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1 Introduction

The purpose of this paper is to explore how numbering electrical resistor net-
works effects their response matrix, A. Moreover, what can be learned from
A about the topology of the network? This paper considers specific networks
and their A, and shows how the boundary nodes were placed in the original
network. In other words, no matter how the boundary nodes are numbered, can
the information from A and about the network still be recovered?

Most of the networks looked at in this paper are edge conductivity networks
where current at p, ¢(p), is defined as such:
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where 7, 4 is the conductivity of the edge joining node p to g.
The Kirchhoff matrix, K, for a network with n nodes, is an n X n symmetric
matrix where
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It is useful to write K in block form where the interior nodes fall in block C
and the boundary nodes fall in A.
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Then the response matrix, A is formed by taking the Schur complement of K
in C. That is
A=A-BC'BT
In order to determine sign conditions in A, select two distinct sets of boundary
nodes, P = (p1,p2,...,pk) and Q = (q1,492,-..,qx). Then

detA(P;Q) - detK (I;1) = (1) > sgn(T){ NI EG) ~Da}

TESE a  e€E,
Ta=T



shows what the sign of det A(P;Q) is. So if there is only one distinct pairing
between the nodes in P and the nodes in @, then the sign of det A(P;Q) is
known. This background information comes from [1].

This paper looks at annular networks, many of which have conductivities
constant on layers. Due to the symmetry of the networks, the ordering of the
boundary nodes can be found in these cases, mainly because of the symmetries
found in A and sign conditions of A.

2 Annular Network with Three Rays and Two
Circles

b

Figure 1: G(3,2)

First consider G(3,2), that is a graph defined as such: G(# of rays, # of
circles), and assume that conductivity is constant on layers. Then the response
matrix, A, is as follows:
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where

B — a?(bc? + 3bed + c2d + 2bce + 3bde + be?)
~ (ac + ae + ce)(ac + 3bc + 3ad + 9bd + 3cd + ae + 3be + ce)

— ace(ac + be + ad + 3bd + ¢d + ae + be + ce)

= (ac + ae + ce)(ac + 3be + 3ad + 9bd + 3cd + ae + 3be + ce)

— ace(be + ad + 3bd + cd + be)
ac + ae + ce)(ac + 3bc + 3ad + 9bd + 3cd + ae + 3be + ce)

T

— (bc? + a®d + 3abd + 2acd + 3bed + c2d)e?
(ac + ae + ce)(ac + 3bc + 3ad + 9bd + 3cd + ae + 3be + ce)

and
Y = — (Sum of the row entries)

Regardless of how the boundary nodes are numbered the response matrix
still contains four distinct entries which provide information about the structure
of the network. The information may not be as obvious as before because the
ordering of the entries in A is no longer the same, but the information is still
there. For instance, if A, 4 is 3 then z and y are boundary nodes on the same
ray. It is fairly easy to identify the 8 term in the response matrix because it is
the only term that shows up six times and is in every row and every column.
Now, which nodes appear on the inside of the graph and which are on the
outside? Technically, there is no way to tell between the inside and outside of
this network because it could easily be inverted. But, it is possible to tell which
three nodes are grouped together on the inside or outside. The terms in A that
show this are § and «, each of which are the two other terms which appear six
times. So for every z and y such that A, is a d, then those z and y’s are
grouped together. Likewise for every = and y such that A, , is a a.

There can be many different A matrices that have the same structure as the
A for this network. In order for a A to be a response matrix for this network, not
only must the above symmetries hold, but these sign conditions must also hold,
where (x1, xo, x3) are grouped together on the inside (or outside) and (y1, y2, y3)
are the outside, and (x1,y1), (z2,y2), and (x3,y3) are paired on the same ray.



. det A $1,$2,$3;y17y27y3) <0

(
. det A(z1, 22, y2;23,y1,y3) >0
. det A(xy,x2391,2) >0
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. det A(zy,y1;22,y2) >0

Annular Network with Three Rays and Two
Circles (With Less Symmetry)
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Figure 2: G(3,2) with less symmetry



This is another G(3,2) graph, but symmetric only with respect to the “y-
axis”. The response matrix, A is as follows:
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where
a = — (e(2abd + 2bcd + beg + 2adg + 2bdg + 2¢dg)h) /(4abed + 4abde + 4bede +

+ 2abcg + 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + dadeg + 4bdeg + 4cdeg +
+ acg® + beg? + adg® + bdg? + cdg® + aeg® + beg® + ceg® + 2abch + 2abdh +

+ 2bedh + 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh + 2aegh +
+ 2begh + 2cegh)

B = — (f(2bed + acg + beg + adg + bdg + cdg + aeg + beg + ceg)h)/(4abed +
+ 4abde + 4bcde + 2abcg + 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4adeg +
+ 4bdeg + 4cdeg + acg® + beg® + adg? + bdg® + cdg® + aeg® + beg® + ceg® +
+ 2abch + 2abdh + 2bedh + 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh +
+ 2cdgh + 2aegh + 2begh + 2cegh)

0 = — (a(2bcd + beg + bdg + 2¢dg + beg)h) /(4abed 4 4abde + 4bede 4 2abeg +
+ 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4adeg + 4bdeg + 4cdeg +
+ acg® + beg? + adg® + bdg? + cdg® + aeg® + beg® + ceg® + 2abch + 2abdh +
+ 2bcdh + 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh +
+ 2aegh + 2begh + 2cegh)

e = — (2(20%c*d + 2abd? + 2ab*d? + dabed? + 2b%cd? 4 2bc2d® + b2t g +
+ 2abedg + 2b%edg + 2bc?dg + 2a%d%g + 4abd? g + 2b%d%g + dacd?g +
+ dbed?g + 2c2d2g + b2 h + 4a2bdj + 4ab®dj + 8abedj + 4bcdj +
+ 4bc*dj + 2a%bgj + 2ab®gj + dabegj + 20%cgj + 2bc* g + 4adgj +
+ 8abdgj + 4b*dgj + 8acdgj + 8bedgj + 4c?dgj + a?g?j + 2abg®j + b2 ¢%j +
+ 2acg?j + 2bcg®s + g + 2a%bhj + 2ab?hj + dabehj + 2b%chj + 2bc*hj +
+ 2a2ghj + 4abghj + 2b%ghj + 4acghj + 4bcghj + 2c>ghj + 4bc*dk +
+ dabd*k + 4bed?k + 2bc? gk + 4bedgk + Ac*dgk + 4ad® gk + 4bd? gk +
+ ded? gk + gk + 2bc?hk + 2c?ghk + 8abdjk + 8bedjk + 4abgjk + 4begik +



+ 8adgjk + 8bdgjk + 8cdgjk + 2ag®jk + 2bg*jk + 2cg*jk + 4abhjk +

+ 4bchjk + daghjk + 4bghjk + 4cghjk)/(4abed + 4dabde + 4bede + 2abeg +
+ 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4adeg + 4bdeg + 4cdeg +

+ acg® + beg? + adg? + bdg® + cdg® + aeg® + beg® + ceg® + 2abch + 2abdh +
+ 2bcdh 4 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh +

+ 2aegh + 2begh + 2cegh)

— (ef(2bcd + beg + adg + bdg + cdg + beh)) / (dabed + 4abde 4 4bede + 2abeg +
+ 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4adeg + 4bdeg + 4cdeg +

+ acg® + beg® + adg® + bdg? + cdg® + aeg® + beg? + ceg? + 2abch + 2abdh +
+ 2bcdh + 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh +

+ 2aegh + 2begh + 2cegh)

— (ae(4abc®d 4 2b*c*d 4 2abed® + 2b%cd® + 2bc*d® + 4abede + 2b%cde +

+ 4bc?de + 2abc’g + b*c?g + 3abedg + 2b%cdg + dacdg + 4bc?dg + abd?g +

+ b?d?g + 2acd®g + 3bed®g + 2¢2d? g + 2abceg + b2 ceg + 2bceg + abdeg +

+ b2deg + dacdeg + Sbedeg + 4c2deg + ac?g? + b’ g2 + acdg? + bedg? + Pdg? +
+ aceg® + beeg? + c*eg® + 2abc*h + b*c*h + 2abedh + b*cdh + 2bc*dh 4 2abceh +
+ b2ceh + 2bc’eh + 2ac’gh + 2bc® gh + 2acdgh + 2bedgh + 2¢2dgh + 2acegh +
+ 2bcegh + 2c%egh + dabedj + 4b%cdj + 4bcdj + 2abegj + 2b%cqj + 2bc?gj +

+ 2abdgj + 2b%dgj + 4acdgj + 6bedgj + 4c*dgj + acg?®j + beg?j + 2 g?j +

+ 2abchj + 2b%chj + 2bc*hj + 2acghj + 2bcghj + 2¢*ghj + 4bc*dk + 4bed?k +
+ 4bedek + 2bc? gk + 4bedgk + 4c?dgk 4 2bd> gk + 4cd® gk + 2bcegk + 2bdegk +
+ dedegk 4+ g%k + cdg®k + ceg?k + 202 hk + 2bedhk + 2bcehk + 2¢2ghk +

+ 2cdghk + 2ceghk + 8bedjk + 4begjk + 4bdgijk + Scdgjk + 2cg?jk + 4bchjk +
+ 4eghjk))/(4dabed + 4abde + 4bede + 2abeg + 2abdg + 4acdg + 2bedg +

+ 2abeg + 2bceg + 4adeg + 4bdeg + dedeg + acg? + beg? + adg? + bdg? +

+ cdg® + aeg? + beg? + ceg® + 2abch + 2abdh + 2bcdh + 2abeh + 2bceh +

+ 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh + 2aegh + 2begh + 2cegh)

— (ae(2b202d + 2abed? + 2b%bed? + 2bc2d? + 2b%cde + b*c*g + abedg + 2b%cdg +
+ 2bc*dg + abd?g + b?d?g + 2acd®g + 3bed?g + 2¢2d% g + b2 ceg + abdeg + b2 deg +
+ bedeg + b2c?h + bPedh + b*ceh + 4abedj + 4b%cdj + 4bc*dj + 2abegj + 2b%cgj +
+ 2bc2gj + 2abdgj + 2b%dgj + dacdgj + 6bedgj + 4c?dgj + acg®j + beg?j +

+ ?g%j + 2abchj + 2b%chj + 2bc*hj + 2acghj + 2bcghj + 2¢* ghj + 4bc*dk +

+ 4bcd®k + 4dbedek + 2bc? gk + dbedgk + 4c*dgk + 2bd? gk + 4cd? gk + 2bcegk +

+ 2bdegk + 4cdegk + 2 g’k + cdg?k + ceg?®k + 2bc*hk + 2bedhk + 2bcehk +



+ 2c?ghk + 2cdghk + 2ceghk + 8bedjk + 4begjk + 4bdgjk + 8cdgjk + 2cg®jk +
+ 4bchjk + 4eghjk))/(4abed 4+ 4abde + 4bede + 2abeg + 2abdg + 4acdg + 2bedg +
+ 2abeg + 2bceg + dadeg + 4bdeg + 4cdeg + acg® + beg? + adg® + bdg? +
+ cdg® + aeg® + beg?® + ceg® + 2abch + 2abdh + 2bedh + 2abeh + 2bceh +
+ 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh + 2aegh + 2begh + 2cegh)

v = — af(2bcd 4 2bde 4 beg + bdg + cdg + beg + beh + bdh + beh)) / (4abed + 4abde +
+ 4bcde + 2abeg + 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4dadeg + 4bdeg +
+ dedeg + acg? + beg? + adg? + bdg? + cdg? + aeg® + beg? + ceg? + 2abch +
+ 2abdh + 2bcdh + 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh +
+ 2aegh + 2begh + 2cegh)

w = — (a*(2b%c*d + 2b%cd? + 2bc?d? + 4bcde + 262 d%e + 2b%de? + b2 crg + 2b%cdg +
+ 2bcdg + b?d%g + 2bed®g + 2c2d? g + 2b%ceg + 2b%deg + 2bcdeg + b?e?g +
+ b?c?h + 2b%cdh + b2d%h + 2b%ceh + 2b%deh + b?e?h + 4b%edj + 4bc*dj +
+ 4b%dej + 2b%cgj + 2bc2gj + 2b%dgj + 4bedgi + Ac*dgj + 2b%egj + g% +
+ 2b%chj + 2bc*hj + 2b%dhj + 2b%ehj + 2c2ghj + 4bcdk + 4bed?k + Sbedek +
+ 4bd*ek + 4bde*k + 2bc* gk + 4bedgk + Actdgk 4 2bd® gk + 4cd® gk + 4dbcegk +
+ 4bdegk + 8cdegk + 4d%egk + 2be’ gk + 4de’gk + ? g’k + 2¢dg*k + d* g%k +
+ 2ceg?k + 2deg®k + €22k + 2bc2hk + 4bedhk + 2bd*hk + 4bcehk + 4bdehk +
+ 2be’hk + 2c¢2ghk + 4cdghk + 2d* ghk 4 4ceghk + 4deghk + 22 ghk + 8bedjk +
+ 8bdejk + 4bcgjk 4 4bdgjk + 8cdgjk + 4begjk + 8degjk + 2cg*jk + 2dg?jk +
+ 2eg?jk + 4bchjk + 4bdhjk + 4behjk + dcghjk + 4dghjk + 4eghjk)/(4abed +

+ 4abde + 4bcde + 2abcg + 2abdg + 4acdg + 2bcdg + 2abeg + 2bceg + 4adeg + 4bdeg +

+ dedeg + acg? + beg? + adg? + bdg? + cdg® + aeg® + beg? + ceg? + 2abch +
+ 2abdh + 2bedh 4 2abeh + 2bceh + 2acgh + 2bcgh + 2adgh + 2bdgh + 2cdgh +
+ 2aegh + 2begh + 2cegh)

and
Y = — (Sum of the row entries)

Regardless of how the boundary nodes are numbered the response matrix
still contains nine distinct entries which provide information about the structure
of the network. The information may not be as obvious as before because the
ordering of the entries in A is no longer the same, but the information is still
there. The first thing to notice in A is that there are three entries that only
appear twice: [, €, and w. Upon further inspection, § can be distinguished
from € and w because every row and column that contains a 3 also contains a
> and two pairs. Note this is only true for 3. So if A, is 3, then boundary



nodes x and y are contained on the same ray. Moreover x and y are on the
non-symmetric ray. Consider the other two entries that appear only twice: €
and w. If Ay, is € or w then z and y are grouped together on the inside or the
outside.

Now one of the inside nodes will be paired with one of the outside nodes, but
which one? In order to determine this, first select one of the boundary nodes
not on the symmetric ray, call it . Next, select the group of nodes (y, z) that
does not contain x. That is if = is on the inside, then select the group known
to be on the outside. There are two choices, x and y can be on the same ray or
x and z. If Ay, > A; ., then x and z are on the same ray. Otherwise x and y
are together. The remaining two nodes are on the last ray. This is true because
6 > p due to det A(1,2;4,5) >0 and det A(2,1,4;3,5,6) > 0.

Now, which nodes are grouped together on the inside of the graph and
which are on the outside? Technically, there is no way to tell between the
inside and outside of this network because it could easily be inverted. But, it
is possible to tell which three nodes are together on the inside or outside, two
are already known due to € and w. To help simplify things call the nodes on
the non-symmetric ray (21, z2) and call the two sets of nodes that are grouped
together on the inside or outside (y1,y2) and (21, 22). Now there are two options:
(21, Y1, y2) and (x2, 21, 22) can be grouped together or (x1, 21, 22) and (x2, Y1, Y2)-
If Aoy i Aas,zr < Azy oz Aoy, then (21, 21,20) and (22,91, y2) are the correct
grouping, otherwise (z1,y1,y2) and (z2, 21, 22) are the correct grouping. This
is true because ya > gd due to det A(1,4;2,5) > 0. Note, in the inequality ys
and z could replace y; and z; respectively because they are the same.

There can be many different A matrices that have the same structure as the
A for this network. In order for a A to be a response matrix for this network, not
only must the above symmetries hold, but these sign conditions must also hold,
where (21, z9, 23) are grouped together on the inside (or outside) and (y1,y2, y3)
are on the outside, and (z1,y1), (z2,y2), and (x3,y3) are paired on the same
ray, note (x1,y1) is the non-symmetric ray.

1. det A(z1, 22,2391, y2,y3) <0
2. det A(w1, 72,925 23,y1,93) >0
3. det A(w2,71,Y1573,Y2,93) >0
4. det A(x1,x2;y1,y2) >0
5. det A(za,x3;y2,y3) >0
6. det A(z1,y1;22,92) >0
7. det A(xa,y2;23,y3) >0

4 Graph with Three Holes

4.1 Completely Symmetric Case
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Figure 3: Graph with Three Holes

Consider this graph with conductivities on layers completely constant.
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where
B ac(a® + 5a%b + Tab? + 3b3 + 2a%c + 6abe + 2b%c)
“ (a+ 3b)(a+ 3b+ 2¢)(a? + 3ab + 2ac + 4bc)
3 abe(a? + 4ab + 3b? + ac + 2bc)

(a4 3b)(a+ 3b + 2¢)(a® + 3ab + 2ac + 4bc)



abe(ab + 3b% + ac + 2bc)

5 = —
(a+ 3b)(a + 3b+ 2¢)(a? + 3ab + 2ac + 4bc)
_ ab(a® + 6a%b + 9ab® + 2a%c + Tabc + 3b%c + ac® + 2bc?)
T (a+ 3b)(a + 3b+ 2¢)(a? + 3ab + 2ac + 4bc)
. o ab’c
(a + 3b)(a + 3b+ 2¢)(a? + 3ab + 2ac + 4bc)
Y = — (Sum of the row entries)

Again, regardless of how the boundary nodes are numbered the response
matrix still contains five distinct entries which provide information about the
structure of the network. The information may not be as obvious as before be-
cause the ordering of the entries in A is no longer the same, but the information
is still there. The first thing to notice in A is that « is the only entry that
appears just 12 times in the matrix. If A; , = o, then x and y are paired on the
same ray. Next there are three terms, 4, v, and « that appear 24 times each. If
Az.y = @, then x will be in the same column of the 2" and y'" rows. No other
element will have that characteristic.

[ is easy to find because it appears 48 times in the matrix. Now the question
is how can ~ distinguished from §7 Using two sign conditions of the network,
det A(1,2;5,4) > 0 and det A(1,2;6,3) > 0, it is known that v2 > §2. If
Az,y = 7, then z and y are grouped in the same circle. Hence all boundary
nodes in each circle are known.

There can be many different A matrices that have the same structure as the
A for this network. In order for a A to be a response matrix for this network,
not only must the above symmetries hold, but certain sign conditions must also
hold. A list of some of these sign conditions can be found in the appendix. It is
not a complete list due to the great quantity of determinants and complexity of
the network. The extra symmetry in this network may mean that some of the
determinants in the appendix are equivalent.

4.2 Less Symmetric Case

10
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Figure 4: Graph with Three Holes(with less symmetry)

Here is another graph to consider. Assume that conductivity is constant on
layers. Then the response matrix, A, is as follows:

YXa gy B 6 0 kT WY o op
a ¥ 6 B v B kO o Y op
B 6 Y a B v 1 0 kK p 9P o7q
y B oa X 6 B 7 ok 0 pon @
g v B 06 X a rk m 0 n p o
Al @8 v Ba X 8 7 kY opoy
0 v« © @ kK 0 X o o € T T
k 08 0 k ® ™ o X o T € T
T 7® k 0 0 kK o o X T T €
Yo opop o Y oe T T X X X
n Y Y n op op T € T X Y X
pop on Y on T T € x x X

Regardless of how the boundary nodes are numbered the response matrix still
contains fourteen distinct entries which provide information about the structure
of the network. The information may not be as obvious as before because the
ordering of the entries in A is no longer the same, but the information is still
there. The first thing to notice in A is that in the upper triangular part of
the matrix, § is the only term that appears six times in the upper triangle
and is only in four columns. Hence [ is distinguished from the other entries

11



of the matrix. Now looking at the whole matrix, 7 can also be distinguished.
In the matrix, 8 appears in six different rows and columns; 7 also appears in
six different rows and columns, none of which contain a (3. So, 7 and 3 can be
identified in A.

Next look at the 6 x 6 submatrix containing only rows and columns which
have a (. In this submatrix there are three other entries: «, -, and 6. 7 can
be distinguished from the other two by using some sign conditions of deter-
minants. ~ is the only one of the three, such that v2 < 2. This is because
det A(1,2;6,3) > 0, det A(1,4;2,3) > 0, and det A(1,2;5,4) > 0.

Now that [ and « have been identified in A the arrangement of nodes in the
inner triangle can be determined. If A, , = 3, then z is two nodes away from
y. If Ayy =, then z is three nodes away from y. Using this information it is
now known which nodes are paired on the interior rays and two of the nodes
grouped together in each of the three interior circles.

Another element can be identified by taking the six by six submatrix of
every row and column containing 7. Within this matrix, € is the only element
appearing six times and is in every row and every column. If A, , = € then x and
y are on the same outer ray. Upon further inspection, it becomes clear that this
submatrix has the same structure as G(3,2), thus having four different elements.
As in the G(3,2), o and x can not be distinguished from each other, but they
are different entries. Thus if A\, , = o, then = and y are grouped together on the
outside circle or with the nodes from the inner triangle. Similarly for A, , = x.

Furthermore, it would be nice to know which outer ray is grouped with each
inner circle. For each of the inner circles, let (z1,41), (%2,y2), and (x3,y3) be
the pair of boundary nodes that are grouped together in one of the inner circles.
Now is a given ray grouped with (z1,y1), (z2,¥y2), or (x3,y3)? Select one of the
boundary nodes on the outer ray, call it z. If A\,, ., = Ay, », then 1, 31, and
z are grouped together in the same inner circle. If A\, . # Ay, -, then try the
same thing using (z2,y2) and (x3,y3); they will only be equal in one of these
cases. So each outer ray is grouped with one of the inner circles.

In order to determine which nodes of the outer rays are in the outer circle and
which are in the inner circles a determinant must be checked. Let (z1, 2, z3) and
(y1, Y2, y3) be the grouped together on the outer circle or in the inner circles, this
is know from ¢ and x. Now for the moment, group x1, x2,and x3 with y;. Then
group y» with one of the elements in the inner circle grouped with y; call it w,
and with the two elements, (21, 22), that share an inner ray that connects the two
inner circles which do not grouped with y;. If det A(x1, x2, 3, y1; Y2, W, 21, 22) =
0, then (x1, x2, z3) are the nodes on the outer circle and (y1, y2, y3) are the nodes
in the inner circles. If it is not equal to zero, then (x1, 22, x3) are the nodes in
the inner circles and (y1,y2,y3) are the nodes on the outer circle.

There can be many different A matrices that have the same structure as the
A for this network. In order for a A to be a response matrix for this network,
not only must the above symmetries hold, but certain sign conditions must also
hold. A list of some of these sign conditions can be found in the appendix. It
is not a complete list due to the great quantity of determinants and complexity
of the network.

12



5 Structure of Entries in A

While working with the response matrix a pattern emerged. No matter how
large or small the entries were, the off-diagonal entries were all ratios of the
opposite of sums of monomials with positive integer coefficients.

Monomials with Positive Coeflicients 5.1 Let \; ; be an entry in the re-
sponse matriz. It can be written in the following form.

mi,j

o \ij=——g%, wheni#j

_ M4 -
o \ii=—7, wheni=
Where m; j,m;;, and d are sums of monomials with positive integer coefficients.

Proof: (by induction) In order to go from the Kirchhoff matrix, K, to the re-
sponse matrix, A, Gaussian elimination can be done one row at a time until A
is the result. In other words take the Schur complement but one element at a
time.

In the first case this is obviously true, that is when A;; is an element of

the Kirchhoff matrix. This is because K; ; = —v;; when ¢ # j and K;; =
- j2i Kij, and 75 is a sum of positive monomials with integer coefficients.
Now assume this is true for A; j. So, A; ; = —75% when i # j and \; ; = "=

when ¢ = j. Where m; j, m; ;, and d are sums of monomials with positive integer
coefficients. (This is the inductive hypothesis.) Then by Gaussian elimination

N Mg A Min My
b d  mn, d d
when i # j. So
/
Vo 1 MMy MM+ MynMn i M
b= gl mi m ) = - d T
Mp,n Mnp,n

)

by the inductive hypothesis. When ¢ = j, then

A;z = %Zm;g

J#i

Thus the theorem has been proven.

6 G(3,2) with Vertex Conductivity
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Figure 5: G(3,2) with vertex conductivity

Now consider a network with vertex conductivity instead of edge conductiv-
ity. So the current at a node is defined as:

Z Yq(ugq — up)
q~p

where v, is the conductivity at node g. Using this definition of current, then
the response matrix, A, is as follows:

¥ a a v 7
a ¥ a v B 7
Ao @@ 20 v B
Tl kK kK X € €
K 0 K € X €
K K 0 € € X
where
o - _ ab?(b? + 3bc + ¢ + 2bd + 3cd + d?)
N (ab+ ad + cd)(ab + 3b2 + 3ac + 9be + 3¢? + ad + 3bd + cd)
g = bed(ab + b% + ac + 3be + ¢ + ad + bd + cd)

" (ab + ad + cd)(ab + 3b2 + 3ac + 9bc + 3¢2 + ad + 3bd + cd)
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bed(b? + ac + 3bc + ¢ + bd)

T (ab + ad + cd)(ab + 3b2 + 3ac 4+ 9be + 3¢2 + ad + 3bd + cd)
5 - _ abe(ab + b + ac + 3bc + ¢ + ad + bd + cd)

N (ab+ ad + cd)(ab + 3b% + 3ac + 9bc + 3¢? + ad + 3bd + cd)
oo abe(b? + ac + 3bc + ¢ + bd)

N (ab + ad + cd)(ab + 3b2 + 3ac + 9bc + 3¢? + ad + 3bd + cd)
. - c2(a® + 3ab + b% + 2ac + 3bc + ¢?)d)

N (ab+ ad + cd)(ab + 3b2 + 3ac + 9be + 3¢? + ad + 3bd + cd)
Y = — (Sum of the row entries)

Regardless of how the boundary nodes are numbered the response matrix still
contains six distinct entries which provide information about the structure of
the network. The information may not be as obvious as before because the
ordering of the entries in A is no longer the same, but the information is still
there. The first thing to remember is that A is no longer symmetric. This is
because A is for a network with vertex conductivity. 8 and J are the only two
entries that appear three times. If A, , = B or Az, = 6, then x and y are paired
on the same ray. Now, which nodes appear on the inside of the graph and which
are on the outside? Technically, there is no way to tell between the inside and
outside of this network because it could easily be inverted. But, it is possible to
tell which three nodes are grouped together on the inside or outside. Consider
all Ay 4 = B3, or e. It does not matter which entry is chosen, just that one of the
entries that only appears three times. Then all x are grouped on the inside and
all y are grouped on the outside.

There can be many different A matrices that have the same structure as the
A for this network. In order for a A to be a response matrix for this network,
not only must the above symmetries hold, but certain sign conditions must also
hold.
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