
The Map L and Partial Recovery in Circular

Planar Non-Critical Networks

Jeffrey Giansiracusa

June 18, 2003

Abstract

It has been proven [1] that a circular planar electrical network is re-
coverable (i.e. the conductance function γ is uniquely determined by the
response matrix Λ) if and only if the underlying graph is critical. In this
paper I expand on these results by showing that for critical circular pla-
nar graphs, the map L which sends γ to Λγ is a diffeomorphism. I then
construct a fibration of L for an arbitrary non-critical graph and use this
structure to determine the extent to which the network can be partially
recovered. More specifically, given a circular planar graph G = (V, VB , E)
and a response matrix Λ compatible with this graph, I describe a method
for constructing an explicit parametrization of the set L−1(Λ) of conduc-
tance functions γ such that the electrical network Γ = (G, γ) has response
matrix Λ.

1 Introduction

Consider an electrical network Γ which consists of a pair (G, γ) where G =
(V, VB , E) is a graph with boundary and γ is a conductivity function defined on
the edges of G. We are interested in the problem of computing the conductance
γ from the response matrix Λ. For circular planar networks this problem is well
understood—the conductivity is uniquely determined by Λ if and only if the
underlying graph is critical. In §3 I show that this correspondence is actually a
diffeomorphism (a result which is stated but not proven in [1]).
Even though unique recovery is impossible on a non-critical graph, we may

still be able to obtain partial information about the conductance. For example,
consider a ∆ network, but with one edge replaced by two edges in parallel (see
figure 1). The conductance on the two parallel edges cannot be computed from
Λ; only the sum of the two can be recovered. Nevertheless, the conductances of
the two single edges can be exactly calculated from Λ.
If the graph is not critical then one cannot uniquely determine a γ from Λ;

there will be many conductivity functions which result in electrically equivalent
networks. These sets are the fibers of the map L which sends γ to Λγ .
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Figure 1: Example of a partially recoverable network.

2 Preliminaries

The following notation will make the discussion more clear. Suppose G is a
circular planar graph with n boundary nodes and m edges.

Definition 2.1 The symbol π(G) will denote the set of connections P ↔ Q
through G where the (P ;Q) are circular pairs.

Definition 2.2 Let Ω(π) be the set of n × n matrices A which satisfy the fol-
lowing properties:

• A is symmetric.

• The sum of the entries is each row is 0.

• (−1)k detA(P ;Q) > 0 for each pair (P ;Q) ∈ π, and all other sub-determinants
are 0.

Thus Ω(π(G)) is the set of response matrices which are possible for a network
with underlying graph G. We say that Λ and G are compatible if Λ ∈ Ω(π(G)).
If G has m edges, then a conductivity function γ on G may be thought of as a
point in (R+)m. The map

LG : (R+)m −→ Ω(π(G))

sends a conductivity γ on G to the response matrix of the network (G, γ). Later
on I will work with the L maps or multiple graphs simultaneously, so to avoid
confusion I will often label L with a subscript specifying the graph for which it
gives response matrices.

3 L is a diffeomorphism when G is critical

In §4.6 of [1] there is a proof that L is a diffeomorphism for a specific class of
critical graphs; the proof proceeds by way of a computation which works for any
critical graph, but at one step it hinges on a lemma which is only proven for the
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case of the well-connected circular graphs. I give a general proof of lemma 3.3,
and from this the general case of the theorem follows.
In proving lemma 3.3, I will need to construct a set of special functions which

are γ-harmonic and satisfy some addition relationships. In §4.4 of [1] the set
of special functions is constructed on the well-connected circular graphs Gn. I
generalize the construction of special functions to an arbitrary critical circular
planar graph.

Lemma 3.1 Construction of Special Functions Let Γ = (G, γ) be a crit-
ical circular planar network, and let e be either a boundary spike or a boundary
edge. Then there exist special functions f and g which are γ-harmonic, and
satisfy the addition condition that for each edge with endpoints (p, q):

(f(p)− f(q))(g(p)− g(q)) = 0 if pq 6= e
(f(p)− f(q))(g(p)− g(q)) 6= 0 if pq = e

Proof: Let M be the medial graph of G, embedded in the disc, and let
A and B be the two geodesics whose point of intersection ve corresponds to
the edge e. Recall that G is critical so M is lensless, and therefore these two
geodesics intersect only once at the point ve Furthermore, e is a boundary edge
or boundary spike, so these two geodesics intersect each other at ve before they
intersect any other geodesics. Let the endpoints of A and B be (a1, a2) and
(b1, b2) respectively, with a1 and b1 being the endpoint of each geodesic that
is closer to the point of intersection. Further, suppose that a1 is immediately
clockwise from b1. (If this is not so, then simply swap the names of A and B.)
If p and q are two points on the boundary circle then we will denote the

clockwise open arc from p to q by p̂q and the counterclockwise open arc by q̂p.
The cells of the cell-complex constructed fromM can be 2-colored, so color

them with black and white so that the black segments of the boundary circle
correspond to the boundary nodes.
I will first describe the construction for the case that e is a boundary spike.

The boundary edge case is a simple modification which I will describe later.
Insert two auxiliary points on the boundary circle: a point c1 immediately

counterclockwise from a1 and a point c2 immediately counterclockwise from a2.
Now add an auxiliary chord C with endpoints c1 and c2 such that C crosses A
between ve and a1, and between this crossing and c2 it runs parallel to A and
close enough so that C crosses only the geodesics that A crosses and in the same
order. This is shown in figure 2.
The chord C divides the disc into two regions R1 and R2, with boundary

given by C ∪ ĉ1c2 and C ∪ ĉ2c1 respectively. Each of these regions is homeomor-
phic to a disc, so M1 = M∩ R1 and M2 = M∩ R2 may each be thought of
as medial graphs themselves. We color the cells of these two subgraphs as they
were colored in M.
Let G1 and G2 be the graphs associated to M1 and M2 by letting black

cells correspond to nodes. Each of these is a subset of G (with boundary nodes
now designated so that they correspond to the black boundary intervals on the
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Figure 2: Placement of the auxiliary chord C for a boundary spike.
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boundary of R1 or R2). This gives a natural division of Γ into two subnetworks
Γ1 and Γ2; define Γ1 as G1 together with the restriction of the conductivity γ to
G1, and use the analogous definition for Γ2. From Γ1 and Γ2 we can reconstruct
the original network Γ by identifying and interiorizing the set of boundary nodes
which correspond to the black intervals that are at least partially contained in
C. For illustration see figure 3.

Let w the boundary node corresponding to the black interval b̂1a1. This is
the boundary node at the end of the boundary spike. Let v be the node at
the other end of the spike. Notice that by construction w is not connected to
anything in Γ1 since v is not present.
I will construct the desired special function f on each part separately and

then piece it together to form f on all of Γ. Following the same steps with the
geodesic B and with clockwise and counterclockwise reversed will lead to the
construction of the special function g.
Consider the medial graph M1. Now we will make use of the Cut-Point

Lemma of [1] (p. 152) by inserting two cut points X and Y at c2 and c1
respectively. Since M is lensless, no geodesic intersects A twice, and hence no
geodesic intersects C twice, so there are no re-entrant geodesics boundary arc
of R1 formed by C. By the Cut-Point Lemma,

m(X,Y ) + r(X,Y )− n(X,Y ) = 0 (1)

where

• m(X,Y ) = the maximum integer k such that there is a k-connection which
respects the cut-points X and Y .

• r(X,Y ) = the number of re-entrant geodesics in the clockwise open bound-
ary arc from X to Y .
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Figure 3: The chord C separates the medial graph into two subgraphsM1 and
M2 for the case of a boundary spike.

M1M 2

• n(X,Y ) = the number of black intervals which are entirely within the
clockwise open boundary arc from X to Y .

In our situation, r(X,Y ) = 0, so eq. 1 reduces to saying that the size largest
connection which respects the cut-points is given exactly by the number of black
intervals along C. Denote this largest connection by the circular pair (of black
boundary intervals) (P̃ , Q̃), where the intervals of P̃ are all the black intervals
that are entirely contained in C, and the intervals of Q̃ are some subset of the
black intervals that lie in Ŷ X. See figure 4.
Let (P,Q) denote the circular pair of boundary nodes in Γ1 corresponding to

the circular pair of boundary intervals (P̃ , Q̃) inM1. Since there is a connection
P̃ ↔ Q̃ through M1, there is a naturally corresponding connection P ↔ Q
through G1.
Consider imposing the following mixed boundary conditions on the network

Γ1:

• A potential of 1 at the boundary node w (corresponding to the black

interval b̂1a1).

• A potential of 0 at each other boundary node that is in the complement
of P .

• Zero current flow into the network at each node in Q.

By theorem 4.2 of [1] (p. 70) and in light of the existence of the connection
P ↔ Q, there is a unique γ-harmonic function f1 on Γ1 that satisfies these
boundary data. The function

f1(p) =

{
1 if p = w
0 otherwise

(2)
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Figure 4: The relevant connections P ↔ Q and S ↔ T in Γ1 and Γ2.
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is a solution, so it is the unique solution.
Now we shift our attention to Γ2 andM2. Inserting cut-points X at c2 and

Y at c1 on the boundary of R2, the Cut-Point Lemma again implies that the
size of the largest k-connection is exactly given by the number of black intervals
that are entirely contained in the interval C. Let (S̃, T̃ ) denote this connection,
where the intervals of S̃ are entirely contained in C and the intervals of T̃ are
entirely contained in X̂Y . The set S corresponds exactly to the set P .
Now impose the following mixed boundary conditions on Γ2:

• A potential of 1 at the boundary node w (the node that corresponds to

the black interval b̂1a1). Note that this node is in the complement of T
because the connection S ↔ T must respect the cut-points, and one of
these was placed in this interval.

• A potential of 0 at all other boundary nodes that are in the complement
of T .

• Zero current flow into the network at each node in S.

Once again, by theorem 4.2 of [1] (p. 70) and in light of the existence of a
connection S ↔ T , there is a unique γ-harmonic function f2 on Γ2 that satisfies
these boundary data. The imposed boundary conditions described above are
shown in figure 5.
Now we combine f1 on Γ1 and f2 on Γ2 to produce a γ-harmonic function f

on all of Γ. By construction we have ensured that f1 and f2 agree where they
overlap and the currents flowing between the two subgraphs agree because they
are all zero. This f is one of the desired special functions. It has the property
that
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Figure 5: Boundary conditions imposed on Γ1 and Γ2.
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• f is γ-harmonic.

• f(p) = 0 for all nodes p 6= w corresponding to black cells that are on the
R1 side of the geodesic A.

• (f(w) − f(v)) 6= 0. I.e. there is a non-zero current flowing through the
boundary spike.

It is clear that constructing the special function g similarly so that

• g is γ-harmonic.

• g(p) = 0 for all nodes p 6= w corresponding to black cells that are on the
R2 side of the geodesic B.

• (g(w)− g(v)) 6= 0.

leads to a pair of special functions which satisfy the desired properties.

I now describe how to modify the construction for the case of a boundary
edge. Insert the point c1 immediately counterclockwise from b2, and insert c2
immediately counterclockwise from b2. Let the auxiliary chord C have endpoints
c1 and c2 and let it cross the geodesic A between ve and the second node along
A (counting with ve as the first). Let it run parallel and close to A from the
crossing to c2. This is shown in figure 6.
Let w be the boundary node corresponding to the black interval immediately

counterclockwise from b1 and let v be the boundary node corresponding to the
black interval immediately clockwise from a1. These nodes w and v are the
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Figure 6: The chord C separates the medial graph into two subgraphs for the
case of a boundary edge.
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endpoints of the boundary edge e. Notice that in the subnetwork Γ1, e is both
a boundary edge and a boundary spike simultaneously.
Consider first Γ1. There is a connection P̃ ↔ Q̃ where P̃ is the set of black

intervals that are entirely contained in C and all the intervals of Q̃ are disjoint
from C. Let P and Q be the sets of boundary nodes corresponding to P̃ and Q̃.
Here again, theorem 4.2 of [1] (p. 70) guarantees that there is a unique solution
f1 to the Dirichlet problem on Γ1 with the boundary conditions

• A potential of 1 at w.

• A potential of 0 at all nodes p 6= w in the complement of P .

• Zero current into the network at each node in Q.

Note that we must choose the connection so that the node v is not in Q. Such
a connection exists for the following reason. Suppose we had inserted c1 just
clockwise from a1 rather than counterclockwise from b1 and drawn a chord C

′

parallel to A along its entire length (rather than bending it along B near the c1
end). See figure 7. The black intervals that are entirely contained in C ′ exactly
correspond to the black intervals that were entirely contained in the old chord
C. This new chord yields a subnetwork Γ′1 that is precisely Γ1 with the edge e
and the node w both deleted. Applying the Cut-point Lemma to Γ′1 with the
cut-points X and Y placed at the ends of this chord C ′ show the existence of a
connection from the same set of black intervals P̃ to a set of intervals that are
not contained in C ′ (and hence not contained in C) and also do not include the
interval corresponding to the node v. Thus there is a connection P ↔ Q where

8



P is the set of boundary nodes of Γ1 that correspond to black intervals entirely
contained in C and Q does not contain v.

Figure 7: Placement of the second auxiliary chord C ′.
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Now consider Γ2. Using the Cut-Point Lemma, there is a connection S̃ ↔ T̃
through the medial graph M2, where S̃ = P̃ and T̃ is disjoint from S̃ and
does not contain w. Let T ↔ S be the corresponding connection through the
graph G2. We set f2 to be the γ-harmonic function which satisfies the boundary
conditions

• A potential of 1 at w.

• A potential of 0 at each node in T .

• Potential of 0 and 0 current flow into the network at each boundary node
that corresponds to a black interval entirely contained in C.

It is clear that these boundary conditions are allowed.
By patching together f1 and f2 one forms f on all of Γ, and this is the

desired special function. The conjugate special function g is once again obtained
by repeating the construction with clockwise and counterclockwise exchanged,
and the roles of the geodesics A and B swapped. 2

Lemma 3.2 Let Γ and Γ′ be a circular planar networks where Γ′ is obtained
from Γ by either contracting a boundary spike or deleting a boundary edge.
Suppose u is a γ-harmonic function on Γ′. Then there is a unique extension of
u to a γ-harmonic function on Γ.

Proof: The case where a boundary edge is deleted is trivial. No edges are
added at interior nodes when the deleted edge is replaced, so the original u
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is still γ-harmonic at each interior node. Only the currents flowing into the
network change.
For the case of a boundary spike, let p be the interior endpoint of the spike

and let q be the boundary node endpoint of the spike. Let φp be the current
flowing into Γ′ at node p. Then in Γ, u(q) is uniquely determined by requiring
that the current flowing through the spike into node p be exactly φp. Writing
this relation out,

γ(pq)(u(q)− u(p)) = φp

and so u(q) is given by
u(q) = φp/γ(pq) + u(p)

This is the unique γ-harmonic extension of u to all of Γ. 2

The following is a generalization of lemma 4.5 on p. 79 of [1]. This result
supplies the key justification in the proof of theorem 3.1.

Lemma 3.3 Let Γ be a critical circular planar network, and let κ be any real-
valued function on the edges of Γ. Suppose that for all γ-harmonic functions u
and w, ∑

pq∈E

κ(pq)(u(p)− u(q))(w(p)− w(q)) = 0

Then κ is identically 0.

Proof: Let m be the number of edges in Γ. The network is critical, so it
has a boundary spike or a boundary edge—call it em, and removing this edge
(by contraction if it is a boundary spike and deletion if it is a boundary edge)
yields a new critical network Γm−1. This network again has either a boundary
spike or a boundary edge—call it em−1. By repeating this step we arrive at a
sequence of critical circular planar networks

Γ1,Γ2, . . . ,Γm = Γ

where each Γi is obtained from Γi+1 by removing a boundary spike or boundary
edge ei+1. Terminate the process at Γ1, when there are no interior nodes and
only a single edge remaining. Thus all the edges in the graph are numbered
e1, e2, . . . , em.
For each k = 1, . . . ,m, by lemma 3.1 there exist special functions fk and gk

on Γk so that (fk(p)− fk(q))(gk(p)− gk(q)) 6= 0 only for pq = ek. Clearly

∑
κ(pq)(fm(p)− fm(q))(gm(p)− gm(q)) = 0

implies that κ(em) = 0. We now proceed inductively; assume that the hy-
potheses imply that κ(ej) = 0 for j = k, (k + 1), . . . ,m. I will show that the
hypotheses also imply that κ(ek−1) = 0.
By repeated application of lemma 3.2 the special functions fk−1 and gk−1

extend to γ-harmonic functions f̃k−1 and g̃k−1 on Γ which have the property
that

(f̃k−1(p)− f̃k−1(q))(g̃k−1(p)− g̃k−1(q)) = 0
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for pq = e1, e2, . . . , ek−2, and by the induction hypothesis κ(ej) = 0 for j =

(k − 1), . . . ,m. Therefore
∑

κ(pq)(f̃k−1(p) − f̃k−1(q))(g̃k−1(p) − g̃k−1(q)) = 0
implies that κ(ek−1) = 0. We are done by induction. 2

We are now ready to prove the main theorem of this section, which is a
generalization of theorem 4.6 on p. 80 of [1].

Theorem 3.1 If G is a critical circular planar graph then L is a diffeomor-
phism.

Proof: Since G is critical, the recovery algorithm gives that L is a bijection,
so it remains to be shown that the differential is injective everywhere. Rather
than show this directly, I will compute the differential of the map L̃ which sends
the conductivity γ to the bilinear form

Bγ(x, y) =< y,Λγx >

associated to Λγ . From dL̃ being injective it follows that dL is injective.
We proceed as in [1] (p. 77). The following notation will simplify the com-

putation greatly. If σ is a function on the edges of G and f is a function defined
on the nodes of G then

• σi,j will stand for σ(e) if there is an edge e joining vi to vj , and σi,j = 0
if there is no such edge. In particular, γi,j = γ(e) if there is an edge e
joining vi to vj and γi,j = 0 otherwise. Note that since G is critical, each
edge can be uniquely specified by its endpoints.

• fi = f(vi) is the value of f at node vi

• ∇i,jf = fi − fj

• φf (p) is the current into the network at node p.

Let κ be a real-valued function defined on the m edges of G and let t be a
real parameter sufficiently small so γ + tκ is positive on all the edges of G. We
will differentiate Bγ+tκ(x, y) with respect to t and then set κ = 0 to obtain the
result. For each pair of functions x and y defined on the boundary nodes of G,
let ut and wt be the (γ + tκ)-harmonic functions with boundary values x and y
respectively. Then ut = u0 + δut and similarly wt = w0 + δwt, where δut and
δwt are functions defined on the nodes of G which are 0 on the boundary nodes.
The Kirchhoff matrix can be used to show that ut and wt depend differentiably
on t. Suppose the Kirchhoff matrix Kt for (G, γ + tκ) is:

Kt =

[
At Bt

BT
t Dt

]

where D = K(I; I) is the block corresponding to the interior nodes of G. The
values of ut at interior nodes are given by:

ut(p) = [−D
−1
t BT

t x](p)
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and since Bt and Dt are affine functions of t, ut(p) is a rational function of t
and hence smooth. This allows us to write δut = tũt where limt→0 ũt exists and
is finite. Now,

Bγ(x, y) =< y,Λx >=
∑

γi,j∇i,ju0∇i,jw0

and more generally we have

Bγ+tκ(x, y) =
∑
(γi,j + tκi,j)(∇i,ju0 +∇i,jδut)(∇i,jw0 +∇i,jδwt)

=
∑

γi,j∇i,ju0∇i,jw0 + t
∑

κi,j∇i,ju0∇i,jw0

+
∑

γi,j(∇i,ju0∇i,jδwt +∇i,jδut∇i,jw0 +∇i,jδut∇i,jδwt)

+ t
∑

κi,j(∇i,ju0∇i,jδwt +∇i,jδut∇i,jw0 +∇i,jδut∇i,jδwt)

Now we can simplify this equation by noting that

∑
γi,j∇i,ju0∇i,jδwt = δwt(p)φu(p) = 0

∑
γi,j∇i,jδut∇i,jw0 = δut(p)φw(p) = 0

since φu(p) = φw(p) = 0 when p ∈ int G, and when p ∈ ∂G then δwt(p) =
δut(p) = 0. Thus eq. 3 becomes

Bγ+tκ(x, y) =
∑

γi,j(∇i,ju0∇i,jw0 +∇i,jδut∇i,jδwt)

+t
∑

κi,j(∇i,ju0∇i,jw0 +∇i,ju0∇i,jδwt +∇i,jδut∇i,jw0 +∇i,jδut∇i,jδwt)

Putting this in terms of ũt and w̃t gives

Bγ+tκ(x, y) =
∑

γi,j∇i,ju0∇i,jw0 + t
∑

κi,j∇i,ju0∇i,jw0

+t2
∑

γi,j∇i,j ũt∇i,jw̃t

+t2
∑

κi,j(∇i,ju0∇i,jw̃t +∇i,j ũt∇i,jw0 +∇i,j ũt∇i,jw̃t)

Hence
d

dt
Bγ+tκ(x, y)

∣∣∣∣
t=0

=
∑

κi,j∇i,ju0∇i,jw0 (3)

and from lemma 3.3 it follows that this quantity is 0 if and only if κ is identically
0. Thus dL̃ is injective and hence dL is injective. 2

4 The Fibers of L

The following theorem from [1] (p. 137) will be important in the construction
which I will describe.
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Figure 8: The larger lens cannot be emptied by switching arcs, but uncrossing
the smaller lens removes both.

Theorem 4.1 Suppose that A is a family of arcs that has one or more lenses.
Then by a finite sequence of switches and uncrossings of arcs that form empty
lenses, A can be reduced to a family that is lensless.

A crucial aspect of this theorem is that only empty lenses are uncrossed,
and at each stage in the process the lens to be emptied next is one for which
the number of regions contained within it is minimal. It is not true that an
arbitrary lens can be emptied. Consider for example figure 8 in which the larger
lens cannot be emptied by switching arcs. However, uncrossing the smaller lens
yields a lensless family.

Theorem 4.2 Given a circular planar graph G, there exists a diffeomorphism
Φ and a critical circular planar graph G′ such that

π = π(G) = π(G′)

and the following diagram commutes:

(R+)m−k × Ik (R+)m−k

(R+)m Ω(π)

pppppppppp?
Φ ∼=

-proj

?

∼= LG′

-LG

(4)

Proof: The strategy is to construct the critical graph G′ and then relate
conductances on this graph to conductances on G in such a way that the two
networks formed have the same response matrix and are thus electrically equiv-
alent.

Step 1: Construct the medial graph M associated to G.
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Step 2: Apply theorem 4.1 to obtain a sequence of medial graphs

{M =M0,M1,M2, . . . ,Mn =M′}

where M′ is lensless and each Mi is obtained from Mi−1 by either switching
an arc or uncrossing an empty lens at a pole. Associated to the above sequence
of medial graphs is a sequence of graphs

{G = G0, G1, G2, . . . , Gn = G′}

where G′ is the desired critical graph (G′ is guaranteed to have the same set of
connections as G by theorem 4.1) and each Gi hasMi as its associated medial
graph and is obtained from Gi−1 by either a Y −∆ transformation, contracting
two edges in series to a single edge, or deleting an edge from a pair in parallel
(see figure 9). Let mi be the number of edges in Gi.

Step 3: Repeat this step for i = n, (n − 1), . . . , 1. There are three cases,
depending on how Gi is obtained from Gi−1.

Case 3a— Suppose Gi is obtained from Gi−1 by transforming a ∆ into a
Y (an analogous argument will handle the case of when Gi is obtained from
Gi−1 by transforming a Y into a ∆). We would like to relate conductances on
Gi to electrically equivalent conductances on Gi−1—that is, we would like to
construct a diffeomorphism ϕi to complete the diagram

(R+)mi (R+)mi−1

Ω(π)

Q
QQsLGi

p p p p p p p p p p p p p p p p p-ϕi

∼=
´

´́+ LGi−1

Note that mi = mi−1 since Y −∆ transformation preserves the edge count.
The Y −∆ transformation formula gives a bijection

ϕi : (R+)mi −→ (R+)mi−1

Let the edges of Gi−1 and Gi be ordered so that the three edges involved in
the transformation are the final three, and each of these edges in the Y of
Gi corresponds to the opposing edge of the ∆ in Gi−1. Let (a, b, c) be the
conductivities on the Y of Gi. Then

1

ϕi = Idmi−3 × ϕY∆

1Here Idmi−3 is the identity on the first (mi− 3) edges, and the × operation is defined by
the commutative diagram:

A A×B B

C C ×D D

?

f

¾π -π

?

f×g

?

g

¾π -π

i.e. f × g(x× y) = f(x)× g(y).
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Figure 9: Allowed operations on medial graphs

Switching an Arc

(Y-Delta)

or

Uncrossing an empty lens at a pole

or
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where

ϕY∆ : (a, b, c) 7−→ (
bc

a+ b+ c
,

ac

a+ b+ c
,

ab

a+ b+ c
)

is the function which sends conductivities on a Y network to their equivalent
conductivities on a ∆. Computing det dϕi will show that this is actually a
diffeomorphism: dϕi = Idmi−3×dϕY∆, and taking the partial derivatives gives

dϕY∆ =




−bc
(a+b+c)2

c(a+c)
(a+b+c)2

b(a+b)
(a+b+c)2

c(b+c)
(a+b+c)2

−ac
(a+b+c)2

a(a+b)
(a+b+c)2

b(b+c)
(a+b+c)2

a(a+c)
(a+b+c)2

−ab
(a+b+c)2




Some algebraic manipulation yields

det dϕY∆ =
abc

(a+ b+ c)3

so

det dϕi = det Idmi−3 · det dϕY∆ =
abc

(a+ b+ c)3

The conductivities a, b, and c are strictly positive, so this determinant is always
non-zero. Thus dϕi is injective, so ϕi is a diffeomorphism.

Case 3b— Suppose Gi is obtained from Gi−1 by replacing two edges e, f
in parallel with a single edge g. So

mi−1 = mi + 1

Then the conductances γi−1(e) and γi−1(f) cannot be uniquely written in terms
of γi(g), so we must introduce a parameter tj ∈ (0, 1) (where j−1 is the number
of parameters previously introduced in this manner) and write

γi−1(e) = γi(g)(tj)

γi−1(f) = γi(g)(1− tj)

This gives a bijection

ϕi : (R+)mi × (0, 1) −→ (R+)mi−1

Let the edges of Gi and Gi−1 be ordered so that the edges which are being
modified come last, and let a = γi(g). Then

ϕi = Idmi−1 × ϕpar

where
ϕpar : (a, t) 7−→ (at, a(t− 1))

We again compute the differential to show that this map is a diffeomorphism:

dϕi = Idmi−1 × dϕpar
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where

dϕpar =

[
t a

(1− t) −a

]

from which one computes that

det dϕi = (det Idmi−1) · (det dϕpar) = (1) · (−a) = −a 6= 0

where the last inequality is again because conductances are strictly positive.
Thus ϕi is a diffeomorphism.

Case 3c— Proceeding along the lines of (3b), suppose Gi is obtained from
Gi−1 by contracting two edges e, f in series to a single edge g. So as in (3b)

mi−1 = mi + 1

We must again introduce a parameter tj ∈ (0, 1) and write

γi−1(e) =
γi(g)

tj

γi−1(f) =
γi(g)

(1− tj)

Again this gives a bijection

ϕi : (R+)mi × (0, 1) −→ (R+)mi−1

Let the edges of Gi and Gi−1 be ordered so that the edges which are being
modified come last, and let a = γi(g). Then

ϕi = Idmi−1 × ϕser

where

ϕser : (a, t) 7−→

(
a

t
,

a

1− t

)

We again compute the differential to show that this map is a diffeomorphism:

dϕi = Idmi−1 × dϕser

where

dϕser =


 1/t −a/t2

1/(1− t) a/(1− t)2




from which one computes that

det dϕi = (det Idmi−1) · (det dϕpar) = (1) ·

(
a

t2(1− t)2

)
6= 0

where the last inequality is again because conductances are strictly positive.
Thus ϕi is a diffeomorphism.
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Step 4: Putting the maps constructed in step 3 together yields the desired
diffeomorphism

Φ : (R+)m−k × Ik −→ (R+)m

given by
Φ = ϕn ◦ ϕn−1 ◦ . . . ◦ ϕ1

where each ϕi is extended as identity to the proper domain in the obvious way.
By construction, diagram 4 commutes. 2

The number k has a special significance. In reducing G to G′, k is the
total number of times that an edge is removed. Recall, Y −∆ transformations
preserve the number of edges, so the edge count is a constant over each Y −∆
equivalence class. Alternatively, k can be thought of as the difference between
the number of edges in the non-critical graph G that we began with and any
critical graph which has the same set of connections as G (and is thus in the
Y −∆ equivalence class of G′).
It is currently an open question as to whether or not there is a direct method

for extracting k from a graph or medial graph without first going through the
process of emptying and uncrossing lenses. In some cases a medial graph may
appear to have several lenses, but only a single uncrossing is required to reduce
it to a lensless medial graph.

Corollary 4.1 Given a circular planar graph G and a compatible response ma-
trix Λ, the set L−1G (Λ) is diffeomorphic to Ik = (0, 1)× . . .× (0, 1)︸ ︷︷ ︸

k times

for some

integer k.

Proof: Construct the critical graph G′ and the diffeomorphism Φ as in
theorem 4.2. By restricting the domain of Φ to the fiber of (LG′ ◦ proj) over Λ,
we obtain a diffeomorphism

L−1G′ (Λ)× Ik −→ L−1G (Λ)

Since G′ is a critical graph, there is a unique conductance function γ ′ on the
edges of G′ such that the network (G′, γ′) has the desired Λ as its response
matrix. This γ′ can be computed from Λ. Thus L−1G′ (Λ) = {γ′}—i.e. it consists
of only a single point in (R+)m. Therefore this component can be trivially
projected off to yield a diffeomorphism Ψ. This is visualized with the following
commutative diagram:

L−1G′ (Λ)× Ik

Ik L−1G (Λ)

@
@
@
@@R

∼=

?

proj

-Ψ
∼=

18



This Ψ : Ik −→ L−1G (Λ) is the desired diffeomorphism. 2

This corollary completely answers the question of partial recovery for circu-
lar planar networks. The proof provides a method for constructing an explicit
formula for the diffeomorphism ϕ. With this formula one can directly see which
edges have conductivities which are constant over Ik (and are thus recoverable),
and which edges do not (and thus cannot be recovered). Furthermore, for the
set of edges that fall into the latter class, the formula reveals all relationships
between these irrecoverable conductances which can be recovered from the re-
sponse matrix.

Example Consider the Hershey’s Kiss graph H shown below.

This graph is non-critical, so only partial information about the conductance
can be recovered.
The medial graph M of H is

The lens in this medial graph can be emptied by a single arc switch (either up
or down) to yieldM1 which is lensless. Next, the lens inM1 can be uncrossed
to yield the lensless medial graph M2. This is shown below.

M
2

M M
1

These medial graphs correspond to the sequence of graphs H, H1, H2, where
H2 is critical.

 2
H H  H  1
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Given a response matrix Λ compatible with H, we now recover conductances
on H2. In the present example this is unusually simple because Λ happens to
also be a Kirchhoff matrix for H2, so the conductances can be read off directly
as entries in Λ. Let a, b, and c be the conductances recovered on H2.

H  :

c

 2 a b

Then the conductances on H1 are a and b on the single edges, and they are ct
and c(1− t) on the two edges in parallel.

H  :

c(1-t)

 1 a b

ct

Now applying the Y − ∆ transformation from H1 to H gives the recovered
conductances on H as

c(1 - t)


H (ab + act + bct)

(ab + act + bct)(ab + act + bct)/ b

/ (ct)

/ a

With these expressions we have completely parametrized all conductivity func-
tions on H which give rise to the response matrix Λ. We can see that all four
conductivities have some dependence of t, so no edge in this graph is entirely
recoverable.

5 The Rank of the differential of L

We wish to compute the rank of dLG for a circular planar non-critical graph G.
This is a trivial computation in light of theorem 4.2.

Theorem 5.1 Let G be a circular planar graph. The differential of LG has
rank equal to the number of edges m′ in any circular planar graph G′ such that
π(G) = π(G′) = π.
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Proof: First note that m′ is well defined since the set of critical circular planar
graphs that have the same set of connections as G (and the same number of
boundary nodes) is a Y − ∆ equivalence class, and the number of edges is
invariant over these equivalence classes. Apply theorem 4.2 to obtain diagram
4. Hitting this diagram with the differential functor gives the diagram of tangent
spaces

Rm−k × Rk Rm−k

Rm TΛΩ(π)
?

dΦ ∼=

-proj

?

∼= dLG′

-dLG

where TΛΩ(π) is the tangent space to Ω(π) at the appropriate point Λ, m is the
number of edges in G, and (m − k) = m′ is the number of edges in G′. From
here it is easy to compute the rank of dLG. Clearly the map proj has rank m

′,
and since dΦ and dLG′ are vector space isomorphisms, dLG also has rank m

′.
2

Example Consider the Hershey’s Kiss graph H discussed in the example of
§4. The graph H has four edges, and the connection-equivalent critical graph
that it was reduced to in the example of §4 was a ∆ graph with three edges.
So, m = 4 and k = 1, and thus

rank dLH = (m− k) = 3

without any computation at all.

The beauty of this result is that it is entirely topological. The rank is
constant over the entire domain of conductivity functions.
We can take this idea a little further. Given a circular planar non-critical

graph G, one could think of the set of connections π(G) together with the rank
of dLG as uniquely specifying the Y −∆ equivalence class of G.

6 A More Direct Recoverability Result

The methods described in the §4 give a complete description of all conductance
information that can be calculated from Λ, but those methods are computation-
ally difficult. Only after many steps of manipulating the graps and calculating
conductances does one arrive at the final answer. Therefore it may sometimes
be useful to have a more direct method for deciding whether or not the conduc-
tance on a given edge can actually be recovered. This is the motivation for the
theorem I will prove at the end of this section. The idea we will exploit is that
we can cut a region out of a medial graph and replace it with something that is
connection-equivalent to the part we removed and this operation does not affect
the edges that are outside of the region where we are performing this surgery.
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We can cut out the non-critical parts of the graph where there are lenses and re-
place them with critical subgraphs to construct an electrically equivalent critical
graph and then recover all edges that were ouside of the surgery region.
Before we can can proceed we must extend our concept of a medial graph

and be precise about what it means to extract a subgraph of a medial graph.

Definition 6.1 A generalized medial graph is a pair (R,A), where R is a com-
pact region in the plane 2 with piecewise smooth boundary and A = {αi}

n
i=1 is a

finite collection of piecewise smooth curves αi (called geodesics) in R such that
the following conditions hold:

• Each αi is either closed and contained entirely in int R, or begins and
ends on ∂R and intersects ∂R nowhere else.

• If αi and αj intersect at a point p then no other αk passes through that
point (i.e. every vertex has degree exactly four).

• The intersection of each connected component of ∂R with the the image
of {αi} contains an even number of points.

Note that these conditions imply that the cell-complex constructed from A is
two-colorable, so color it black and white.
From an abstract medial graph we can construct a graph (or its dual) in the

same way that we do for a medial graph in the disc by indentifying black cells
with nodes, black boundary intervals with boundary nodes, and nodes in the
medial graph with edges in the graph. If the region R is not a disc then the
graph constructed will not be circular planar.
We can also go in other direction and define an abstract medial graph as-

sociated to a (not necessarily circular planar) graph. One must be careful in
doing this because there may be multiple ways to draw the medial graph of a
given graph if the region is not simply connected and we are not careful in how
we specify the construction procedure. If e and f are two edges which meet at
a node p then it is sufficient to require that one draw the geodesic connecting
the midpoints me and mf of e and f so that it is path homotopic to mepmf .
This ensures that the geodesics of the medial graph go the right way around the
holes in R.
Let M be a medial graph embedded in the unit disc and let α be a simple

closed curve such that α intersects each edge of M at most once, does not
intersect any node, and intersects the boundary of the disc either never or twice.
Let R1 be the intersection of the disc with the region bounded by α, and let
R2 be the disc minus R1. By the restriction imposed on α each of these two
regions is homeomorphic to a disc or an. As in the proof of lemma 3.1, we split
M into subgraphs M1 =M∩R1 and M2 =M∩R2 (this is a slight abuse of
notation–what I mean is to restrict the curves in A to R1 or R2).

2We could easily extend this definition by replacing R with a manifold with boundary, and
this may provide an interesting area for further investigation, but for our purposes we can be
content to stay in the plane.
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If G is associated graph of M then the associated graphs of M1 and M2

may be thought of as subgraphs of G which, when amalgamated through the
proper set of boundary nodes3 reconstructs the original graph G.
We are now ready to state and prove the main theorem of this section.

Theorem 6.1 Let e be an edge in a circular planar graph G, and let ve be the
vertex corresponding to e in the medial graph M associated to G. If ve is not
contained in any lens then γ(e) is recoverable.

Proof: For each lens (or set of overlapping lenses) draw a simple closed
curve βi such that β satisfies the criteria for being a geodesic (i.e. it must not
intersect ∂R or any vertices ofM) and ve is outside the region bounded by βi.
This is possible by the hypothesis that ve is outside of any lens.
For each i let Mi be the medial subgraph in the region bounded by βi

and let Gi be the graph associated with Mi. The region bounded by βi is
homeomorphic to a disc, so Gi is the medial graph of a circular planar graph and
we can appeal to the machinery of lemma 4.2 to computing the set of edges in
Gi which can be uniquely recovered. Doing so produces a set of diffeomorphisms
Φi from (conductivities on Gi) to (conductivities on a critical graph G

′
i) times(a

parameter space) which leave the response matrix invariant.
Let Mshell be the medial subgraph of the disc minus the regions bounded

by the βi, and let Gshell be the associated graph. This medial graph Mshell is
not circular planar (there are lots of holes) but it is lensless4. Pasting in the
Mi yields a lensless medial graphM′ in the disc, so we can safely say that the
graph G′ associated toM′ is critical and circular planar and hence recoverable.
By construction the graphs G′ and G are connection-equivalent and so given

a conductivity on one there is a (non unique) conductivity on the other such
that the two are electrically equivalent. What we now need to prove is that
recovering the conductance on edge e in the graph G′ gives the only possible
conductance on e in the original graph G.
We do this by extending the maps Φi to a diffeomorphism Φ from (conduc-

tivitities on G) to (conductivities on the critical graph G′)×(cartesian product
over i of parameters spaces) such that Φ is the identity when restricted to the
edges of Gshell. This Φ leaves the response matrix invariant and is the identity
when restricted to the edge e. Since G′ is critical, the conductivity on e is
uniquely recoverable, and hence it is uniquely recoverable in G. 2

7 Current Questions

Theorem 3.1 says that L is a diffeomorphism when the underlying graph is circu-
lar planar and critical. However, if we leave the arena of circular planar graphs
then little is known. There are many examples of non-planar graphs that are

3See [4] for a description of the amalgamation process
4Note that in noncircular planar graphs a lensless medial graph does not imply that the

graph is recoverable.
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still recoverable—for instance, consider a critical circular planar graph with the
boundary nodes permuted so that it cannot be embedded in the disc. The graph
remains critical but it appears to no longer be circular planar. Nevertheless, this
permutation of boundary nodes does not affect the properties of L, so in this
case we can say difinitively that the network is still recoverable and L is still
a diffeomorphism even though the proofs do not work for non-circular-planar
graphs.
For a more interesting example, consider the annular graph with two cir-

cles and four rays (see [2]). Any network with this as its underlying graph is
recoverable, but we do not yet know if L has any critical points for this graph.
Now consider the annular graph of two circles and three rays. Esser showed

in [2] that on this graph L has the unusual and surprising property of being a
two-to-one map almost everywhere in its range. However, there are response
matrices compatible with this graph which are the image of only a single conduc-
tance function. For these response matrices the conductivity can be calculated
unambiguously, but L is certainly not a local diffeomorphism at these points.
Following the thoughts above, I would like to pose the following:

Conjecture 7.1 Let G be a graph (not necessarily planar) such that LG is
one-to-one, then LG is a diffeomorphism.

I believe that there are no graphs for which a single conductivity function is
uniquely specified by each response matrix while L has critical points. Perhaps
future REU students will see this as an interesting and exciting question and
give an answer someday.
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