matrix for layered network

the boundary conductors is altered and used to compute the other 14, they all
vary the same amount on each layer without being restricted equal on layers.
This has already been shown in example 1. Although not quite a proof, this
seems to indicate that only layered networks can have that special form.

Conjecture 3.2 Any response matrix which has the form shown in figure 4 and
satisfies all sign conditions listed in section 4.1 is a response matrix for G(3, 2)
with conductivities equal on layers.
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4 The Response Matrix for G(3,2)

4.1 Sign Conditions and Legal Perturbations

For any response matrix for G(3, 2), there are 13 sign conditions which come
in the form of determinantal inequalities. According to equation 2, whenever
there is only one connection from two sets of nodes P and Q it must be true
that det Λ(P,Q) 6= 0. There are only four such sets of nodes in G(3, 2) that are
not equivalent under rotations or inversions of the network. They are

1. det Λ(1, 2, 3; 4, 5, 6) < 0

2. det Λ(1, 2, 5; 3, 4, 6) > 0

3. det Λ(1, 2; 4, 5) > 0

4. det Λ(1, 4; 2, 5) > 0

Taking all rotations and inversions of these four types of determinants yields
the complete set of determinantal inequalities listed below.

1. det Λ(1, 2, 3; 4, 5, 6) < 0

2. det Λ(1, 2, 5; 3, 4, 6) > 0

3. det Λ(2, 1, 4; 3, 5, 6) > 0

4. det Λ(2, 3, 5; 1, 4, 6) > 0

5. det Λ(2, 3, 6; 1, 5, 4) > 0

6. det Λ(1, 3, 4; 2, 5, 6) > 0

7. det Λ(1, 3, 6; 2, 4, 5) > 0

8. det Λ(1, 2; 4, 5) > 0

9. det Λ(2, 3; 5, 6) > 0

10. det Λ(1, 3; 4, 6) > 0

11. det Λ(1, 4; 2, 5) > 0

12. det Λ(1, 4; 3, 6) > 0

13. det Λ(2, 5; 3, 6) > 0

These determinants, however, aren’t enough to characterize Λ. It’s simple to
find response matrices that satisfy these conditions yet don’t belong to the
space of response matrices for G(3, 2). For example, one can slightly perturb
a single entry and then correct Λ to maintain symmetry and row sums equal
to zero. This usually continues to satisfy the sign conditions without being a
valid response matrix for this network. The criterion for being a valid response
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matrix assumes the validity of Conjecture 3.1. The same MATLAB programs
already used check if any new Λ satisfies that conjecture.

However, there are three entries in Λ that can be multiplied by any constant
c, c ≥ 1, such that when corrections are made to maintain the characteristics of
a response matrix, Λ stays in the space of valid response matrices for G(3, 2).
The entries are λ1,4, λ2,5, and λ3,6 based on the numbering in figure 3. These
represent lines along which Λ can vary. They will prove useful in section 4.2.

4.2 Existence of a Relation

Given the success at finding multiple solutions of the inverse problem for G(3, 2)
and the difficulty in staying in the space of valid response matrices when entries
in Λ are perturbed, it is initially assumed that Λ is 14 dimensional. Since there
are 15 parameters in Λ, there should be a polynomial relation among these
terms that reduces the dimension by one.

Theorem 4.1 Any relation among the 15 parameters in Λ must be of the same
degree.

Proof: In general, any response matrix can be multiplied by a scalar, t, and
still be a response matrix for the same type of network. Suppose the relation,
R = 0, consists of a sum of polynomials of different degree. Let P4 and P3
represent polynomials of degrees 4 and 3 and let R = P3 + P4. Now if Λ is
multiplied by t, R = t3 ∗ P3 + t4 ∗ P4. R must be zero in t, so both P3 and P4
are zero. 2

Theorem 4.2 Any relation among the 15 parameters in Λ cannot include the
following terms: λ1,4, λ2,5, or λ3,6.

Proof: It has been shown numerically that λ1,4 can be multiplied by any num-
ber c, c > 1, and the adjusted response matrix is still a response matrix for
G(3, 2). Let all powers of λ1,4 be factored out of the relation. R can be written
as

R = cλ1,4(R1) + c2λ2
1,4(R2)...+ (R3)

Since R is zero in c, R1 = 0, R2 = 0, and R3 = 0. Thus λ1,4 doesn’t appear in
R. Similarly, λ2,5 and λ3,6 are also not included in R. 2

Theorem 4.3 Let R be a polynomial relation in Λ be of degree d. For any d,
there are two possible choices of a basis of polynomials such that R must be a
linear combination of the polynomials in one of the bases. One basis the set
of polynomials of degree d that are invariant under rotations and inversions of
G(3, 2). The other is the set of polynomials of degree d that are invariant under
rotations but change sign under inversions.

Proof: By Theorem 4.1, the only relations of degree d are multiples of R. Let
GR be the operator that performs rotations on P , where P is a polynomial of
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degree d, and let GI be the operator that performs inversions on P . There must
be a relation for each rotation and inversion. If P is to appear in the relation,
then

GRP = tRP and GIP = tIP

where tR ∈ < and tI ∈ <. P is an eigenvector and the t’s are eigenvalues.
The characteristic equations come directly from G. Since GR is a third order
operation, its corresponding eigenvalues, tR, are the three roots of unity. The
only real root is 1. GI is a second order operation so tI can be 1 or −1. Therefore

Basis1d = {P : GRP = P, GIP = P}

Basis2d = {P : GRP = P, GIP = −P}
These correspond to the two possible choices of basis described in the theorem
statement. 2

4.3 Finding the Relations

One method used to find the relation is a brute force MATLAB program that for
any degree d finds all polynomials of that degree which satisfy either GIP = P
or GIP = −P . (GRP = P must always be satisfied.)

Example 2 The following MATLAB output is a basis for GIP = P where
P is of degree two. Λ is labeled as in equation 4.

Basis =

[ a^2+f^2+b^2+t^2+v^2+u^2]
[ a*b+f*a+b*f+t*u+v*t+u*v]
[ a*d+f*p+b*q+t*g+v*r+u*e]
[ a*e+f*g+b*r+t*q+v*d+u*p]
[ a*g+f*r+b*e+t*d+v*p+u*q]
[ a*p+f*q+b*d+t*r+v*e+u*g]
[ a*q+f*d+b*p+t*e+v*g+u*r]
[ a*r+f*e+b*g+t*p+v*q+u*d]
[ 2*a*t+2*f*v+2*b*u]
[ a*u+f*t+b*v+t*b+v*a+u*f]
[ d^2+p^2+q^2+g^2+r^2+e^2]
[ d*e+p*g+q*r+g*q+r*d+e*p]
[ 2*d*g+2*p*r+2*q*e]
[ d*p+p*q+q*d+g*r+r*e+e*g]

Those two cases GIP = P and GIP = −P are dealt with separately. The first
step is to numerically compute a random response matrix and substitute the
values into the set of polynomials. This appears as the first row in a matrix
P ∗. The process is repeated until P ∗ is a square matrix. Then the nullspace

15



N(P ∗) is calculated. Every column in the nullspace represents a combination of
polynomials that is zero. Algebraic identities do exist that make a combination
of polynomials equal to zero, but these can easily be weeded out because the
coefficients change every time new numbers are substituted into the polynomials.
The relation found was of degree 3 and occurred among elements of the basis
for GIP = −P . If the response matrix is represented as

Λ =




Σ a b c d e
a Σ f g h p
b f Σ q r s
c g q Σ t u
d h r t Σ v
e p s u v Σ




(4)

Then the relation can be expressed as

R = aqv + fdu+ bpt− tef − vgb− ura− dpq + gre = 0 (5)

Theorem 4.4 For any Λ for G(3, 2) labeled as in equation 4, equation 5 is true.

Proof: Equation 5 is equivalent to saying

R = det(Λ(1, 2, 4; 3, 5, 6))− det(Λ(1, 4, 5; 2, 3, 6)) = 0

Examining these determinants by way of equation 2 shows R always holds for
G(3, 2). The set of paths in the connection (p1, p2, p4; q3, q5, q6) are exactly the
same as the set of paths in the connection (p1, p4, p5; q2, q3, q6). In equation
2 this means that

∏
e∈Eα γ(e) is the same for each connection. Since Dα and

detK(I; I) are also the same, the determinants corresponding to each connection
must be equal. 2

Theorem 4.5 There is no relation in G(3, 2) that has degree less than three.

Proof: The numerical method used to produce R also produced to sets of bases
each for degrees one and two. If R were to be of degree one or two, it would
have to be a linear combination of terms in one of those four bases. No such
relation exists because for degrees one and two, N(P ∗) = �. 2

Another useful method for finding R involves setting conductances to zero.
Any relation R in G(3, 2) with γ > 0 will persist in the new graph. As shown
in figure 5, setting two conductances to zero can reduce the graph to a circular
planar one. The only relations that can equal zero in the circular planar case
are determinants. These determinants can be found in a straightforward way.
Setting γ(1, 3) = 0 and γ(4, 6) = 0 results in the graph seen in figure 5. Let the
new graph be called G′. There are two three by three determinants D1 and D2
in G′ which equal zero.

D1 = det Λ(1, 2, 4; 3, 5, 6) = 0
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Figure 5: G′: (G(3, 2) with two edges removed)

D2 = det Λ(1, 4, 5; 2, 3, 6) = 0

The relation in G must be a combination of the relations in G′. R = α1D1 −
α2D2 = 0, where α1 and α2 are allowed to be polynomials. As it turns out,

R = D1−D2

Theorem 4.6 R is the only possible polynomial relation in Λ for G(3, 2).

Proof: It has already been shown that R = D1 − D2. Suppose there exists
another relation S. Then S = α1D1 + α2D2 where α1 and α2 are polynomials.
With a change of basis this can be rewritten as S = δR + βD2. If S is to be
zero for G(3, 2), then βD2 must be zero. However, D2 6= 0 for G(3, 2). In fact,
D2 < 0. (See the list in Section 4.1.) Therefore β must be a polynomial relation
that equals zero. But since D2 has degree three, the degree of β must be three
less than that of S. Every relation S implies the existence of a polynomial
relation that has degree three less than it. According to Theorem 4.5, we can’t
have polynomial relations of degree one or two. Therefore, any relation S must
be of degree 3n; n = (0, 1, 2, ...). By the above argument, there must be a
relation β′ of degree three. This can be written as β′ = δ1R + β′′D2, which
implies that β′′ is the number zero and that β′ = δ1R. So S = (δ2 + δ1D2)R if
S is degree six. By induction, R can be factored out of any relation S. Thus R
is the only polynomial relation in Λ for G(3, 2). 2
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Conjecture 4.1 The relation

R = det(Λ(1, 2, 4; 3, 5, 6))− det(Λ(1, 4, 5; 2, 3, 6)) = 0

combined with the 13 previously mentioned sign conditions constitutes a char-
acterization of the response matrix for G(3, 2).

It has been shown that these conditions are true for valid response matrices
but it remains to be proven that response matrices for other graphs couldn’t
possibly satisfy these 14 conditions. Even so, this is a good candidate for a
characterization. The relation shows it’s possible to have one parameter in Λ
determined by fourteen others. Also, it has been proven that R is the only
relation in Λ.

5 Methods that can be Generalized

A recovery algorithm for G(n, n/2) has already been discussed, and annular
networks with more rays than twice the number of circles are also recoverable.
Additional rays only make it easier to zero out the desired part of the network.

Although G(3, 2) is clearly non-recoverable, larger networks of the same type
have not been examined here in detail. However, it has been verified that the
same current pattern can be produced for graphs G(2n − 1, n). Therefore it
should also be possible to construct an algorithm that computes the conduc-
tances when one boundary conductor is known. The similarity with the G(3, 2)
case suggests that the general network of this type should be non-recoverable in
the same manner, but this has not been verified. The means to check this exist,
however, because the same type of algorithm used to find counterexamples in
G(3, 2) can be used again.

It is difficult to say anything about other graphs such as G(2n− 2, n). Since
these have even less boundary information than cases which already appear to
be non-recoverable, it seems that they too should be non-recoverable. This
may not be true, however. Although for G(4, 3) with layered conductivities the
conductors can be calculated from one known boundary conductance, only with
the correct value of that conductor has the algorithm been able to produce the
same response matrix. This suggests that G(4, 3) with layered conductivities
might be recoverable. The graph certainly merits further attention.

Some of the methods used to find relations in G(3, 2) may work in a more
general setting. Producing a basis of all polynomials of a certain degree that
are invariant or change signs under rotations and inversions is probably not a
good method to use. Unless a supercomputer is handy, the computation time
required for large networks and/or polynomials of high degree will make the
process infeasible.

Using equation 2 is also not an obvious way to proceed for finding rela-
tions because the larger the graph, the more shrewdness is required to find the
combinations of connections whose paths overlap in just the right way.
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The most promising method seems to be to set conductances equal to zero
and find relations in the new graph. For G(2n− 1, n), n conductances must be
set to zero to produce a circular planar graph. This method suggests that if
there is a relation for G(2n− 1, n) that the degree is n+ 1. A program can be
used to check determinants and find all relations in the new graph. It can then
substitute values in as was done with the more general basis of polynomials. One
can then produce a square matrix with values substituted into the relations and
compute the nullspace. Any relation that exists should appear.
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A Example Network whose γ−→Λ Map is Two
to One

A.1 Summary

The network shown in Figure 6 is not recoverable but it has the interesting
property that its γ−→Λ map is two to one. This cannot happen for circular
planar networks. If a circular planar network is not recoverable, it is Y − ∆
equivalent to a graph with a series or parallel connection, which means it’s
γ−→Λ map is infinite to one. So for a circular planar network, that map from
the conductances to the response matrix is either one to one or infinite to one.
The network in Figure 6 shows that networks defined on an annulus do not
share this property. In fact, when trying to solve for the conductances in that
example, for each conductor there is a corresponding quadratic equation relating
it to entries in the response matrix. For example, if Λ is symbolically defined
as in Equation 7, then the quadratic equation for the conductor from node six
to node nine, denoted γ6,9, is

γ2
6,9q(ch− dg) + γ6,9(2q(ch− dg)(e+ u) + (q + u)(qhe+ sch− rpc− sgd))

+q(ch−dg)(e+u)2+(q+u)(e+u)(qhe+sch−rpc−sgd)+e(sh−rp)(q+u)2 = 0
(6)

By the quadratic formula there are two solutions for γ6,9. Example A1 takes
a specific Λ and shows there are two sets of positive conductors which produce
that response matrix. Thus for the network in Figure 6 there are two solutions
to the inverse problem.

A.2 Description of the Network and Determinantal Rela-
tions

The network in Figure 6 has nine nodes and twelve edges. The nodes numbered
one through six are the boundary nodes. This graph can be thought of as being
on a cylinder with nodes one through three at one end of the cylinder and nodes
four through six at the other end.

There are three determinantal relations in this network:

1. det Λ(1, 4; 2, 5) = 0 (at− dg = 0)

2. det Λ(1, 4; 3, 6) = 0 (bu− eq = 0)

3. det Λ(2, 5; 3, 6) = 0 (fv − pr = 0)

The equations in parenthesis follow from the symbolic definition of Λ in
Equation 7.

There is obviously a lot of symmetry in this network. One especially useful
property is that the edges are topologically indistinguishable from each other.
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Figure 6:

Each edge connects a boundary node to an interior node. Many operations can
be performed on the network without changing it. It can be rotated, inverted
and even flipped across several possible lines. With just these three operations,
any edge can be moved into the position of another edge without changing the
network. This symmetry means that solving for any one conductor is the same
as solving for all the others. For example, to move e6,9 to e2,8, e6,9 can be moved
to e5,8 by rotation and then to e2,8 by inversion. Applying these operations to
all the terms in Equation 1 will yield a similar equation in the variable γ2,8.

Another property of the network that makes it simpler to deal with is the
fact that no interior node is directly connected to another. This means that
in the Kirchhoff matrix, the C block is diagonal. This makes taking the Schur
Complement much simpler since it is not difficult to take the inverse of a diagonal
matrix. It is therefore reasonable to symbolically calculate the response matrix
in terms of the conductances.

A.3 Solving for γ in terms of the Λ Entries

Let Λγ be the response matrix calculated symbolically from the conductances
and let Λ be defined as in Equation 7.
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Λ =




Σ a b c d e
a Σ f g h p
b f Σ q r s
c g q Σ t u
d h r t Σ v
e p s u v Σ




(7)

Since Λγ is easy to compute, the most straightforward way to solve for γ is
to set Λγ = Λ and use the equations generated by the entries to solve for the
conductances in terms of the entries of Λ. There are 15 parameters in Λ so there
are initially 15 equations to work with. Below the equations are listed next to
the entries they correspond to above the main diagonal.

Λ(1, 2)
−γ1,7γ2,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
= a

Λ(1, 3)
−γ1,9γ3,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= b

Λ(2, 3)
−γ2,8γ3,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
= f

Λ(1, 4)
−γ1,7γ4,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
+

−γ1,9γ4,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= c

Λ(2, 4)
−γ2,7γ4,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
= g

Λ(3, 4)
−γ3,9γ4,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= q

Λ(1, 5)
−γ1,7γ5,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
= d

Λ(2, 5)
−γ2,7γ5,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
+

−γ2,8γ5,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
= h

Λ(3, 5)
−γ3,8γ5,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
= r

22



Λ(4, 5)
−γ4,7γ5,7

γ1,7 + γ2,7 + γ4,7 + γ5,7
= t

Λ(1, 6)
−γ1,9γ6,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= e

Λ(2, 6)
−γ2,8γ6,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
= p

Λ(3, 6)
−γ3,8γ6,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
+

−γ3,9γ6,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= s

Λ(4, 6)
−γ4,9γ6,9

γ1,9 + γ3,9 + γ4,9 + γ6,9
= u

Λ(5, 6)
−γ5,8γ6,8

γ2,8 + γ3,8 + γ5,8 + γ6,8
= v

It is possible to verify by hand the entries in Λγ . For example, suppose
there is a boundary potential of one at node two and boundary potentials of
zero everywhere else. Λ(1, 2) is the current at node one and that current is
easy to calculate. By the averaging property, the potential at node seven is γ2,7

divided by the sum of the four conductors neighboring node seven. Be Ohm’s
law the current at node one is negative one times the potential at node seven
times γ1,7. This is indeed Λ(1, 2), which is in the first equation listed above.

There are still fifteen equations in only twelve unknowns because the three
determinantal relations haven’t yet been taken into account. Three equations
are redundant and there is considerable freedom in deciding which three. Since
c, h, and s don’t appear in the determinantal relations, any three equations
except for the Λ(1, 4), Λ(2, 5) and Λ(3, 6) equations can be eliminated. As an
example, equations Λ(4, 5), Λ(4, 6) and Λ(5, 6) can be eliminated from the above
list. Now there are twelve equations in twelve unknowns. MATLAB’s symbolic
solver can now be used to solve for γ. Surprisingly, two solutions are found
for each conductor. Unfortunately, the expressions are large and difficult to
analyze. For example, when the starting set of equations is changed slightly,
the two solutions should be the same as before. But MATLAB’s simplification
functions fail to recognize that the expressions are equal (which they should be).

Fortunately, the above list of equations can be simplified further and solved
by hand. This method sheds more light on why there are two solutions because
it generates a quadratic equation for each conductor. As an example, the above
set of equations will be used to calculate γ6,9. Equations Λ(4, 5), Λ(4, 6) and
Λ(5, 6) have already been eliminated. It is possible to shrink the list further
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by noting that some of the Λ entries are nearly identical. For example, the
equations for Λ(1, 5) and Λ(4, 5) are so similar that when the first is divided by
the latter, the resulting equation is simple.

γ1,7 = γ4,7
d

t

The expression on the right can then be substituted for γ1,7 in all the equations
and the equation for Λ(4, 5) can be eliminated. All the conductors in the network
that switch places under inversion have the same type of relationship that γ1,7

and γ4,7 have. So five more equations can quickly be generated:

γ1,9 = γ4,9
e

u

γ2,8 = γ5,8
p

v

γ2,7 = γ5,7
g

t

γ3,9 = γ6,9
q

u

γ3,8 = γ6,8
r

v

And there is of course some freedom in eliminating five more equations from the
list. For the sake of this example, the six equations that will be kept are those
for Λ(1, 4), Λ(1, 5), Λ(2, 5), Λ(1, 6), Λ(2, 6) and Λ(3, 6). With the substitutions
that have taken place the new list of equations is

1.
−γ2

4,7d

γ4,7d+ γ5,7g + γ4,7t+ γ5,7t
+

−γ2
4,9e

γ4,9e+ γ6,9q + γ4,9u+ γ6,9u
= c

2. −γ4,7γ5,7d

γ4,7d+ γ5,7g + γ4,7t+ γ5,7t
= d

3.
−γ2

5,7g

γ4,7d+ γ5,7g + γ4,7t+ γ5,7t
+

−γ2
5,8p

γ5,8p+ γ6,8r + γ5,8v + γ6,8v
= h

4. −γ4,9γ6,9e

γ4,9e+ γ6,9q + γ4,9u+ γ6,9u
= e

5. −γ5,8γ6,8p

γ5,8p+ γ6,8r + γ5,8v + γ6,8v
= p

6.
−γ2

6,8r

γ5,8p+ γ6,8r + γ5,8v + γ6,8v
+

−γ2
6,9q

γ4,9e+ γ6,9q + γ4,9u+ γ6,9u
= s
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These equations can be simplified further. Equations two and four above
can be substituted into equation one. The d can be cancelled from both sides of
equation two. When similar simplifications are applied to the other equations
the resulting list is simple enough to see how they can be solved.

1.
γ4,7d

γ5,7
+
γ4,9e

γ6,9
= c

2.
−γ4,7γ5,7 = γ4,7d+ γ5,7g + γ4,7t+ γ5,7t

3.
γ5,7g

γ4,7
+
γ5,8p

γ6,8
= h

4.
−γ4,9γ6,9 = γ4,9e+ γ6,9q + γ4,9u+ γ6,9u

5.
−γ5,8γ6,8 = γ5,8p+ γ6,8r + γ5,8v + γ6,8v

6.
γ6,8r

γ5,8
+
γ6,9q

γ4,9
= s

The process for solving for γ6,9 is to first solve the first equation for the
fraction γ5,7

γ4,7
. This can then be substituted into the third equation, which can

be solved for the fraction γ6,8
γ5,8

. This can be substituted into the last equation,
which has only the variables γ6,9 and γ4,9. The fourth equation in the list can
be solved for γ4,9 and substituted into the equation just created. The result is
the quadratic equation listed in the summary.

γ2
6,9q(ch− dg) + γ6,9(2q(ch− dg)(e+ u) + (q + u)(qhe+ sch− rpc− sgd))

+q(ch−dg)(e+u)2+(q+u)(e+u)(qhe+sch−rpc−sgd)+e(sh−rp)(q+u)2 = 0
(8)

So by the quadratic formula there are two solutions for γ6,9.

γ6,9 =
−B ±√B2 − 4AC

2A
where

A = q(ch− dg)
B = 2q(ch− dg)(e+ u) + (q + u)(qhe+ sch− rpc− sgd)
C = q(ch− dg)(e+ u)2 + (q + u)(e+ u)(qhe+ sch− rpc− sgd) + e(sh− rp)(q + u)2
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As explained above, operations to rotate, flip or invert the network can be
applied to the formula to generate the solutions for all the other conductors.

Conductances must be real and positive to count as a solution, so it’s im-
portant to check that the quadratic equation isn’t always generating a bad
solution. First of all, a solution obviously can’t be imaginary. That would mean
the discriminant is negative and both sets of solutions are imaginary. But any
measured or created Λ must come from a network with real positive conductors,
which means at least one of the solutions should be real and positive. So the
discriminant will not be negative. It can however be zero, and this is explored
a little in Example A2. As for the possibility of one solution always being nega-
tive, Example A1 shows this is not so. It produces two positive solutions of the
conductors for a specific Λ.

A.4 Examples

Example A1 Let

Λ =




31
20

−1
4

−1
5

−9
20

−1
4

−2
5−1

4
3
2

−1
4

−1
4

−1
2

−1
4−1

5
−1
4

31
20

−1
5

−1
4

−13
20−9

20
−1
4

−1
5

31
20

−1
4

−2
5−1

4
−1
2

−1
4

−1
4

3
2

−1
4−2

5
−1
4

−13
20

−2
5

−1
4

39
20




(This response matrix was actually generated from a network that has all
conductors equal to one except for γ6,9, which has a conductance of two.)

Substituting the entries from this response matrix into the formulas for the
conductors yields two sets of positive real solutions:

γ1,7 = 1 or
19
21

γ1,9 = 1 or
23
21

γ2,7 = 1 or
19
17

γ2,8 = 1 or
15
17

γ3,8 = 1 or
15
13

γ3,9 = 1 or
23
26

γ4,7 = 1 or
19
21

γ4,9 = 1 or
23
21
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γ5,7 = 1 or
19
17

γ5,8 = 1 or
15
17

γ6,8 = 1 or
15
13

γ6,9 = 2 or
23
13

So the set of conductors which generated Λ is a solution as well as another
set which happens to generate the same response matrix.

Example A2 It can happen that both solutions are the same. This occurs
when the response matrix comes from networks whose conductors have certain
symmetries. One way to accomplish this is to generate Λ from the network
that has all conductances equal to one. In the formulas for the conductors, the
discriminants are zero and both solutions are equal to one for each conductor.

A.5 The Rank of the Differential (added 2005)

Example A2 shows the triangle-in-triangle network is recoverable for special sets
of conductivities that make the discriminants zero in the quadratic formulas for
conductances. Those formulas presented earlier are in terms of entries of the
response matrix, but now we know what simple condition the conductances
themselves satisfy when the network is recoverable.

In 2004 Jenny and Jerry showed in their paper 2n to 1 Graphs as a corollary
to a more general result that the triangle-in-triangle network is recoverable
precisely when

γ6,8γ3,8γ2,7γ5,7γ1,9γ4,9 − γ3,9γ6,9γ1,7γ4,7γ5,8γ2,8 = 0, (9)

where conductivities are denoted using the notation in this appendix.
Another way to analyze what conditions on the conductors result in different

recovery properties is to look at the rank of the differential of the map T from
the 12 conductances to the entries in the response matrix Λ. Considering the
15 Λ entries above the main diagonal as a point in R15, T maps (R+)12 to R15.

Proposition A.1 The rank of the differential dT is 11 if and only if equation
9 holds. Otherwise the rank of dT is 12.

Proof: The proof goes by way of a symbolic computation in MATLAB.
MATLAB’s diff command was used to symbolically take partial derivatives of
the Λ entries with respect to the conductances and thus compute dT . Then by
permuting rows and columns and performing Gaussian elimination, dT was put
in echelon form to determine the rank. The column permutations forced the
pivot positions to lie on the diagonal of the resulting matrix. These 12 diagonal
entries are listed in order below.
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1. −γ2,7(γ2,7 + γ4,7 + γ5,7)
(γ1,7 + γ2,7 + γ4,7 + γ5,7)2

2. −γ3,9(γ3,9 + γ4,9 + γ6,9)
(γ1,9 + γ3,9 + γ4,9 + γ6,9)2

3.
γ1,7γ4,7

γ2,7(γ1,7 + γ2,7 + γ4,7 + γ5,7)

4. −γ5,7γ4,9γ1,9

γ4,7γ3,9(γ1,9 + γ3,9 + γ4,9 + γ6,9)

5.
γ6,9γ1,7

γ4,9(γ1,7 + γ2,7 + γ4,7 + γ5,7)

6.
−γ3,8(γ3,8 + γ5,8 + γ6,8)

(γ2,8 + γ3,8 + γ5,8 + γ6,8)2

7.
γ2,7γ1,9(γ5,7 + γ2,7)

γ1,7(γ2,7 + γ4,7 + γ5,7)(γ1,9 + γ3,9 + γ4,9 + γ6,9)

8.
γ5,8γ2,8

γ3,8(γ2,8 + γ3,8 + γ5,8 + γ6,8)

9.
γ6,8γ2,7

γ5,8(γ5,7 + γ2,7)

10.
γ3,9γ4,7γ1,7γ2,8(γ6,9 + γ3,9)

γ1,9γ5,7γ2,7(γ3,9 + γ4,9 + γ6,9)(γ2,8 + γ3,8 + γ5,8 + γ6,8)

11. −γ3,8γ5,8

γ6,8(γ3,8 + γ5,8 + γ6,8)

12.
γ6,8γ3,8γ2,7γ5,7γ1,9γ4,9 − γ3,9γ6,9γ1,7γ4,7γ5,8γ2,8

γ6,9γ1,7γ4,7γ5,8γ2,8(γ6,9 + γ3,9)

28



The computation is valid because we never divided by an expression that
could have been zero. Since all conductivities are positive, none of the denomi-
nators in the listed diagonal entries can be zero. Also, none of the numerators
in the first 11 entries can be zero. Since the first 11 pivots are nonzero, the rank
of dT is always at least 11. Finally, the algorithm didn’t ever require dividing
by the 12th diagonal entry. The rank of dT is 11 if and only if entry 12 is zero,
which occurs if and only if equation 9 holds. Otherwise entry 12 is nonzero and
dT has rank 12. 2

It’s interesting how the rank of dT , which gives information about local
invertibility of T , also relates to the global invertibility of T . Splitting up the
domain according to the rank of dT , we can write (R+)12 = Ω11

⋃
Ω12 where

Ω11 = {γ ∈ (R+)12 : rank(dT ) = 11} and Ω12 = {γ ∈ (R+)12 : rank(dT ) = 12}.
Ω12 is then the set where T is locally invertible and Ω11 is the set where T is
not locally invertible. Note that T |Ω12 is two to one whereas T |Ω11 is one to one.
An oversimplified analogy to this situation is the function f(x) = x2 which is
locally invertible and globally two to one on R\{0}. Of course, f |R≥0 and f |R≤0

are both one to one. This is worth pointing out because T shares the analogous
property.

Proposition A.2 Define ΩP and ΩN according to when the expression in equa-
tion 9 is positive or negative:

ΩP = {γ ∈ (R+)12 : γ6,8γ3,8γ2,7γ5,7γ1,9γ4,9 − γ3,9γ6,9γ1,7γ4,7γ5,8γ2,8 ≥ 0}

ΩN = {γ ∈ (R+)12 : γ6,8γ3,8γ2,7γ5,7γ1,9γ4,9 − γ3,9γ6,9γ1,7γ4,7γ5,8γ2,8 ≤ 0}.
Both T |ΩP and T |ΩN are one to one maps.

Proof: We first construct the function that takes a set of conductivities γ
and returns the other set (possibly the same if equation 9 holds) of conductivities
γ′ with the same electrical response. Recall the solution to equation 8

γ6,9 =
−B ±√B2 − 4AC

2A

This means
γ′6,9 = −γ6,9 − B

A
.

By writing B and A in terms of conductivities γ, we can write γ′6,9 entirely in
terms of the γ’s. To simplify the resulting expression, we define the following:

A0 = γ6,8γ3,8γ2,7γ5,7γ1,9γ4,9

B0 = γ3,9γ6,9γ1,7γ4,7γ5,8γ2,8

s7 = γ1,7 + γ2,7 + γ4,7 + γ5,7

s8 = γ2,8 + γ3,8 + γ5,8 + γ6,8

s9 = γ1,9 + γ3,9 + γ4,9 + γ6,9
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P9 = γ1,9γ3,9γ4,9γ6,9

Then we have

γ′6,9 =
(γ1,9 + γ4,9)B0 + (γ3,9 + γ6,9)A0 + s8P9γ2,7γ5,7 + s7P9γ2,8γ5,8

γ3,9(s9γ1,7γ4,7γ2,8γ5,8 + s8γ1,9γ4,9γ2,7γ5,7 + s7γ1,9γ4,9γ2,8γ5,8)
(10)

We can take advantage of the graph’s symmetries and write a similar formula for
all the other γ′’s by performing rotations, inversions, flips, etc. and transforming
the indices accordingly. Altogether, this gives a map between conductances γ
and γ′. Note this map is it’s own inverse. Let

A1 = γ′6,8γ
′
3,8γ

′
2,7γ

′
5,7γ

′
1,9γ

′
4,9

B1 = γ′3,9γ
′
6,9γ

′
1,7γ

′
4,7γ

′
5,8γ

′
2,8.

Note that equation 9 becomes A0 −B0 for the γ’s and A1 −B1 for the γ′’s. A
symbolic computation in MATLAB verifies that

A1

B1
=
B0

A0
.

Thus if A0−B0 < 0, then A1
B1

= B0
A0

> 1. This implies A1−B1 > A1− A1
B1
B1 = 0.

Similarly, if A0 − B0 > 0, then A1 − B1 < 0. T is one to one on Ω11, the set
where A0 − B0 = 0. So if A0 − B0 = 0 we must have γ = γ′ and therefore
A1−B1 = 0. Whenever γ and γ′ are distinct, they can’t both lie in ΩP or both
lie in ΩN . Thus T |ΩP is one to one and T |ΩN is one to one. 2
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B MATLAB Programs:

FUNCTIONS THAT MAKE KIRCHHOFF MATRICES:

function K = makeKgen(n,c)
%function K = makeKgen(n,c)

%V = [1;2;3;4;5];
V = ones(2*c+1,1);
K = zeros(n*(c+2));

%inner spikes first
for i = 1:n

K(i,i+2*n) = -V(2*c+1,1);
end

%outer spikes
for i = 1:n

K(i+n,i+(c+1)*n) = -V(1,1);
end

%conductors on arcs
for i = 1:(n-1)

for j = 2:(c+1)
if i == 1

K(1+j*n,(j+1)*n) = -V((2*c - (j-2)*2),1);
end
K((i+j*n),(i+j*n+1)) = -V((2*c - (j-2)*2),1);

end
end

%conductors on rays
for i = 1:n

for j = 2:c
K((i+j*n),(i+(j+1)*n)) = -V((2*c-1-(j-2)*2),1);

end
end

%putting K together

K = K + K’;
S = sum(K,2);
for i = 1:(n*(c+2))

K(i,i) = -S(i,1);
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function K = makeKannulus
%Make Kirchhoff Matrix for annulus with three rays
B = -(rand(12));
%B = -ones(12);
n = 12;
for i = 1:n

B(i,1:i) = 0;
end
for j = 1:6

for k = 1:n
if k~= j + 6

B(j,k) = 0;
end

end
end
B(7,11:12) = 0;
B(8,10) = 0;
B(8,12) = 0;
B(9,10:11) = 0;
B = B + B’;
C = sum(B,2);
for j = 1:n

B(j,j) = -C(j,1);
end
K = B;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function K = inputKannulus(a1,a2,a3,b1,b2,b3,c1,c2,c3,d1,d2,d3,e1,e2,e3)
K = zeros(12);
K(4,10) = -a1;
K(5,11) = -a2;
K(6,12) = -a3;
K(10,11) = -b1;
K(11,12) = -b2;
K(10,12) = -b3;
K(7,10) = -c1;
K(8,11) = -c2;
K(9,12) = -c3;
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K(7,8) = -d1;
K(8,9) = -d2;
K(7,9) = -d3;
K(1,7) = -e1;
K(2,8) = -e2;
K(3,9) = -e3;

K = K + K’;
S = sum(K,2);
for i = 1:12

K(i,i) = -S(i,1);
end

FUNCTION THAT GETS RESPONSE MATRIX:

function L = getL(K,n)
%function L = getL(K,n)
%n is the number of boundary nodes
A = K(1:n,1:n);
C = K((n+1):end,(n+1):end);
B = K(1:n,(n+1):end);
L = A - B*(inv(C))*B’;

RECOVERS CONDUCTANCES IN G(3,2) FROM KNOWN CONDUCTOR:

function K = symgetcond(L,gamma4_10)
%symgetcond(L,gamma4_10)
%recovers conductances from one known boundary conductor in
%the network with three rays and two circles; returns K

K = sym(zeros(12));

U1 = (L([4 5 6],[1 2 3]))\(-L([4 5 6],[4]) + [gamma4_10;0;0]);
W = U1(1,1);
A = U1(2,1);
B = U1(3,1);
gamma2_8 = (1/A)*(L(2,4) + W*L(2,1) + A*L(2,2) + B*L(2,3));
gamma3_9 = (1/B)*(L(3,4) + W*L(3,1) + A*L(3,2) + B*L(3,3));
K(4,10) = -gamma4_10;
K(2,8) = -gamma2_8;
K(3,9) = -gamma3_9;
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U2 = (L([1 2 3],[4 5 6]))\(-L([1 2 3],[2]) + [0;gamma2_8;0]);
D = U2(1,1);
E = U2(2,1);
F = U2(3,1);
gamma6_12 = (1/F)*(L(6,2) + D*L(6,4) + E*L(6,5) + F*L(6,6));
K(6,12) = -gamma6_12;

U3 = (L([1 2 3],[4 5 6]))\(-L([1 2 3],[3]) + [0;0;gamma3_9]);
G = U3(1,1);
H = U3(2,1);
I = U3(3,1);
gamma5_11 = (1/H)*(L(5,3) + G*L(5,4) + H*L(5,5) + I*L(5,6));
u12 = (1/gamma6_12)*(I*gamma6_12 - L(6,3) - G*L(6,4) - H*L(6,5) - I*L(6,6));
gamma9_12 = -gamma3_9/u12;
gamma11_12 = (-1/u12)*(L(5,3) + G*L(5,4) + H*L(5,5) + I*L(5,6));
gamma10_12 = (-1/u12)*(L(4,3) + G*L(4,4) + H*L(4,5) + I*L(4,6));
K(5,11) = -gamma5_11;
K(9,12) = -gamma9_12;
K(11,12) = -gamma11_12;
K(10,12) = -gamma10_12;

U4 = (L([4 5 6],[1 2 3]))\(-L([4 5 6],[6]) + [0;0;gamma6_12]);
J = U4(1,1);
K1 = U4(2,1);
L1 = U4(3,1);
gamma1_7 = (1/J)*(L(1,6) + J*L(1,1) + K1*L(1,2) + L1*L(1,3));
u9 = (1/gamma3_9)*(L1*gamma3_9 - L(3,6) - J*L(3,1) - K1*L(3,2) - L1*L(3,3));
gamma8_9 = (-1/u9)*(L(2,6) + J*L(2,1) + K1*L(2,2) + L1*L(2,3));
gamma7_9 = (-1/u9)*(L(1,6) + J*L(1,1) + K1*L(1,2) + L1*L(1,3));
K(1,7) = -gamma1_7;
K(8,9) = -gamma8_9;
K(7,9) = -gamma7_9;

U5 = (L([4 5 6],[1 2 3]))\(-L([4 5 6],[5]) + [0;gamma5_11;0]);
M = U5(1,1);
N = U5(2,1);
P = U5(3,1);
u8 = (1/gamma2_8)*(N*gamma2_8 - L(2,5) - M*L(2,1) - N*L(2,2) - P*L(2,3));
gamma8_11 = (-1/u8)*(gamma5_11);
gamma7_8 = (-1/u8)*(L(1,5) + M*L(1,1) + N*L(1,2) + P*L(1,3));
K(8,11) = -gamma8_11;
K(7,8) = -gamma7_8;

U6 = (L([1 2 3],[4 5 6]))\(-L([1 2 3],[1]) + [gamma1_7;0;0]);
Q = U6(1,1);
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R = U6(2,1);
S = U6(3,1);
u10 = (1/gamma4_10)*(Q*gamma4_10 - L(4,1) - Q*L(4,4) - R*L(4,5) - S*L(4,6));
gamma7_10 = (-1/u10)*(gamma1_7);
gamma10_11 = (-1/u10)*(L(5,1) + Q*L(5,4) + R*L(5,5) + S*L(5,6));
K(7,10) = -gamma7_10;
K(10,11) = -gamma10_11;

K = K + K’;
Z = sum(K,2);
for i = 1:12

K(i,i) = -Z(i,1);
end

gamma4_10 = simplify(gamma4_10)
gamma6_12 = simplify(gamma6_12)
gamma5_11 = simplify(gamma5_11)

gamma10_11 = simplify(gamma10_11)
gamma10_12 = simplify(gamma10_12)
gamma11_12 = simplify(gamma11_12)

gamma7_10 = simplify(gamma7_10)
gamma8_11 = simplify(gamma8_11)
gamma9_12 = simplify(gamma9_12)

gamma7_8 = simplify(gamma7_8)
gamma7_9 = simplify(gamma7_9)
gamma8_9 = simplify(gamma8_9)

gamma1_7 = simplify(gamma1_7)
gamma2_8 = simplify(gamma2_8)
gamma3_9 = simplify(gamma3_9)

RECOVERS CONDUCTANCES IN G(4,3) FROM KNOWN CONDUCTOR:
(Conductances are equal on layers.)

function K = Recover43(L,a)
U = sym(zeros(20,2));
K = sym(zeros(20));

U(1:4,1) = L(5:8,1:4)\(-L(5:8,5) + [a;0;0;0]);
U(5,1) = 1;
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C = L*U(1:8,1);
g = (1/U(3,1))*(C(3,1));

U(10,1) = (-1/g)*(-U(2,1)*g + C(2,1));
U(12,1) = (-1/g)*(-U(4,1)*g + C(4,1));
U(9,1) = (-1/g)*(-U(1,1)*g + C(1,1));
f = (U(3,1)*g)/(-U(10,1) - U(12,1));
e = (-1/U(12,1))*(f*(U(12,1)*2 - U(9,1)) + g*(U(12,1) - U(4,1)));

U(13,1) = (1/e)*(U(9,1)*e + f*(2*U(9,1) - U(10,1) - U(12,1)) + g*(U(9,1) - U(1,1)));
d = (-U(12,1)*e)/(U(13,1));
c = (-1/U(13,1))*(2*U(13,1)*d + e*(U(13,1) - U(9,1)));

U(5:8,2) = L(1:4,5:8)\(-L(1:4,1) + [g;0;0;0]);
U(1,2) = 1;
C2 = L*U(1:8,2);
U(18,2) = (-1/a)*(-U(6,2)*a + C2(6,1));
U(20,2) = (-1/a)*(-U(8,2)*a + C2(8,1));
b = (a*U(7,2))/(-U(18,2) - U(20,2));

a = simplify(a)
b = simplify(b)
c = simplify(c)
d = simplify(d)
e = simplify(e)
f = simplify(f)
g = simplify(g)

for i = 1:4
K(i,i+8) = -g;
K(i+4,i+16) = -a;
K(i+8,i+12) = -e;
K(i+12,i+16) = -c;

end

K(17,20) = -b;
K(13,16) = -d;
K(9,12) = -f;

for i = 1:3
K(i+16,i+17) = -b;
K(i+12,i+13) = -d;
K(i+8,i+9) = -f;

end
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K = K + K’;
S = sum(K,2);
for i = 1:20

K(i,i) = -S(i,1);
end

MAKES SET OF INDICES USED TO PRODUCE A BASIS OF POLYNOMIALS
THAT ARE INVARIANT UNDER ROTATIONS AND INVERSIONS OF G(3,2):

function match = makematch(m1,d)
%function match = makematch(m1,d)

LL = zeros(15,2);
y = 0;
for i = 1:5

for j = i+1:6
y = y+1;
LL(y,:) = [i j];

end
end
LL(3,:) = [];
LL(7,:) = [];
LL(10,:) = [];

%group terms
for i = 1:d

add(1,2*i-1) = 1;
add(1,2*i) = 2;

end

match(1,:) = add;
term = 1;

[a b] = size(m1);
for r = 1:a

r

switch 10*m1(r,2*d-3) + m1(r,2*d-2)
case 12

start = 1;
case 13

start = 2;
case 15
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start = 3;
case 16

start = 4;
case 23

start = 5;
case 24

start = 6;
case 26

start = 7;
case 34

start = 8;
case 35

start = 9;
case 45

start = 10;
case 46

start = 11;
case 56

start = 12;
end

for i = start:12
mlist = [m1(r,:) LL(i,:)];

[nextmatch,check] = testmatch(match,mlist,d);

if check == 1

term = term + 1;
match(term,:) = nextmatch;

end
end

end

FUNCTION CALLED BY MAKEMATCH TO MAKE SURE THE BASIS IS
NOT TOO LARGE:

function [nextmatch,check] = testmatch(match,mlist,d)
%function [nextmatch,check] = testmatch(match,mlist,d)

[m n] = size(match);
nextmatch = mlist;
check = 1;

for i = 1:m
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for j = 0:1
for k = 0:2

flip(1,1:2*d) = 3*j;
new = match(i,:) + flip;
for l = 1:2*d

if new(1,l) > 6
new(1,l) = new(1,l) - 6;;

end
end

rot(1,1:2*d) = k;
new = new + rot;
if k == 1

for l = 1:2*d
if new(1,l) == 4 | new(1,l) == 7

new(1,l) = new(1,l) - 3;
end

end
end

if k == 2
for l = 1:2*d

if new(1,l) == 5 | new(1,l) == 4 | new(1,l) == 7 | new(1,l) == 8
new(1,l) = new(1,l) - 3;

end
end

end

for w = 1:d
if new(1,2*w-1) > new(1,2*w)

y = new(1,2*w-1);
new(1,2*w-1) = new(1,2*w);
new(1,2*w) = y;

end
end

for drat = 1:d-1
for w = 1:d-1
if (10*new(1,2*w-1)+new(1,2*w)) - (10*new(1,2*w+1)+new(1,2*w+2)) > 0

t1 = new(1,2*w-1);
t2 = new(1,2*w);
new(1,2*w-1) = new(1,2*w+1);
new(1,2*w) = new(1,2*w+2);
new(1,2*w+1) = t1;
new(1,2*w+2) = t2;
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end
end

end

if sum(abs(new - mlist)) == 0

nextmatch = nan;
check = 0;
return

end
end

end
end

OPERATES ON OUTPUT OF MAKEMATCH BY ALL ROTATIONS AND INVERSIONS:

function M = makebigM(m1)
%function M = makebigM(m1)

[m,n] = size(m1);
for i = 1:m

z = -1;
for j = 0:1

for k = 0:2
z = z+1;

flip(1,1:n) = 3*j;
new = m1(i,:) + flip;
for l = 1:n

if new(1,l) > 6
new(1,l) = new(1,l) - 6;;

end
end

rot(1,1:n) = k;
new = new + rot;
if k == 1

for l = 1:n
if new(1,l) == 4 | new(1,l) == 7

new(1,l) = new(1,l) - 3;
end

end
end
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if k == 2
for l = 1:n

if new(1,l) == 5 | new(1,l) == 4 | new(1,l) == 7 | new(1,l) == 8
new(1,l) = new(1,l) - 3;

end
end

end
M(i,(n*z+1):(n*z+n)) = new;

end
end

end

MAKES P*:
(P* is a square matrix and each row is the basis of polynomials with
different values substituted in. This program is currently set up for
the case GP = P.)

function A = makebigA(M,d)

[m,n] = size(M);
A = zeros(m,m);
for i = 1:m

K = inputKannulus((round(14*rand)+1),(round(14*rand)+1),(round(14*rand)+1),...
(round(14*rand)+1),(round(14*rand)+1),(round(14*rand)+1),...
(round(14*rand)+1),(round(14*rand)+1),(round(14*rand)+1),...
(round(14*rand)+1),(round(14*rand)+1),(round(14*rand)+1),...
(round(14*rand)+1),(round(14*rand)+1),(round(14*rand)+1));

L = getL(K,6);

for j = 1:m
thing(1:6,1) = 1;
for k = 1:6

for l = 1:d
thing(k,1) = thing(k,1)*L(M(j,((2*l-1) + 2*d*(k-1))),M(j,((2*l) + 2*d*(k-1))));

end
A(j,i) = A(j,i) + thing(k,1);

end
end

end
A = A’;

MAKES SYMBOLICLY THE BASIS OF POLYNOMIALS:
(This program is also currently set up for the case GP = P.)
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function P = makepoly(m1)
%function P = makepoly(m1)

[m,n] = size(m1);
P = sym(zeros(m,1));
L = sym(zeros(6));
syms a b c d e f g h p q r s t u v real
L(1,2) = a;
L(1,3) = b;
L(1,4) = c;
L(1,5) = d;
L(1,6) = e;
L(2,3) = f;
L(2,4) = g;
L(2,5) = h;
L(2,6) = p;
L(3,4) = q;
L(3,5) = r;
L(3,6) = s;
L(4,5) = t;
L(4,6) = u;
L(5,6) = v;
L = L + L’;

for i = 1:m
for j = 0:1

for k = 0:2

flip(1,1:n) = 3*j;
new = m1(i,:) + flip;
for l = 1:n

if new(1,l) > 6
new(1,l) = new(1,l) - 6;;

end
end

rot(1,1:n) = k;
new = new + rot;
if k == 1

for l = 1:n
if new(1,l) == 4 | new(1,l) == 7

new(1,l) = new(1,l) - 3;
end

end
end
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if k == 2
for l = 1:n

if new(1,l) == 5 | new(1,l) == 4 | new(1,l) == 7 | new(1,l) == 8
new(1,l) = new(1,l) - 3;

end
end

end

thing = 1;
for l = 1:n/2

thing = thing * L(new(1,2*l-1),new(1,2*l));
end
P(i,1) = P(i,1) + thing;

end
end

end
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