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Abstract

Inverse problems for directed edge conductivity networks and vertex

conductivity networks are discussed. Non-recoverability of certain types

of networks is established.

1 Introduction

A directed edge conductivity network Γ = (G, γ), as posed in [3] is a directed
graph with boundary G = (V, VB , E), where ∅ 6= VB ⊆ V and
E ⊆ {(u, v) | u, v ∈ V, u 6= v}, together with a positive real-valued function γ

(the conductance function) on E. Here, γ(u, v) can be viewed as the conductance
from u to v, as seen by u. Unlike [3], we define current flow into a node to be
positive, and the current (due to a potential function u on the vertices) at a
node p which has edges to neighbors q (designated p→ q) is thus:

∑

q|p→q

γ(p, q)(u(q)− u(p))

We additionally require that each vertex that is not a boundary vertex (called
an interior vertex) has a directed path to some boundary vertex.

In this case our Kirchoff matrix is as follows:

1. Ki,j = γ(i, j) for i→ j

2. Ki,j = 0 for other i 6= j

3. Ki,i = −
∑

j|i→j γ(i, j)

The response matrix will again be the Schur complement of the rows and
columns corresponding to the interior vertices (the required invertibility of the
submatrix is established in [3]).

We see then that the conductivity networks discussed in [2] may be viewed
(with an appropriate change of sign) as directed edge conductivity networks
with the additional restrictions that (u, v) ∈ E iff (v, u) ∈ E and γ(u, v) =
γ(v, u) ∀(u, v) ∈ E. That is, between any two vertices, if there is any edge
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between them then there are two edges between them, and they have the same
conductances.

Furthermore, we may also view the vertex conductivity networks seen in [4]
and [1] as directed edge conductivity networks with the additional restrictions
that (u, v) ∈ E iff (v, u) ∈ E and γ(p, q) = γ(r, q) ∀q ∈ V and where p→ q and
r → q. We also assume that the graph G is connected. That is, between any two
vertices, if there is any edge between them then there are two edges between
them, and all edges pointing toward a given vertex have the same conductances.
For this reason, in the vertex conductivity case we can define γ to be not on
the edges but on the vertices, and our conductance equation at node p becomes
(where q ∼ p iff q and p are neighbors):

∑

q∼p

γ(q)(u(q)− u(p))

The Kirchoff matrix becomes:

1. Ki,j = γ(j) for i ∼ j

2. Ki,j = 0 for other i 6= j

3. Ki,i = −
∑

j∼i γ(j)

We find the response matrix just as we did in the undirected case.
Note that both the undirected edge conductivity and vertex conductivity

cases are strong restrictions on the values of the conductors of the network,
and it is usually the information that results from this restriction (and not
simply data gleaned from viewing this as an undirected network) that allows for
recovery of the network.

As in [2], the interesting functions u are those for which the conductivity
equation is 0 on all interior vertices, and these are called γ-harmonic functions.
It is established in [3] and [4] that for the directed edge conductivity case and
the vertex conductivity case, given a set of potentials u on the boundary, there
is a unique γ-harmonic extension of u to the interior vertices. These papers also
establish the existence of the response matrix Λγ for a network, which, when
applied to a vector of boundary potentials, returns the corresponding vector of
resulting boundary currents.

The inverse problem for these networks is thus, given a graph G and a
response matrix Λγ , to recover γ everywhere (i.e. on all directed edges, or on
all vertices).

We see immediately that if a vertex conductivity network (or undirected
edge conductivity network) is not recoverable, then the corresponding directed
edge conductivity network is not recoverable. The converse is clearly not the
case, as will become apparent.
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2 Recoverability of Directed Edge Conductivity

Networks

Theorem 2.1 Let G be a directed graph with boundary, and Γ = (G, γ) a di-
rected edge conductivity network with response matrix Λγ . Suppose G has at
least one interior vertex. Then γ is not recoverable from Λγ .

Proof: Since we have at least one interior vertex, and it must have a directed
path to some boundary node, there exists at least one interior vertex (we shall
call it k) such that {j | k → j} 6= ∅.

Suppose for the sake of contradiction that γ is recoverable. For some positive
real constant c not equal to 1, consider another network Γ′ = (G, γ′), where
γ′(k, j) = cγ(k, j) for k → j, and γ′(i, j) = γ(i, j) for all other i, j, as well as its
response matrix Λγ′ . Since this graph is recoverable and γ 6= γ ′ we must have
that Λγ 6= Λγ′ . So ∃ u such that Λγu 6= Λγ′u. Let v be the γ-harmonic extension
of u in Γ. We have then that v is also γ′-harmonic in Γ′: consider an interior
vertex i. If i is not k,

∑

j|i→j

γ′(i, j)(v(j)− v(i)) =
∑

j|i→j

γ(i, j)(v(j)− v(i)) = 0

since v is γ-harmonic. In the other case, we consider when i is k. Then,

∑

j|i→j

γ′(i, j)(v(j)−v(i)) =
∑

j|i→j

cγ(i, j)(v(j)−v(i)) = c
∑

j|i→j

γ(i, j)(v(j)−v(i)) = 0

again since v is γ-harmonic. Thus v is γ ′-harmonic as well.
But then, since k 6∈ VB , we have that

(Λ′u)i =
∑

j|i→j

γ′(i, j)(v(j)− v(i)) =
∑

j|i→j

γ(i, j)(v(j)− v(i)) = (Λu)i

for each i ∈ VB , contradicting Λγu 6= Λγ′u. Thus, G is not a recoverable graph
for directed edge conductivity networks. 2

Thus, the only graphs that might possibly be recoverable are those that
contain only boundary nodes. For these graphs, however, the response matrix is
the same as the Kirchoff matrix, and so they are recoverable. Thus, by Theorem
2.1, we have the following characterization:

Corollary 2.1 A directed edge conductivity network is recoverable if and only
if its graph contains no interior vertices.

3 Two-colorings and recoverability

We can use a similar argument to establish that certain vertex conductivity
networks are not recoverable.
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Definition 3.1 Call a graph G 2-colorable if there exists a function s : V −→
{0, 1} such that for all i, j ∈ V , if there is an edge from i to j, then s(i) 6= s(j).

Clearly, not all graphs are 2-colorable. Because we are dealing only with
connected graphs, it is evident that if a graph is 2-colorable, there are exactly
two such functions s; moreover, they differ only in that the preimage of 0 in
one of them is equal to the preimage of 1 in the other, and vice versa. Certain
2-colorable graphs are not recoverable, as is shown in the following theorem.

Theorem 3.1 Suppose a graph G is 2-colorable, and that s(i) = s(j) ∀i, j ∈ VB.
Let Γ = (G,λ) be a vertex conductivity network with response matrix Λγ . Then
γ is not recoverable from Λγ .

Proof: Assume, WLOG, that s(i) = 0 ∀i ∈ VB . Let S = s−1(0) and T =
V − S = s−1(1). Note that VB ⊆ S.

Suppose for the sake of contradiction that γ is recoverable. For some positive
real constant c not equal to 1, consider another network Γ′ = (G, γ′), where
γ′(i) = γ(i) for i ∈ T , and γ′(i) = cγ(i) for i ∈ S, as well as its response matrix
Λγ′ . Since this graph is recoverable and γ 6= γ ′ we must have that Λγ 6= Λγ′ . So
∃u such that Λγu 6= Λγ′u. Let v be the γ-harmonic extension of u in Γ. We have
then that v is also γ′-harmonic in Γ′: consider an interior vertex i. If i ∈ S, we
know that j ∈ T for all j ∼ i. So

∑

j∼i

γ′(i)(v(j)− v(i)) =
∑

j∼i

γ(i)(v(j)− v(i)) = 0

since v is γ-harmonic. In the other case, we have that i ∈ T , so j ∈ S for all
j ∼ i. So

∑

j∼i

γ′(i)(v(j)− v(i)) =
∑

j∼i

cγ(i)(v(j)− v(i)) = c
∑

j∼i

γ(i)(v(j)− v(i)) = 0

again since v is γ-harmonic. Thus v is γ ′-harmonic as well.
But then, since VB ⊆ S, we know that

(Λ′u)i =
∑

j∼i

γ′(i)(v(j)− v(i)) =
∑

j∼i

γ(i)(v(j)− v(i)) = (Λu)i

for each i ∈ VB , contradicting Λγu 6= Λγ′u. Thus, G is not a recoverable graph
for vertex conductivity networks.

2

This two-colorability condition can be expressed in a slightly more useful
form as follows.

Corollary 3.1 Let G be a graph with boundary such that for any path p (not
necessarily simple) from any boundary vertex to any (not necessarily distinct)
boundary vertex, the length of p is even. Then G is not a recoverable graph for
vertex conductivity networks.
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Proof: It suffices to show that this graph satisfies the conditions of the pre-
vious theorem. Let S = {i | i is reachable through G via a path of even length
(possibly 0) from some boundary vertex}. Let T = V − S. Suppose j ∼ i. We
cannot have that i, j ∈ S: if that were the case, then there would be some path
of even length from a boundary vertex to i, another of even length from some
boundary vertex to j, and then by appending these paths with the edge from j

to i, we would obtain a path of odd length from a boundary vertex to another
boundary vertex, a contradiction. Similarly, we cannot have that i, j ∈ T : be-
cause the graph is connected, there must be some path from i to some boundary
vertex, and some path from j to some boundary vertex. But then these paths
must both be of odd length (otherwise the vertices would not be in T ), and as
before we could construct a path of odd length from some boundary vertex to
another boundary vertex b! y appending the two paths with the edge between i

and j. So, we can easily construct a two-coloring of G: let s(i) = 0 for i ∈ S and
s(i) = 1 for i ∈ T . Furthermore, s(i) = s(j) = 0 ∀i, j ∈ VB . So, by our previous
theorem, G is not recoverable for vertex conductivity networks. 2

Thus, if G is recoverable, there must be some path of odd length from some
boundary vertex to some boundary vertex. It follows from this that Tower of
Hanoi graphs are not recoverable for odd n, as Richard Oberlin conjectured
in [5]. Figure 1 shows the Tower of Hanoi graph for n = 7. Note also that it
is another way to demonstrate the non-recoverability of the “Stars” (graphs
containing one interior vertex connected to two or more boundary nodes, with
no other edges) discussed in [1]. A possible topic of future study may be to
look at the recovery of two-colorable graphs that do not meet the above criteria
(certainly not all of them are recoverable).
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4 The Schrödinger Equation for Vertex Conduc-

tivity Networks

In [4], Richard Oberlin extensively studies the technique of using a discretiza-
tion of the Schrödinger equation to recover vertex conductivity networks. A
Schrödinger network is a graph with boundary Γ = (V, VB , E) together with a
real-valued function q defined on V .

We define the Schrödinger equation to be
(

∑

j∼i

(u(j)− u(i))

)

− q(i)u(i).

Given the response matrix Λγ , we can obtain the Schrödinger response ma-
trix (with Neumann data

∑

j∼i(u(j) − u(i)) ) via the following formula estab-
lished in [4] (although the paper takes as a premise that the network is a square
lattice, the derivation of the formula does not use this premise):

Ψq = ΛγIγ(B;B)−1 − Iq(B;B)

In the above formula, Iγ(B;B) is the diagonal matrix with the values of γ at
the boundary on its diagonal. Similarly, Iq(B;B) is the diagonal matrix with
the values of q (as defined below) at the boundary on its diagonal.

When u is such that this equation is 0 for all interior vertices, we say that

u is a q-state. Oberlin establishes that when q(i) =
∑

j∼i
γ(j)−γ(i)

γ(i) , it is the case

that, given a vector of potentials u on the boundary, there is a unique q-state
extension of u to the interior (and this allows for the existence of the Schrödinger
response matrix, which he also establishes).

Theorem 4.1 Given q everywhere, and γ on the boundary vertices, where q(i) =
∑

j∼i
γ(j)−γ(i)

γ(i) , we can recover γ everywhere.

Proof: That there is a unique solution to γ is evident: let u(i) = γ(i) on the
boundary. Then u = γ is a q-state; and by [4], it is the unique q-state agreeing
with γ on the boundary. We can find its values as follows: letm be the number of
interior vertices in the graph G, and n the number of boundary vertices. Assume
that the boundary vertices are labeled v1, . . . , vn, and the interior vertices are
labeled vn+1, . . . , vn+m. We then have, since γ is a q-state, m equations:

(

∑

j∼vn+1

(γ(j)− γ(vn+1))

)

− q(vn+1)γ(vn+1) = 0

(

∑

j∼vn+2

(γ(j)− γ(vn+2))

)

− q(vn+2)γ(vn+2) = 0

...
(

∑

j∼vn+m

(γ(j)− γ(vn+m))

)

− q(vn+m)γ(vn+m) = 0
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In addition, we have the n equations corresponding to the Neumann data, where
Ψq is the Schrödinger response matrix, and u is the vector of boundary potentials
equal to γ (these are also needed, since q might be 0 for one of those first m
equations, for some interior vertex that only neighbors boundary vertices):

∑

j∼v1

(γ(j)− γ(v1)) = (Ψqu)1

∑

j∼v2

(γ(j)− γ(v2)) = (Ψqu)2

...
∑

j∼vn

(γ(j)− γ(vn)) = (Ψqu)n

Note here that the problem as formulated by Oberlin takes the Neumann data
for the Schrödinger response matrix not to involve q; thus, in a sense, in solving
the inverse problem, we do not actually solve for q everywhere, since we begin
with q known on the boundary. A problem for future study may be to explore an
inverse problem where the Neumann data is actually the value of the Schrödinger
equation.

Since γ is known for v1 through vn, and q is known everywhere, this is a
linear system with up to m unknowns and m + n equations. Furthermore, it
must have rank m: the rank is at most m since there are at most m unknowns
here, and any solution to this equation yields a q-state agreeing with our known
γ on the boundary, so there is only one such solution. So we can simply solve
this linear system to recover γ. 2

Some obvious conclusions that can be drawn from this are that if γ is recover-
able on the boundary vertices and all of their neighbors, and γ is not recoverable
everywhere, then q is not recoverable everywhere. Also, if q is recoverable ev-
erywhere, and γ is not recoverable, then γ is not recoverable on some boundary
vertex or some adjacent interior vertex.

It should be noted, however, that γ must be recovered not only on the
boundary vertices but on all of their neighbors to construct Ψq as in [4]. The
problem as formulated by Oberlin takes the Neumann data for the Schrödinger
response matrix not to involve q; thus, in a sense, in solving the inverse problem,
we do not actually solve for q everywhere, since we begin with q known on the
boundary. A problem for future study may be to explore an inverse problem
where the Neumann data is actually the value of the Schrödinger equation.
Such a problem would require only the recovery of γ on the boundary to form
the response matrix, and, by the above theorem, to recover all of γ once all of
q is found.
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