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Abstract

In this report we outline the basic theory behind the use of Grébner
bases in the solution of nonlinear gystems of equations. We then describe
a specific instance of their use; namely, in the case of a layered annular
network.



1 GR(ABNER BASES

1 Grgbner Bases

In 1972, Bruno Buchberger developed a method for finding a certain use-
ful ideal of a set of polynomial equations in a certain finite number of
variables. This ideal, celled a Grébner Basis in homage to his advisor,
provides a somewhat practical method for finding the solutions to a sys-
tem of nonlinear equations through a process similar to back substitution.
The fact that the system of equations resulting from taking a Schur com-
plement is nonlinear is the reason for the applicability of the Gribner
basis algorithm.

Suppose we have a set of polynomials p,... , 2, in the variablas a5, .. ..
Generally, it is very difficult to solve the aystem of nonlinear equations
that arises if one sets each of the polymomials equal to zero. The Grabner
basis algorithm attempts to solve this nonlinear system in e way similar
to Gaussian elimination and back substitution.

The main power of the Grabner basis algorithm is that it computes from
the initial o polynomials a system of new polynomials that has the same
solutions as the original squations, with the difference being that the first
polynomial involves the minimum number of variables of all the others.
An example of this will be given st the end. Also needed for the calcula-
tion of a Grgbner basis is a term ordering; in our case this ordering will
be lexicographic.

Let f be in a field of polynomials, and let P be a finite subset of this field.
A representation of f as the sum of pairwise products of polynomials p; €
P and monomials m, is called a standard representation of [ with respect
to P and a term order if the maximum lead term of all the pairwise prod-
ucts i less than or equal to the lead term of f. We state without proof the
following: A finite subset G of a ring of polynomials is a Grgbner basis if
and only if every f in the ideal of G has a standard representation. From
this, the use of a lexicographic Grabner basis is clear: if we can find a
Grgbner basis for a system of polynomials, and if we can find raots of
the Grgbner basis, then we will get the roats of the original system of
equations.

2 The Main Problem

Consider an anmilar network with two circles intersected by three lines.
Agsume that the conductivity is constant on layers. Through symmetry
arguments, it is seen that the Lambda matrix (or response matrix)for this
special case will have only four distinct entries at most. This suggests
strongly that the conductivities are not recoverable from the Lambda
matrix; to rigorously demonstrate that this happens at least once, we
analyze the response matrix symbolically.

3 The Entries

The Kirchoff matrix for the 3-2 network has the following form:
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a 00 000
0 a 0000
Ao 0 0 ¢ 0 0 Q
0 00 e 090
0 0 0 O e O
(000 0 0 e
(e 0 0 0 0 0 |
g —a 0 6 0
B 0 0 —a 0 0 O
0 0 0 - 0 O
0 0 ¢ 0 = O
| 000 0 0 0 —e
—2b+c+a ~b -b —c 0 0
—b 2b+c+a ~b V] -e 0
Be -5 -b 2b+c+z 0 ¢ . —c
—c 0 0 2d+c+e —d —d
0 —c 0 —d Z2d+c+e ~d
] o —c —d —d 2d+c+e

4 First Attempt at a Counterexample

We compute numerically the Lamhda matrix for the 3-2 networks with
conductivities = 1. We then set each rational function from the sym-
bolic Lambda matrix equal to its corresponding numerical value, clear
denominators, and attempt to find a Grobner basis for the four resulting
polynomial equations in five unknowns.

The gymbolic lambda matrix is
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[ n & a ¢ 6 ]
a n o § ¢ 4§
A 1 s a o 4§ & ¢
Comman v § 6 8 € €
t § £ 0 ¢
] § & ¢ e & 9_

where
o= —a? (bc® + 8bdc+2cbe + 3dbe + be® +de?)
t:=—-alcataetad+tchb+dctec+be+3bd)ce
d:=—a(ad+dec+cb+be+3dd)ce
€= —g? (da.2 +2adc+3bda+dc +bc? +3bdc)
and

common :=a?c® +3a°dec+2a%ec+3a’de+a’e’ +3abc2 +3ad? +2acle
+2ace’* +B8acde+9abdc+Gache+Qadbe +3abe’ +Fe® + 32 de
+3cPbe+Qbcde+ $bee?
The numeric lambda matrix is
23 -11 -11 -5 =7 =7 7
6 T2 T2 W T2 T2
-1 23 -1 -1 -5 =T
72 3@ 12 T2 86 T2
-1 -11 23 -7 =7 =5
T2 T2 ¥ T2 T2 3
-5 -7 =T 25 -11 -1
3% T2 T2 36 T2 T2
-7 -5 -7 -11 23 -11
72 3 72 72 36 712
-7 -7 -5 -11 -1 22
| 72 72 3 72 72 36
The corresponding polynomials are

11 11 11
pri= —a? (bc® +3bdc+ 2cbe+3dbe+be? +dc?) + —a?® + - alde+ alee

72 24 36
%azde+%azeg+—;—i—abc2+%adcz+%ac’e+%ace2+%acde
+ %abdc+1—;acbe+%adbe+;—iabez+%czez+%c2de+;—ic2be
+%bcde+%bm2



5 THE DEATH OF MAPLE 5

= —a(ﬂd+dc+cb+be+3bd)ce+ia.zc2+la3dc+ -'-r—azec+ 10,20'.&

T2 24 36 24
7 a9, 7 T . 1 7T L, T 7
+72a € +24abc2+24adc +36ac26+36ace +12acde+8a.bdc
7 7 7 2.7 232 7 7 20 T
+12acbe+8adbe+24abe +72c23 +ﬂc2de+ﬁc be+§bcde
+—22bce”
5 5 o
p3:=—a(ca+ae+ad+cb+dc+ec+be+3bd]ce+ﬁa c2+-i—2—a. de
L 5 2 8 95 O 2, 9 2, O 2 2
+18a r3c+12 de+36r1 e +12a6c +12adc +18ucze+ﬁace
5 5 5 5 5 4 5 .4, b5 o
ol 2 e 2adbet — 2 =2
+Gacde+4abdc+6acbe+4a e+12abe +36c2e +12c de
5 5 ] 2
+12c2be+zbcde+ﬁ-bcc
9 2 11 4 5 11 4 11 4
py:=—c{da® +2adc+3dda+dc® +bc? +3bdc]+ﬁa c +ﬁa det+ 36 % ¢
1, 115, 1 5, 11 4 11 1, 1
+3570 de+?2a e +24abc +24adc +36002e+36ace +120cde
11 1n 11 1, 11 ,, 11, 11
+—8—abdc+ﬁac§e+ A adbe+24abe +72028 +24c de+-2—4c2be
11 11, , :
+ 8bcde+24bce

5 The Death of Maple

When 1 attempted to use ghasis on the four above polynomials with re-
spect to any lexicographic crdering, Maple refused.

6 The use of Eigenvalues and Eigenvec-
tors

We obtained new polynomials from symbolically computing the eigenval-
ues of the eigenvectors of the symbolic Lambda matrix. Normally, this
is impossible to do; however, I had the hunch that the eigenvector of a
particular lambda matrix for the 3-2 network would be an eigenvector to
all of them.

The eigenvectors and corresponding eigenvalues of the lambda matrix
for the network with conductivities = 1 were

2L -1 -1, L1, 0, 4, i 1,3, 1 10,
5.2 {8 -1,0,1, -1,0}, [0, =1, 1,0, =1L, 1]},

[%, 2. {[1,0, -1, =1, 0, 1, [L, -1, 0, ~1, 1, O]}]
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When the eigenvectors were mmltiplied by the symbolic Lambda ma-
trix, the following symbolic eigenvalues were computed:
> evalm{Lambdak+vector([1, 1, t, -1, -1, -1]1}}:

[2 cae cae cae _ cae
cet+catae’ cet+ecatae cet+catoe cet+catnre’
cae cae
““cetcatae’ ce+ca+ae]
> evalm{Lambdaks*vectoxr{[L, O, -1, 1, 0, -11}):
[3(cd+bc+eb+3bd)a 0 _3(cd+bc+eb+3bd)a 3(cd+bc+ad+3bd)e
%l T %1 ? %1 ’
(ed+be+ad+3bd)e
0, =3 %l ]

%l:=cet+dcd+3bc+3eb+9bd+catae+Iad
> evalm(Lambdabsvector([-1, 0, %, 1, 0, -1])):

(2ce+3cd+3be+3ed+9bd)a . (2ce+3cd+3bc+3eb+9bd)a
[_ %1 ‘ %1 ‘
{2ca+3cd+3bec+3ad+9bd)e
%1 : ’O’
(2ca+3cd+3bc+3ad+9bd)e
B %1 ]
%l:=ce+3cd+3bc+3eb+9bd+cat+aec+3ad

By setting each of the symbolic eigenvalues equal to the corresponding
numeric eigenvalue, the following three auxillary equations in a,b,c,d,e

, O

were obtained:
’ T '—gce+gca+2ae—2cae
1773 3 3
3 5 ) 5 15 5 5 5
T .—EGB+§Cd+§bC+§8b+?bd+ 680'{- Eae+§ad

—(2ce+3cd+3be+3eb+90d)e

3 g9 9 9 27 3 3 9
r3 = Zce+ zcd+ Zbc+zeb+de+ an+zae+zad
—3(cd+bc+eb+3bd)a
These 3 new equations were angmented to one of the previous equa-
tions, and Maple had no trouble in calculating the Grgbner basis with
respect to & particular lexicographic ordering.
> gd:=gbasis([r[1],c[2],r[3],p(4]] ,plex{e,b,c,d,a)};

gf = [-36a%d? —25a* A +50° d® ~15a%d® + 11a® @® + 60 % a®,
a*d*c+30e'd® - 60 d® +110°% &8 ~ 36d% af,
-6 +7%a® —3cald+aPde+da®, 362 a?d +11a% ed® — 6ed® a2
—1848a® 2 + 1057 a* &° + 604842 0% — 52020° &% — 64° &, 432 0% ¢*
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+11a®d?c—2cd®a? — 24a® cd? — 162404 6% d* + 94201 o d* + 314496 45 &2
— 349524 a'd¥ — 20% d® + 710208 4% a® — 607392 o* &2,
24bda® ~19bda® + Tca®d —6a®dc—6da®,361d%a b+ 11 a® cd?
+11ed®o® — 17160 0° &* + 9936 0% d® + 56160 d2 a® — 49536 a* d2 + 1144 &,
1ibe® +22acd + 38bed + 11c*d —72bda’ + 11da® + 33abd — 4942 2,
—6ca® ~6ale+Tea® +7a%e —3da® +da?,42768a% de — 3888a%e
— 130684’ c® — 712842 c® — 1331 a% c &2 + 363 cd® a® + 43056a% de
— 3888 ca® — 18807034 d® + 1088516 a* d® + 6155028 d* a® — 5427576 o d?
+13431a% d® — 7198a% d? + 648d a?,
llca+1lge+ llce — 21ca® —21e%e + 9da?,
11be —49a’e+11bc+33bd + 11cd —~ 49co’® +21da’ + 11 ad)
Note that the first equation involves only ¢ and d the third involves
these previous two and the varisble ¢, and so on. It was found that the
outer conductivity a could be varied arbitrarily above a fixed number

and the others could always be computed from the initial choice by hack
substitution.

7 Conclusions

I heve no idea why the use of the eigenvalues helped maple to calculate
the Grgbner basis; however, these eigenvalues were rather pretty. In ret-
rospect, it seems obvioua that four equations can never determine five
unknowns when the beginuning equations come from a Lambda matrix.





