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Abstract

I will discuss the discrete inverse scattering problem, taking as known the power expansion
of the function Λ(λ). I will introduce the reader to this version of the inverse problem and
proceed to makes some easy observations about the data taken as given. Then I will present an
attempt (only marginally successful) to characterize the given sequences based on the number
of interior nodes in the networks from which the sequences arose. I will describe the difficulties
in making such a characterization, and present some observations I made while attempting to
resolve these difficulties. Finally, I will conclude with a brief discussion of the given data for
layered networks.

1 Defining the Scattering Problem

1.1 Introduction to the Scattering Problem

The typical inverse problem on electrical networks takes as given a response matrix, Λ, and attempts
to recover the Kirchhoff matrix, K, from this given data. The Kirchhoff matrix contains in the ijth
entry, where i 6= j, the negative of the conductance of the edge between nodes i and j, or, where
i = j, the sum of the conductances of the edges adjacent to node i. We think of K as being composed
of four blocks:

K =

(

A B

BT C

)

,

where A is the block with indices corresponding only to boundary nodes; C is the block with indices
corresponding only to interior nodes; and B and BT the blocks with column indices corresponding
to interior nodes and row indices corresponding to boundary nodes, or vice versa, respectively:

K =

(

boundary interior

boundary A B

interior BT C

)

.

A different kind of inverse problem, called a scattering problem, assumes an input with a fre-
quency, λ, and takes as known a response matrix Λ(λ), from K − λI, which can be represented by
an infinite series of the form

Λ(λ) = −λI + Λ0 +
Λ1

λ
+
Λ2

λ2
+
Λ3

λ3
+ · · ·+ Λn

λn
+ · · · ,

where I is the identity matrix, and again attempts to recover a Kirchhoff matrix, as defined above,
from this data. In this infinite series representation of Λ(λ), which is only valid for λ > ‖C‖ (i.e.
λ > the absolute value of all eigenvalues of C), Λ0 = A, and Λn = BCn−1BT , where A, B, BT

and C are submatrices of K as defined above. In looking at this inverse problem, we can take as
given Λ(λ), or the sequence Λn, from the series representation. I have chosen to take as known the
sequence Λn.
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1.2 Some Observations About the Data

Looking at the sequence of matrices taken as given in the scattering problem, we see that this data
contains much more explicit information about K than the single matrix Λ taken as given in the
usual formulation of the inverse problem. For example, we are given explicitly the portion of K
containing only the boundary information, A, in the first term of the sequence. By examining the
given data, we can make some observations about the terms of the sequence Λn:

Observation 1 For all n, Λn will be symmetric.

By definition, both K and the submatrices A and C must be symmetric. Thus, Λ0 must be
symmetric. By definitions of matrix multiplication and transposition, we see that Λn is symmetric
for all n: (Λn)

T = (BCn−1BT )T = (BT )T (Cn−1)T (B)T = BCn−1BT = Λn.

Observation 2 Λ0 contains explicit information about the boundary structure of the network.

Because Λ0 = A, and the indices of A represent the boundary nodes, the dimension of Λ0 will
be n× n, where n = the number of boundary nodes in the given network. The off-diagonal entries
in Λ0 tell us if two boundary nodes are adjacent (if the entry 6= 0), and if so, (the negative of)
the conductance of the edge between them. Further, since diagonal entries contain the sum of
conductances into a given node, by summing the entries of the ith column of Λ0, we can discover if
the ith node is adjacent to any interior nodes (if the sum 6= 0), as well as the sum of the conductances
on these boundary-to-interior edges. If two sequences have identical Λ0’s, the two networks will have
identical boundary structures.

Observation 3 Λ1 only contains information about the boundary-to-interior connections of the

network.

Because Λ1 = BBT , the information contained in the matrix will be more indirect than the
information contained in Λ0. If it were possible to uniquely factor Λ1 into BB

T , such factorization
would make the information contained in the matrix explicit. In most cases, however, this is far
easier said than done. Even before factoring, though, it is clear that if two sequences have the same
number of interior nodes, as well as identical Λ0’s and Λ1’s, not only will the boundary structure of
the two networks be identical, but the boundary-to-interior structure will also be identical, leaving
possibility of differences only in the interior-to-interior edges of the network.

Observation 4 Λ2 contains information about the interior structure of the network.

Similar difficulties arise in attempting to extract the information contained in Λn where n > 1.
Because these terms are again multiples of submatrices of K, it is necessary to factor the terms
into products of these submatrices before explicit information about the network can be obtained.
However, we see that if two sequences have the same number of interior nodes, and the same Λ0

through Λ2, the sequences must describe the same network: they must have the same A, B, B
T ,

and C; thus, none of the subsequent terms will differ.

1.3 A Conclusion, and a Question

Having made the three above observations, we can easily conclude that if a network has no interior
nodes, the sequence Λn will have only one meaningful term. The Kirchhoff matrix for a network with
no interior nodes will have no B, BT , or C submatrices, since these submatrices contain information
about interior nodes. Or, put another way, the submatrices B, BT , and C of K will all be equal to
zero matrices. Thus, the only meaningful term of the sequence Λn will be Λ0, which, in this case, is
equal to K.
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Thus, we have characterized all sequences which describe networks with no interior nodes. Now,
too, if the enemy gives us a sequence, we can immediately tell if the given sequence describes such a
network. For, if a sequence has more than one meaningful, non-zero term, it must have a Kirchhoff
matrix with non-empty submatrices B, BT , and C, and thus, it must have interior nodes.
Having come to this conclusion, I began to wonder if there were such characterizations of Λn

sequences for networks that did contain interior nodes. In theory, it should be possible to determine
the number of interior nodes in a given network from it’s Λn sequence, for, as shown in [1], this
information can be determined from the function Λ(λ), itself. Since the infinite series contains all
the information contained in the function, in theory the same conclusions can be drawn from either
presentation of the data. However, such characterization for networks with greater than one interior
node and arbitrary numbers of boundary nodes proved difficult. In the following section, I will
present my characterizations for one-interior-node networks, along with my attempt to characterize
two-interior node networks, the problems I encountered in this attempt, and some further information
about nature of the Λn sequence which I uncovered while trying to overcome these problems.

2 Characterizing One-Interior-Node Networks

Before we can characterize the Λn sequence for single-interior-node networks, we must first examine
a general Kirchhoff matrix for such a network, and the Λn sequence that this K will produce. If a
network has exactly one interior node, and n boundary nodes, we see that the submatrix B of K
will have dimension (n− 1)× 1, and BT , dimension 1× (n− 1). When multiplying BBT , to obtain
Λ1, we see that the ith column of Λ1 is obtained by multiplying the (n− 1)-dimensional vector, B,
by the ith entry in the same vector. This has several consequences:

• Each column of Λ1 will be a scalar multiple of B. Thus, Λ1 will be a rank-1 matrix.

• The iith entry of Λ1 (that is, all diagonal entries) will be equal to the square of the ith entry
in B. Thus, from Λ1, we can exactly recover B.

Now, since the network has only one interior node, the submatrix C of K will have dimension
1 × 1. This means that when multiplying, C will behave like a scalar. Thus, BCkBT = BBT ck,
where c is the only entry in C. From this, we see that Λk = BBT ck−1 = Λ1c

k−1. The number, c,
will be the nnth entry in K. Recall that from the definition of K, then, c = −∑n−1

i=1
kin, where kin

is the inth entry of K. In other words, c = sum of the entries in B(= sum of entries in BT ).
Following directly from the above observations, we can outline the criteria for determining if a

given Λn sequences describes a network with exactly one interior node:

• Is Λ1 a rank 1 symmetric matrix? If yes,

• Is Λk = Λ1c
k−1, where c is the same constant for all Λk? If yes,

• Does c = −∑n−1

i=1

√
lii, where lii represents the diagonal entry in the ith row (and ith column)

of Λ1? If yes,

• Does c = −
∑n−1

j=1
(
∑n−1

i=1
lij), where lij is the ith row in the jth column of Λ0? If yes, the

sequence describes a one-interior-node network.

If we must answer no to even one of the above questions, the given sequence cannot describe a
one-interior-node network. Further, we can say that if the sequence meets all the above criteria, and

Λ0 is a diagonal matrix with the sum of the diagonal entries equal to c, as defined above, then not
only does the network have only one interior node, but is also star-shaped (that is, with one central
interior node, possessing no boundary-to-boundary edges).
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3 Characterizing Two-Interior-Node Networks: An Attempt

A network with more than one interior node will have a more complex interior, and thus, more
information must be taken from the terms of the Λn sequence where n > 1, where the necessary
information is more obscured. Thus, we have more possibilities and no easily distinguishable pattern
as we had in the single-interior-node case. When I first learned about the scattering problem, I was
told that the originators of the problem had yet to look at networks with more than one boundary
node. At first, this seemed strange to me. However, one-boundary-node networks have the neat
property, as do one-interior-node networks, that B will be composed of a single vector, and thus
prevent some of the difficulties that arise due to the trickiness of matrix multiplication. As will be
shown in this section, the one-boundary, two-interior-node networks are easily characterized, while
other two-interior-node networks present problems.

3.1 One-Boundary, Two-Interior-Node Networks: A Very Un-general

Case

• Is Λ1 a 1× 1 matrix?

In this case, we know that the network described by the Λn sequence has only one boundary
node. We proceed to determine if the network also has exactly two interior nodes.

• Compute a prospective B.

If the sequence does indeed describe a two-interior node network, the Kirchhoff matrix for the
network will be given by

K =





a −b1 −b2
−b1 c+ b1 −c
−b2 −c c+ b2



 ,

where Λ0 = a = b1 + b2, and Λ1 = b21 + b22. By this second equality, we can think of b1 and b2 as
two edges of a right triangle with hypotenuse of length

√
Λ1 (remember that all Λn’s in this case are

1× 1 matrices, and thus can be treated as scalars). Thus, we can say that, for some θ,

bi =
√

Λ1(cos θ), and b2 =
√

Λ1(sin θ).

We can further see that
Λ0 = b1 + b2 =

√

Λ1(cos θ + sin θ)

and thus
Λ0√
Λ1

= cos θ + sin θ.

Call this number t. Then there must exist some point (x, y) on the unit circle, such that

x = cos θ, y = sin θ, x+ y = t, and x2 + y2 = 1.

¿From these equalities, we see that 0 ≤ t2 ≤ 2. Solving for x and y algebraically, we find that either

x =
t

2
+
√

2− t2 and y =
t

2
−
√

2− t2,

or

x =
t

2
−
√

2− t2 and y =
t

2
+
√

2− t2.
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Without loss of generality, we can assume that x = t
2
+
√
2− t2 and y = t

2
−
√
2− t2, and calculate

b1 and b2.
1 If both b1 and b2 are positive, we have the possibility of a two-interior node network,

and can proceed.

• Compute a prospective C.

Since Λ2 = BBT , we can compute c in the Kirchhoff matrix at the beginning of this section
algebraically. Thus, we have that

c =
Λ2 − b31 − b32
(b1 − b2)2

.

Note that b1 and b2 are both positive, and thus b1 − b2 will never equal zero. With b1, b2 and c

known, we can compute our prospective C.

• Check to see if C fits with the rest of our computed Kirchhoff matrix.

If the matrix K =

(

A B

BT C

)

, using the blocks computed above, has row and column sums

equal to zero, then we have found the Kirchhoff matrix of a two-interior-node network described by
the given Λn sequence. If not, we know that no such network exists, since the uniqueness of our
calculations proves that there are no other possible two-interior-node networks that could fit this
data.

3.2 The More General Cases

Obviously, the situation where a network has only one boundary nodes does not represent the
general case for two-interior-node networks. The general case occurs when there are n boundary
nodes, all Λn are n×n matrices, and, if the network has two interior nodes, B is an n×2 dimensional
matrix, with two linearly independent column vectors, making all Λn matrices rank two. A variation
on this general case occurs when the column vectors of B are (coincidentally) linearly dependant.
What follows is my attempted characterization of the general two-interior-node network case, and a
discussion of the problems with this characterization.

• Is Λ1 rank 2?

• Compute a prospective B.

Let O be an orthogonal (n − 2) × (n − 2) matrix such that, if Λ1 has eigenvalues a and b, and
corresponding unit eigenvectors ua and ub,

O =



ua ub E



 , and OTΛ1O =









a 0 0 · · ·
0 b 0 · · ·
0 0 0 · · ·
...
...
...
. . .









,

1Switching x and y here only changes the order of the (in this case, one-dimensional) column vectors in our
subsequent B. A switch of the column vectors of B does not change the network represented by the Kirchhoff matrix.
Interior nodes, boundary nodes, connections and conductances remain the same. We can even show algebraically
that the same Λn sequence is produced by any arrangement of the column-vectors of B, and, if we are attempting to
reconstruct a network’s graph from the given sequence, the graph we draw will be the same, irrespective of the order
of B’s columns. We can think of the switch as a renaming. The nature of the node does not change if I choose to call
it b1 instead of b2.
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where E is a submatrix of O containing the appropriate number of column vectors, all orthogonal
to the span of ua and ub. We know that such an O exists because Λ1 is symmetric. Further, we
can write OTΛ1O as the square of a uniquely determined matrix, R:

R =









√
a 0 0 · · ·
0

√
b 0 · · ·

0 0 0 · · ·
...

...
...
. . .









.

Thus, we have that

OTΛ1O =









a 0 0 · · ·
0 b 0 · · ·
0 0 0 · · ·
...
...
...
. . .









=









√
a 0 0 · · ·
0

√
b 0 · · ·

0 0 0 · · ·
...

...
...
. . .

















√
a 0 0 · · ·
0

√
b 0 · · ·

0 0 0 · · ·
...

...
...
. . .









= R2.

Because R is symmetric, we can say that OTΛ1O = RRT . By the orthogonal nature of O, we can
go further, to say that Λ1 = OOTΛ1O

TO = ORRTOT = (OR)(OR)T . Now,

OR =



ua ub E



×









√
a 0 0 · · ·
0

√
b 0 · · ·

0 0 0 · · ·
...

...
...
. . .









=













0 · · ·
0 · · ·√

aua

√
bub 0 · · ·

0 · · ·
...
. . .













,

and does not depend on the vectors we pick for E. Further, we see that only the first two columns
of OR contain non-zero entries, and thus, only these columns are necessary to obtain the product
Λ1. So it is shown that Λ1 = BBT , where

B =





√
aua

√
bub



 ,

the first two columns of OR, and BT is the first two rows of (OR)T . Thus, we have factored Λ1 into
BBT .

• Does this B fit the given A (= Λ0)?

By definition, all row and column sums of K must equal zero. Thus, the computed B is only
accurate for the given sequence if the matrix composed of the two submatrices, (A B ), has row
sums equal to zero. If it does,

• Compute a possible C.

By definition of the matrix C, we see that

C =

(
∑

1
+c −c

−c ∑

2
+c

)

.

where
∑

1
= the negative of the sum of the entries in the first column vector of B, and

∑

2
= the

negative of the sum of the entries in the second column vector of B. To find c, we see that the ijth
entry in Λ2, (Λ2)ij = (xi − yi)(xj − yj)c + xixj

∑

1
+yiyj

∑

2
, where xi is the ith entry in the first

column vector of B, and yi is the ith entry in second column vector of B. Thus,

c =
(Λ2)ij − xixj

∑

1
−yiyj

∑

2

(xi − yi)(xj − yj)
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for all k where xk 6= yk. We know that at least one such k exists, because the two column vectors are
linearly independent. If the values of c obtained from different k’s are inconsistent, we know that no
appropriate c exists, and thus that the sequence does not describe a two-interior-node network. If
the values of c are consistent, however, we can compute the second possible C matrix by substituting
the computed value of c into the formula for C above.

• Does this C fit the sequence?
Using the same test as was used above, determine if this new C produces the appropriate values

for all Λn. If it does, we have now found the B and C of the two-interior node network represented by
the given sequence. If not, the sequence does not describe a general case two-interior-node network.

3.3 The Problem

The above process will only prove effective if the factorization of B is unique. If there is more
than one possible factorization of Λ1 into BB

T , we cannot eliminate the possibility of a sequence
describing a two-interior-node network even if the above process fails to produce an appropriate B
and C. I believed that the factorization was unique, until I was presented with a counterexample:





1 2
2 3
1 1



×
(

1 2 1
2 3 1

)

=





5 8 3
8 13 5
3 5 2



 =





√
5 0

8√
5

1√
5

3√
5

1√
5



×
(√

5 8√
5

3√
5

0 1√
5

1√
5

)

.

This shows that there may be many possible factorizations of Λ1. Also, (OR)(OR)
T = OROOTROT =

(ORO)(ORO)T , so when B is a square matrix, we see that both OR and ORO as defined above
are potential candidates for B. I have yet to find a way of resolving the problem. I cannot find a
way to produce all possible factorizations of Λ1, and thus, I cannot determine if there exists one
such factorization which satisfies the given Λ0 = A and produces an appropriate C. This lead me
to attempt to discover some kind of pattern in the terms of the Λn sequence, a pattern that would
identify the sequence as definitely coming from a two-interior-node network, a pattern like the one
that existed in the single-interior-node case. I was able to see no pattern easily distinguishable from
the terms of the sequence themselves, so I attempted to find such a pattern in the subdeterminants
of the terms of the sequence. Though I have not yet found a useful pattern, I have found some
interesting characteristics of the data sequence, which will be the topic of the next section.

3.4 Nifty Sub-Determinant Tricks

• In general, determinants of k×k submatrices of Λ1 are not equal to zero when k < the number
of linearly independent column vectors of B. There are coincidental situations where these
determinants equal zero, but for the most part, this statement is true.

• If the determinant of Λ1 6= 0, B has at least as many columns as Λ1. For Λ1 to have full
rank, B must also have the same rank, which can only happen when B has as many linearly
independent columns as Λ1.

• If B has k linearly independent columns, the determinants of the symmetric k×k submatrices
on the diagonal of Λn will be equal to x times the determinants of the corresponding subma-
trices of Λn−1 for some constant x. Further, if all columns of B are linearly independent , x
will be equal to the determinant of C.

• When B has k linearly independent columns, det(Λ1(I; J)) =
∑

∀K detB(I;K)×detB(J ;K),
where I and J have cardinality k, and K is the set of all subsets of the columns of B with
cardinality k. When B has exactly k columns, which are linearly independent, det Λ1(I; J) =
detB(I; 1, . . . , k)× detB(J ; 1, . . . , k).
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These last two items follow directly from the Cauchy Product Theorem, which relates subdeter-
minants of non-square matrices to sub determinants of their products, as shown in [3].

4 The Scattering Problem for Layered Networks

Attempting to narrow my field of inquiry, I now turn to an examination of the scattering problem
for layered networks. The physical characteristics of layered networks are described in detail in [2].

4.1 Characteristics of Layered Networks

Graphs of these networks are composed of a discrete number of circles, with a discrete number of
radial lines, at the outermost ends of which we find the boundary nodes, and which may or may not
extend beyond the inner-most circle to meet at a central interior node, and which also may or may
not extend beyond the outer-most circle to in boundary spikes. I have chosen to look at the case
where both of these occur, that is, where the network has boundary spikes and a central interior
node, in which case the network will always have an odd number of layers. To be considered a layered
network, such a graph must have the property that corresponding edges have the same conductances.
This means that each of the boundary spikes will have conductance e0, and subsequent edges on each
of the radial lines will have conductances e1, e2, etc., while each of the edges on the outer-most circle
will have conductance d1, each of the edges on the next outer-most circle will have conductances d2,
and so on. This produces a Kirchhoff matrix with a very unique pattern. For such a network, with,
for example, three radial lines and two circles,

K =































e0 −e0

e0 −e0

e0 −e0

−e0 e0 + 2d1 + e1 −d1 −d1 −e1

−e0 −d1 e0 + 2d1 + e1 −d1 −e1

−e0 −d1 −d1 e0 + 2d1 + e1 −e1

−e1 e1 + 2d2 + e2 −d2 −d2 −e2

−e1 −d2 e1 + 2d2 + e2 −d2 −e2

−e1 −d2 −d2 e1 + 2d2 + e2 −e2

−e2 −e2 −e2 3e2































(note that blank spaces represent zeros). The blocks of K are given as follows:

A =





e0
e0

e0



 , B =





−e0
−e0

−e0



 , and

C =



















e0 + 2d1 + e1 −d1 −d1 −e1
−d1 e0 + 2d1 + e1 −d1 −e1
−d1 −d1 e0 + 2d1 + e1 −e1
−e1 e1 + 2d2 + e2 −d2 −d2 −e2

−e1 −d2 e1 + 2d2 + e2 −d2 −e2
−e1 −d2 −d2 e1 + 2d2 + e2 −e2

−e2 −e2 −e2 3e2



















.

Each circle added to the graph will produce a new block in the C block of K, because it will add
two new layers to the interior. Adding a new circle is like taking an existing circle and extending it
to two circles with new segments of radial line between them. Thus, a layer will be added with the
edges of the new circle itself, and a second layer will be added with the new radial line segments.
The following is the Kirchhoff matrix of a layered network with three radial lines and one circle,
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which can be compared to the Kirchhoff matrix given above for a network with three radial lines
and two circles, to illustrate this phenomenon:

K =





















e0 −e0
e0 −e0

e0 −e0
−e0 e0 + 2d1 + e1 −d1 −d1 −e1

−e0 −d1 e0 + 2d1 + e1 −d1 −e1
−e0 −d1 −d1 e0 + 2d1 + e1 −e1

−e1 −e1 −e1 3e2





















.

4.2 Λn sequences for Layered Networks

As we have seen, it is the structure of the K matrix of a network that determines the structure and
properties of the terms of the network’s Λn sequence. Thus, the Λn sequences for layered networks,
being as they are made up of products of blocks of these special K matrices, must have some special
properties also. First, we see that

Λ0 =





e0
e0

e0



 ,

and that, because of the structure of B,

Λ1 =





e20
e20

e20



 = Λ2
0.

We then see that subsequent terms of the sequence, Λn = BCn−1BT will equal

e20(C
n−1(1, 2, 3; 1, 2, 3)),

where the notation M(I; J) denotes the submatrix of M made up by taking the matrix whose rows
and columns correspond to the intersection of the row and column indices that appear in the sets I
and J , respectively.2 This is because the portion of the B matrix which is composed of zeros will
serve to eliminate from Λn all information contained in C beyond the intersection of the first three
rows of C with the first three columns (where the only non-zero entries appear in B). Next, we can
observe that

BCn−1BT =





−e0
−e0

−e0



 ulc(Cn−1)





−e0
−e0

−e0



 .

Matrices of the form





x

x

x



, where x is some constant, are scalar multiples of the identity.

Since scalar multiplication of matrices is commutative, and since multiplication by the identity is
commutative, we see that multiplication of matrices of this form must also be commutative, implying
that





−e0
−e0

−e0



 ulc(Cn−1)





−e0
−e0

−e0



 = e20(ulc(C
n−1)).

2From this point on I will refer to the matrix Cn(1, 2, 3; 1, 2, 3) as ulc(Cn) for “upper left corner” of Cn.
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Thus, all new information presented to us in subsequent terms of the Λn sequence will come from
powers of C. In other words, knowing that a network is layered allows us to factor out an e2

0 from
each Λn and look directly at the upper left n×n block of Cn−1, where n is the number of boundary
nodes, in this case three. I have also observed, though I am at this moment unable to provide a
proof, that, in the three-boundary-node case, each Λn will have the same structure as the upper

right 3× 3 block of C, that is Λn =





αn βn βn

βn αn βn

βn βn αn



 for all n.

4.3 C in Block Form

I soon found that the matrix multiplication necessary to compute increasing powers of C produces
pages upon pages of Mathematica output, which quickly becomes unreadable. Because of this, it
seemed more reasonable to look at C in block form. We can consider C to be composed of many
n × n blocks, where n is the number of boundary nodes of the network. The structure of C seems
to suggest such block form, as can be seen above in the C matrices I have constructed. In these
examples, the blocks are 3×3, though I believe that none of the conclusions which will follow depend
upon the size of the blocks, and thus they can be generalized to layered networks with any number
of radial lines. There will be two types of blocks: scalar multiples of the n× n identity, as in





−e1
−e1

−e1



 ;

and symmetric blocks with all diagonal entries equal and all off-diagonal entries equal to either zero
or a scalar (the same scalar for each off-diagonals in a given block), as in





e0 + 2d1 + e1 −d1 −d1

−d1 e0 + 2d1 + e1 −d1

−d1 −d1 e0 + 2d1 + e1



 .

We will refer to these blocks by the capital of the diagonal entry in the first case, and by the capital
of the off diagonal entry in the second. Thus, we have

C =















D1 E1

E1 D2 E2

E2 D3 E3

E3

. . .
. . .

. . .















.

We can treat these blocks as scalars because they behave that way: their symmetry is such that
they have multiplicative commutativity.

4.4 The “Moving Up” Property of Powers of C

In computing powers of C in block form, I was able to see an important property of the Λn sequence
of layered networks: Each term in the Λn sequence will contain information about a block of C

previously unknown. In other words, ulc(Cn) will show the influence of one more block of the matrix
C than did the matrix ulc(Cn−1). There is, in effect, a “moving up” of the blocks of C in each
subsequent power, which allows us to reconstruct C from the Λn sequence. This moving up happens
in the following manner: We know that the various entries in the block form of any power of C will
be polynomials in D1, D2, etc., and E1, E2, etc. If the “moving up” conjecture is correct, then each
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power of C will have a new block, a new Dk or Ek, appearing in the polynomial corresponding to
ulc(Cn), that is, the first entry in Cn in block form. To show that this is in fact the case, I will
proceed to show simplified versions of the powers of C. These (Ck)′will have as their entries only
the blocks of C that appear in the polynomial of a given entry, and that have not appeared in or
above that entry before. By the term “above” in this case, I mean to suggest that the block has not
appeared in any of the polynomial entries above the right to left diagonal in which the given entry
is located, in the previous powers of C. For example,

C =















D1 E1

E1 D2 E2

E2 D3 E3

E3

. . .
. . .

. . .















C2 =













D2
1 + E2

1 E1(D1 +D2) E1E2

E1(D1 +D2) E2
1 +D2

2 + E2
2

. . .
. . .

E1E2

. . .
. . .

. . .













Here we see that in (C2)12 both D1 and D2 appear for the first time. However, D1 has already
appeared in C11, which is on the diagonal above (C

2)12. So, the matrix (C
2)′ is as follows:

(C2)′ =













E1 D2 E2

D2 E2

. . .
. . .

E2

. . .
. . .

. . .













To proceed:

(C3)′ =













E1 D2 E2

D2 E2

. . .
. . .

E2

. . .
. . .

. . .













×















D1 E1

E1 D2 E2

E2 D3 E3

E3

. . .
. . .

. . .















=



















D2 E2 D3 E3

E2 D3 E3

. . .
. . .

D3 E3

. . .
. . .

E3

. . .
. . .

. . .



















(C4)′ =



















D2 E2 D3 E3

E2 D3 E3

. . .
. . .

D3 E3

. . .
. . .

E3

. . .
. . .

. . .



















×















D1 E1

E1 D2 E2

E2 D3 E3

E3

. . .
. . .

. . .















=

























E2 D3 E3 D4 E4

D3 E3 D4 E4

. . .
. . .

E3 D4 E4

. . .
. . .

D4 E4

. . .
. . .

E4

. . .
. . .

. . .

























At this point, the pattern seems evident. Although this is not a thorough proof, I am convinced
that this pattern will continue until every block of C eventually appears in ulc(Ck). In fact, I believe
it is possible to predict at which k all blocks will appear in ulc(Ck) for the first time. If a given
network has n layers, there will be n distinct blocks of C, where the n− 1st block, En−1

2

, will be a

row vector when it appears in the final row of C, and its transpose, a column vector, when it appears
in the final column of C; and the nth block, Dn+1

2

, will be a 1× 1 matrix. (See the K matrices for

networks with three and five layers, respectively, to illustrate this point.) Based on the pattern we
observe above, we can predict that D n+1

2

will appear the upper right corner of Ck for the first time

when k = 2(n+1

2
)− 1 = n.
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4.5 Recoverability and the Moving Up Property

In the previous section, we saw that all blocks of C eventually appear in the upper left block of some
power of C, and we have seen previously that from Λk we know ulc(C

k−1). In theory, this gives us
the ability to recover all blocks of the C matrix from the sequence Λn. After having spent quite a
bit of time examining the Λn sequence, I believe that an even stronger statement can be made as
follows:

• When k is even, Λk = ulc(C
k−1) = Pk + E1 × · · · × E k

2
−1 ×D k

2
, where Pk is a polynomial in

D1, . . . , D k

2
−1, and E1, . . . , E k

2
−1.

• When k is odd, Λk = ulc(Ck−1) = Pk + E1 × · · · × E k−1

2

, where Pk is a polynomial in

D1, . . . , D k−1

2

, and E1, . . . , E k−1

2
−1
.

In many ways, this is simply a restatement of the moving up property; it says that each subsequent
odd power of C will have a new D block in its upper left corner, and each subsequent even power
of C will have a new E block in its upper left corner. However, notice that the polynomials Pk in
each case are made up of blocks which will already be known from the upper left corners of previous
powers of C, which we learned from previous terms of the Λn sequence. Thus, we know not only
that we can recover these blocks, but we know how to proceed in their recovery: if we calculate the
block-structure form of ulc(Ck) for each k, and proceed to use the blocks computed from previous
powers of C, the invertibility of all the Ek’s allows us to find each new block as we are given each
subsequent term of the Λn sequence.
A brief note about recoverability: When we compute the D1 block of C from Λ2 (for example),

we will find d1 directly, because it appears alone in entries of D1. However, knowing e0 and d1, we
will also be able to compute e1 algebraically, since the diagonal entries of D1 will equal e0+2d1+e1.
Thus, in a sense, we do not get any new information from the odd Λn’s, which give us the Ek blocks
of C. Also, for this same reason, we will be finished recovering the network at Λm−1 where m is
the number of layers in the network. We see that m− 1 will be even, since m is odd for all layered
networks of the type I have chosen to look at. Thus, from Λm−1 we can compute a D block of C,
and also an e conductance. As discussed previously, the next “block” in the C matrix will actually
be a vector with all entries equal to the e conductance just computed, and its transpose, and the
final block will simply be a 1 × 1 matrix, equal to the sum of the entries in the vector. Thus, all
the conductances will already have been computed from Λm−1. From this observation, it follows
that two layered networks with the same conductances on the same layers will have equal Λn for all
n < m, where m is the number of layers of the smaller network.

4.6 C as a Sum of Matrices

In attempting to understand the behavior of C in block form, it has proved useful to look at C as
a sum of two Matrices,

D =









D1

D2

D3

. . .









and E =















E1

E1 E2

E2 E3

E3

. . .
. . .















.

So we have
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C = D + E

C2 = D2 + ED +DE + E2

C3 = D3 + ED2 +DED + E2D +D2E + EDE +DE2 + E3

C4 = D4 + ED3 +DED2 + E2D2 +D2ED + EDED +DE2D + E3D

+D3E + ED2E +DEDE + E2DE +D2E2 + EDE2 +DE3 + E4

etc.

This formulation is helpful in understanding C because it allows us to see what parts of the C matrix
cause it to behave as it does. For example, only terms containing an even number of E’s will have
a non-zero first entry. This can be proved by induction:

• Multiplication of E by D does not change E’s structure. E has zero and non-zero entries in
the same places as before. The only difference is the numeric values of these entries. This is
true because D is a diagonal matrix.

• Base case: E =







E1

E1

. . .
. . .






, E2 =













E2
1 E1E2

E2
1 + E2

2

. . .

E1E2

. . .
. . .













.

• k implies k + 1: If Ek =





X · · ·
Y

...
. . .



,

Ek+1 =





X · · ·
Y

...
. . .



×







E1

E1

. . .
. . .






=







XE1 · · ·
Y E1

. . .
...






,

so Ek+1 has no non-zero first entry. If Ek =











X · · ·
Y

. . .

...











,

Ek+1 =





X · · ·
Y
...
. . .



×







E1

E1

. . .
. . .






=

(

E1X · · ·
...

. . .

)

,

so Ek+1 has a non-zero first entry.

Thus, only some of the terms (those which are a product of an even number of E’s and any number
of D’s) added to produce Ck−1 will contribute to information that appears in Λk. Due to time
constraints, I have been unable to examine the properties of D and E much further than this.

5 Conclusion

Obviously, there are many questions which remain unanswered. In fact, perhaps more questions
are raised by this paper than are answered. As a first step into a new field, however, I believe
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my research will be useful, in that it illuminates areas that were before completely in the dark. In
conclusion, I leave the reader with a summary of questions raised by this paper that have not been
answered.

• Is it possible to determine the number of interior nodes in a network from the power series
expansion of the function Λ(λ)?

• How many possible factorizations of a given Λ1 matrix into a prospective B and BT exist?
Is this number finite? Can the process described in this paper be improved to provide a true
algorithm for determining from the Λn sequence if a network has two interior nodes?

• If such an algorithm can be found for sequences with rank-two Λ1’s, can it be found for
sequences with only rank-one Λ1’s, a variation on the general two-interior-node case mentioned
only briefly in this paper.

• Can we develop a test to determine if a given sequence describes a layered network?

• What happens in the terms of the Λn sequence of a layered network for n >the number of
layers?

• Can rigorous proofs be shown for the moving up property on C for layered networks and its
effect on the recoverability of these networks?

• How is the structure of Ck influenced by the matrices D and E.
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