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1 Introduction

1.1 Circular Planar Networks

An electrical network investigated here can be represented as a two dimen-
sional finite graph G = (V| Vi, £}, where V is the set of nodes, V5 is the set
of boundary nodes and E is the set of edges. Then a circular planar network
is one whose graph G can be circumscribed by a disc with the boundary
nodes Vg lying on the circle that bounds the disc. The other nodes lie in
the interior of the disc. The boundary nodes are labeled in the clockwise
direction around the circle.

Boundary nodes are connected to each other by means of paths. A path
is a sequence of edges beginning at boundary node p and ending at boundary
node ¢, using only distinct interior nodes r; at intermediary steps. Now let P
and @ be sets of boundary nodes: P = (py,p2,-..,2); @ = {(¢1,¢2, - - -, G)-
P and €} are connected through G if there exist disjoint paths from p; to g,
P2 tO Gk—1, ..., and pr to ¢1. P and @ are a circular pair, denoted (P; Q) =
(p1lp2: PRI, 02, - qu): if the sequence (plsp?r' iy Pry ks - -,Q2,€r'1) is in
circular order. That is, (P; ) is a circular pair if .

<Pp<..<h<gf<..<@<q

A circular planar network is well-connected if every circular pair {P; @) has
k disjoint paths joining the elements. '



1.2 Kirchhoff and Lambda Matrices

Let conductivity on a graph G be defined as a function < acting on each
element in E. A resistor network is the combination of a bounded graph and
a conductivity function. The Kirchhoff matrix, X, for such a network with
nodes w, vs,. .., ¥, is an 7 X n matrix constructed by taking

Kij=—;
where «; ; denotes the sum of y{e) for edges e joining v; to v; if i # j, and

K;i = Ligivig-
It follows, then, that the diagonal entries of K are either zero or positive,

the non-diagonal entries are zero or negative and the rows and columns sum
to zero. A Kirchhoff matrix has the form

A B
<~( 5 ¢)
for square matrices A, B, and C.

A A matrix is defined as A = A — BC1BT. This matrix has the same
properties for diagonal and non-diagonal entries as well as row and column
sums as the Kirchhoff matrix. Let A(P;Q) denote the submatrix of A con-
sisting of rows p(, p2, . - ., P and columns qi,¢s, .. ., G-

Theorem 1 For a circular planar resistor network and a circular pair (P; Q),
(a) detA(P; Q) = 0 if (P; Q) is not connected through G
(b) (—1)*detA(P; Q) > 0 if (P; Q) is connected through G.

This theorem allows one to determine the original connections of a net-
work by examining the signs of subdeterminants of the A matrix. When twa
houndary nodes of a network are mislabeled, or switched, certain connections
are broken. Such an action is reflected in the subdeterminantal signs. This
paper begins with a generalization of such determinants for well-connected
networks. A specific case of a less-than-well-connected network in which sub-
determinantal signs are ambiguous in determining original connections is also
considered here. Although this type of network does not yield as much infor-
mation as the well-connected networks, it can be investigated with moderate
success. For further background information, see [1]. '
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2 Well-Connected Networks

2.1 Switching Adjacent Boundary Nodes

In a well-connected network, one is able to determine whether two adjacent
boundary nodes were switched by the signs of subdeterminants of a given
A matrix. Further, it is apparent exactly which two boundary nodes were
altered.

2.1.1 Even Number of Boundary Nodes

In this network, there are 2n boundary nodes. Let boundary nodes 1 and
2 be switched. Given the A matrix for this network, circular pairs of size n
are taken. That is, let {P; @) be the circular pair [(1,...,n);(n+1,...,2n)].
It is clear that the determinant of (P; ) has an incorrect sign because the
switched nodes are both elements of P. This same property applies generally
if the switched nodes are both included in P or ). If one of the switched
nodes is an element of P and the other is an element of @, the altered network
may or may not be circular planar still. In this situation, one can sometimes
say with certainty that the subdeterminant has a specific sign, either correct
or incorrect. However, there are times when this is not possible and thus the
sign is ambiguous. Moving through the graph, continuing to take circular
pairs of size n in the clockwise direction, the signs of the subdeterminants
help to reveal which two nodes were switched. Table 2.1.1a is a list of the
subdeterminantal signs of these circular pairs.

Table 2.1.1a
(7 Q) deth(P; Q)
(L,...,n);(n+1,...,2n) incorrect
(2,...,n+1);(n+2,...,1) ambignous
(3,...,n+2);(n+3,...,2) incorrect
(n+1,...,2n);(1,...,n) incorrect.

n+2,...,1);(2,...,n+1) ambiguous
(n+3,...,2);(3,...,n+2) incorrect

(2n,...,n—=1);{n,...,2n —1) | incorrect
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Since no correct signs are obtained, one cannot easily determine which
two nodes were switched and thus caused the series of incorrect signs. If is
then necessary to take a smaller sized circular pair. That is, let (P; Q) be of
size n — 1 instead of n. By a deliberate choice, this will exclude two adjacent
boundary nodes, (p, q).

Table 2.1.1b

X X)) GEA (P Q)
(2n —1,2n) (,...,n—1);(n,...,2n —2) | incorrect
(2n,1) (2,...,n3{n+1,...,2n—1) | correct
(1,2) (3,...,n+1);(rn+2,...,2n) | correct
{2,3) 4,...,n+2);(n+3,...,1) correct
(3,4) (5,...,n+3);(n+4,...,2) incorrect
(n,m+1) n+2,...,2n);(1,...,n~1) | incorrect
(n+1,n+2) n+3,...,1;(2,...,n) ambiguous
n+2,n+3) (n+4,...,2);{3,...,n+1) incorrect
2n—2,2n—-1) | (2n,...,n—1);(n,...,2n — 3) | incorrect

The correct signs appearing in this table suggest that the pairs [(2,. .., n); (n+
1,...,2n-1)], [(3,...,n+1); (r+2,...,2n)] and [(4,...,n+2); (n+3,...,1)]
are in circular order. That is the same as saying the network is in circular
planar order when nodes (2n,1), (1,2) and (2,3) are excluded. Upon in-
vestigating nodes 1 and 2, one can easily determine that these nodes were
switched. A 2 x 2 subdeterminant of A will have the incorrect sign when P
or  are the two switched nodes. If 1 and 2 are switched again, returning to
their original circular planar positions, one sees that all the signs are correct.

2.1.2 0Odd Number of Boundary Nodes

In this network, there are 2n+ 1 boundary nodes. Again, let boundary nodes
1 and 2 be switched and let (P; Q) be a circular pair of size n. To achieve
this, boundary node r will be excluded from (P;Q). That is, » will neither
be an element of P or ). When one of the switched nodes is excluded from
the circular pair, the subdeterminantal sign will be correct because (P; Q)
will be in circular planar order. Table 2.1.2 lists the excluded boundary node
r, (P; @) and the subdeterminantal sign of {P; Q).
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Table 2.1.2

r (P; Q) detA(P; Q)
1 (2,...,n+1);(n+2,...,2n+4 1) | carrect

2 (3,....,n+25(n+3,...,1) correct

3 4,...,n+3)(n+4,...,2) incorrect
n+l [(r+2,...,2n+1);(1,...,n) incorrect
n+2 |[(n+3,...,152,...,n+1) ambiguous-
n+3 [(n+4,...,253,...,n+2) incorrect
m+1|(1,...,n);(n+1,...,2n) incorrect

The only correct signs appear when nodes 1 and 2 are excluded from
(P; Q). It is then obvious that nodes 1 and 2 were switched. If they are
permuted again, restoring the network to circular planar, the signs of all
subdeterminants will be correct.

2.2 Switching Non-Adjacent Boundary Nodes

Two cases are presented here: permuted boundary nodes with one node
between them and permuted boundary nodes with two nodes between them.
In each situation, one investigates both an odd and even number of total
boundary nodes. Although generalizations have not been found, it can be
stated that as the number of boundary nodes between the switched nodes
increases, it may be necessary to decrease the size of (P; Q) in order to gain
pertinent information.

2.2.1 One Node Between Switched Nodes

EVEN CASE:

For a network with 2n boundary nodes, let nodes 1 and 3 be switched.
To determine which nodes were permuted, the first step is to examine sub-
determinants of size n as before.



Table 2.2.1a

(P; Q) detA(L; Q)
(1,...,n);(n+1,...,2n) incorrect
(2,...,n+1);(n+2,...,1) ambiguous
(3,...,n+2);(n+3,...,2) ambiguous
(4,...,n+3);(n+4,...,3) incorrect
(n+1,...,2n);(1,...,n) incorrect
n+2,...,1)2,....,n+1) ambiguous
n+3,...,25;(3,...,n+2) ambiguous
(n+4,...,3);4,...,n+3) incorrect
(2n,...,n—1);(n,...,2n — 1} | incorrect

As in the previous even case (Section 2.1.1}, no information is gained by
taking pairs of size n. It is then necessary to look at pairs of size n — 1.

Table 2.2.1b

(p.q) (Pi@Q) . detA(P; Q)
(2n — 1,2n) (1,...,n—1);(n,...,2n — 2} | incorrect
(2n, 1) (2,....n);(n+1,...,2n—1) | incorrect
(1,2) (3,...,n+1);(n+2,...,2n) | correct
(2,3) (4,...,n+2);(n+3,...,1) correct
(3,4) (5,...,m+3s(n+4,...,2) incorrect
(4,5) (6,...,n+4);(n+5,...,3) incorrect
(n,n+1) (n+2,...,2n);(1,...,n—1) | incorrect
n+1n+2) |[(n+3,...,1);(2,...,n) ambiguous
(n+2,n+3) n+4,...,2):(3,...,n+1) ambiguous
(n+3,n+4) (n+5,...,3;(4,...,n+2) incorrect
2n—-2,2n—1) | (2n,...,n~1);{n,...,2n — 3) | incorrect

The two correct signs are obtained by excluding the boundary node pairs
(1,2) and (2, 3). If the ambiguous signs were in fact correct signs, it would be
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necessary to take one 2 X 2 subdeterminant of A, for example detA(1, 3;4,5)
or detA(n—+1,n+3;n+4,n+5), in order to determine exactly which two nodes
had been switched. That is, the sign of detA(1,3;4,5) would be incorrect
because the pair is in non-circular order after 1 and 3 have been switched.
However, the sign of detA(n+1,n+ 3;n +4,n+ 5) would be correct because
no boundary nodes have been permuted and thus (P;Q) is a circular pair.
This step makes it clear that nodes 1 and 3 were switched to produce the
incorrect subdeterminantal signs. _

Excluding two adjacent boundary nodes is deliberate when working with
P and @ of size n.— 1; choosing (P; Q?) in this fashion yields more information
that excluding diametrically opposite nodes. If diametrically opposite nodes
p and ¢ had been excluded from the circular pair {P; @), the following list of
signs would have appeared.

Table 2.2.1¢c
(p,9) (7 e detA(P; Q)
{n,2n) (1,...,n—1);(n+1,...,2n — 1) | incorrect
(n+1,1) (2,...,n);(n+2,...,2n) incorrect
(n+2,2) 3,...,n+1);n+3,...,1) ambiguous
(n+3,3) 4,...,n+2);{n+4,...,2) incorrect
(n+4,4) (5,...,n+3);(n+5,...,3) incorrect
2n—-1n-11[(2n,...,n—2);{n,...,2n - 2) incorrect

This method of circular pairs yields no certainly correct signs and thus
does not provide any valuable information, ag did the previous method.
Therefore, in the following cases one is justified in only investigating circular
pairs in which adjacent boundary nodes have been excluded.

ODD CASE:

For a network with 2n + 1 boundary nodes and only one boundary node
between the two permuted nodes, it is necessary to take (P; Q) of size n — 1
as above. The signs obtained from circular pairs of size n are not sufficient to
determine which nodes were switched. To understand this, let nodes 1 and
3 be switched again. According to previous notation, let r be the excluded
boundary node.



Table 2.2.1d

T (P, Q) detA(P; Q)
1 (2,...,n+1);(rn+2,...,2rn+ 1) | incorrect
2 (3,....n+2);(n+3,...,1) ambiguous
3 4,...,n+3);(n+4,...,2) incorrect
4 (5,...,n+4);{n+5,...,3) incorrect
n+l [(n+2,...,2n+1);(1,...,n) incorrect
n+2 [(n=+3,...,15{2,...,n+1) ambiguous -
n+3 |[(n+4,...,2%5(3,...,n+2) ambiguous
n+d [(n+5,...,3);{4,...,2+3). incorrect
2n+1{(1,...,n);(n+1,...,2n) incorrect

No correct signs are obtained. It becomes clear that taking subdetermi-
nants of size n never yield pertinent information. Pairs of size n, then, will be
disregarded from this point; in the situations of an odd number of boundary
nodes, P and § will immediately be taken to be of size n — 1. Below is a
table of subdeterminantal signs with P and @ of size n — 1 for boundary
nodes 1 and 3 switched.

Table 2.2.1e

(r,s,t) (P Q) detA(P; @)
(1,2,3) (4,...,n+2}(n+3,...,2n 4+ 1) | correct
(2,3,4) (5,...,+3)(n+4,...,1) correct
(3,4,5) (6,...,n+4%x(n+5,...,2) incorrect
(4,5, 6) (7,...,n+5);(n+86,...,3) incorrect
(r,n+1,n+2) (n+3,....2n+1);(1,...,n—1) | incorrect
(m+1,n+2,n+3){(n+4,...,15(2,...,n) | ambiguous
(n+2,n+3,n+d) ! (n+5,...,2%(3,...,n+1) ambiguous
(m+3n+4,n+5)|(n+6,...,3;(4,...,n+2) incorrect
(2n —1,2n,2n+1) | (1,...,n—1);(n,...,2n — 2} incorrect
(2n,2n+1,1) (2,...,n);(n+1...,2n — 1) incorrect
(2r+1,1,2) (3,....n+1%x(n+2,...,2n) correct
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By looking at the sign of detA(1,3;4,5), it is clear that nodes 1 and 3
were switched since the sign would be incorrect.

2.2.2 Two Nodes Between Switched Nodes

EVEN CASE:

In this example, let nodes 1 and 4 be switched in a network that has 2n
boundary nodes. Taking circular pairs of size » gives the following list of
signs.

Table 2.2.2a,

) detA (P, Q)
(1,...,n);(n+1,...,2n) | incorrect
(2,...,n+1);(n+2,...,1) ambiguous
(3,...,n+2);(n+3,...,2) ambiguous
)
)

“4,...,n+3);(n+4,...,3) ambiguous
(5,...,n+4);(n+5,...,4) incorrect

n+1,...,2n);

( (1,...,n} incorrect
(mn+2,...,1:(2,...,n+1) ambiguous
(m+3,...,2);(3,...,n+2) ambiguous
(n+4,...,3);{(4,...,n+3) ambiguous
(n+5,...,4);(5,...,n+4) incorrect
(2n,...,n—1}%(n,...,2n — 1) | incorrect

No correct signs are given so one must look at smaller circular pairs.
When P and @) are of size n — 1, two correct signs appear.



Table 2.2.2b

(»,q) (P, Q) detA(P; Q)
(2n — 1,2n) {1,...,n=1}{n,...,2n—2) | incorrect
(2n,1) (2,...,n);(n+1,...,2n~1) | correct
(1,2} 3,...,n+1);(n+2,...,2n) | incorrect
(2,3) 4,...,n+2}(n+3,...,1) ambiguous
(3,4) (5,...,m+3);(n+4,...,2) incorrect.
(4,5) (6,...,n+4};{n+5,...,3) correct
(5,6) (7,...,n+5);(n+6,...,4) incorrect
{n,n+1) n+2,...,2n);(1,...,n—1) | incorrect
(n+1,n+2) (n+3,...,1);(2,...,n) ambiguous
(n+2,n+3) (n+4,...,2)(8,...,n+1) ambiguous
(n+3,n+4) n+5,...,3);(4,...,n+2) ambiguous
(n+4,n+5) {(n+6,...,4);(5,...,n+3) incorrect
(2n—2,2n~-1) [ (2n,...,n—1);{n,...,2n ~ 3) | incorrect

The two correct signs obtained by excluding the boundary node pairs
(2n, 1) and (4, 5) can identify 1 and 4 as the switched nodes if detA(1, 4; 5, 6)

has an incorrect sign.
ODD CASE:

For a network with 2n+ 1 boundary nodes and 1 and 4 switched, circular
pairs of size n — 1 will be investigated in order to distinguish which nodes

were switched.
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Table 2.2.2¢

(rys,1) (P Q) detA(P; Q)
(1,2,3) (4,...,n+2);(n+3,...,2n+ 1) | correct
(2,3,4) (5, ,n+3) (n+4,...,1) correct
(3,4,5) (6,...,n+4);(n+5,...,2) incorrech
(4,5,6) ( ,n+5);(n+86,...,3) incorrect
(n,n+1,17+2) (n+3,...,2n+1];(1,...,n—1) incorrect
n+ln+2,n+3) | (n+4,...,1);(2,...,n) ambiguous
n+2,n+3,n+4) | (n+5,...,2);(3,...,n+1) ambiguous
(n+3,n+4n+5) |(n+6,...,3);(4,...,n+2) ambiguous
n+4,n+5n+6) | (n+7,...,4);(5,...,n+3) incorrect
(2n-1,2n,2n+1) | (1,...,n—-1);(n,...,2n = 2) incorrect
(2n,2n + 1,1) (2,...,n);(n+1...,2n— 1)} incorrect
(2n+1,1,2) (3,...,n+1)(n+2 2n) incorrect

As in prior cases, taking a 2 x 2 subdeterminant can easily determine
which two nodes were switched. The nodes involved in the subdetermi-
nant will be those whose exclusion from (P;Q) give a correct sign. Here,
detA(1,4;5,6) has an incorrect sign, signaling that this pair is non-circular.

It can then be seen that nodes 1 and 4 were switched.

3 A Less-than-Well-Connected Six Boundary

Nodes Network

In this example, a less-than-well-connected circular planar electrical network
is established with adjacent boundary nodes 3 relabeled 4 and 4 relabeled 3.

This permutation causes the network to be non-circular planar.

11




Figure 1:10rigi12131 Network

Figure 2: Nofles 3 S.nd 4 Switched

The next step, then, is to investigate the new A matrix. Switching the
third and fourth boundary nodes corresponds to permuting the respective
rows and columns. Let A be the original matrix and A>* denote the A ma-
trix with rows 3 and 4 switched as well as columns 3 and 4 switched. Also,
let L, be the sum of the five non-diagonal entries in row q.
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A=
—c —-g -} Ly —-m -n
—-d —-h -k —-m X5 -p
—-e —t —I —-n -—-p g
Y. —a —¢ —-b —-d -e
—a Yo -9 —f —-h —i
AS4 — —c —g 24_ -] —m —n

By taking subdeterminants of the revised A matrix, sign conditions of the
original A matrix should be violated. That is, connections that existed prior
to the relabeling should be broken. This permutation causes 2 x 2 subde-
terminant signs to change from negative values to zero when a connection is
broken by Theorem 1. Table 3.1 is a list of some subdeterminantal signs for
the original and altered networks.

Since connections not involving nodes 3 and 4 are unaffected by the per-
mutation, the subdeterminantal signs do not change for such (P; @) in both
A and A%, For example, detA(1,2;5,6) and detA®4(1,2;5, 6) are both nega-
tive because a connection exists in both networks. However, when a circular
pair only includes one of the switched nodes, the sign of detA¥4(P;Q) is
ambiguous when generalizing. One can say with certainty that when both
nodes are elements of P or (), the subdeterminantal sign is changed from
negative to positive if a connection existed prior to the switch.
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Table 3.1

(P; Q) detA{P; Q) | detA3*(P; Q)
(1,2;3,4) | <0 0
(1,2;3,8) | <O <0
(1,2;3,6) | <0 <0
(1,2;4,5) | <0 <0
(1,2;4,6) | <0 <0
(2,3:4,5) | 0 0
(2,3;4,6) | <0 <0
(2,3;4,1) | <0 <0
(2,3;5,6) | 0 <D
(2,35,1) | <0 <0
(2,3,6,1) | <0 <0
(3,4;5,6) | <0 0
(3,4,5,1) | <0 0
(3,4;5,2) | <0 0
(3,4,6,1) | 0 0
(3,4;6,2) | <0 0
(4,5;6,1) | <O <0
(4,5,6,2) | <0 <0
(4,5:6,3) | <0 <0
(1,3;4,6) | < 0 <0
(1,3;5,6) | <0 <0
(2,4;5,6) | <0 0
(2,4,6,1) | <0 <0
(3,5,6,1) | <0 <0
(1,4;5,6) [ <0 <0

The most pertinent information in Table 3.1 involves the subdeterminants
that switch from a negative value to zero. In other words, there was a con-
nection before two nodes were switched and after the event that connection is
broken. These pairs should be the first clue as to which nodes were switched.
Of the pairs listed, (1, 2;3,4), (3,4;5,6), (3,4;5,1), (3,4;5,2), (3,4,6,2) and
(2,4;5,6) have such sign characteristics. After a brief investigation, one can
see that detA(3, 4; 5,6) and detA®*(4, 3; 5, 6) bath have correct signs and thus

boundary nodes 3 and 4 were switched.
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4 Conclusion

When considering well-connected networks with permuted boundary nodes,
it is possible to easily and systematically determine which nodes were switched.
As the interval between the switched nodes increases, however, it becomes
much more difficult to do so. The number of circular pairs that will lend
useful information decreases, meaning that circular pairs of smaller size are
needed to find any correct signs. Sometimes unfruitful, the method of taking
the largest possible sized circular pair is beneficial because it does indeed cut
down the amount of computation needed to find the permuted nodes.

This cannot be said of less-than-well-connected networks, however. The
same connection principles do not apply to these networks so it is necessary
to look at circular pairs of different sizes and examine which connections were
broken due to a switch. There are certain networks in which it is impossible
to tell if two particular nodes were switched. Such an example is any corner
of a lattice network, consisting of two spikes joined at a common vertex.
Some useful information can be gained when the signs of circular pairs are
considered; one can see which group of nodes was involved in some switch
and which was not. Practically, then, the presence of a broken conductor is
somewhat detectable.
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