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1 Background

1.1 The Normal Inverse Problem

Consider a graph G made up of vertices or nodes connected by edges. Let Γ = (V, VB , E) where
V is the set of vertices, VB ⊂ V is the set of vertices on the boundary, and E is the set of edges
connecting vertices in V . That is, each e ∈ E can be defined by some p, q ∈ V such that e connects
node p to q, and e = (p, q).
Let Γ = (G, γ) be a resistor network in which each edge e = (p, q) has a conductivity γ(e), allowing
a current to flow through it. The current flowing through the edges connected to a node p is defined
in terms of the conductivities of those edges and the voltages of p and its neighbors, which are the
nodes q connected to p by an edge, denoted by q ∼ p:

φ(p) =
∑

q∼p

γ(p, q)[u(p)− u(q)]

An interior node p is one that has no net flow of current through its edges. That is, it satisfies the
following equation:

φ(p) =
∑

q∼p

γ(p, q)[u(p)− u(q)] = 0

A boundary node need not satisfy the above property.
From this network Γ a Kirchhoff matrix K can be constructed by numbering each node, the bound-
ary nodes first, then the interior nodes, and defining each entry in the matrix as such:

Ki,j = −γ(i, j) i 6= j

Ki,i =
∑

j 6=i γ(i, j)

Because the boundary nodes were labeled first, the Kirchhoff matrix can be written in another
form:

K =

[

A B
BT C

]

(1)

where A represents the boundary to boundary edges, B the boundary to interior edges, and C
the interior to interior edges.
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A response matrix Λ is found by taking the Schur complement of C in K. That is,

Λ = K/C = A−BC−1BT

The inverse problem deals with taking a given response matrix Λ and trying to recover the
original Kirchhoff matrix K. Curtis and Morrow go into further detail on this problem in their
book [1].

1.2 A Physical Interpretation

The scattering problem deals with acoustic waves scattered by a given region. Consider a region of
mass with density that varies through space but remains constant over time. A velocity potential u
applied to the boundary of the region causes waves of certain velocities to be propagated throughout
the region. Whereas the usual inverse problem requires that ∇ · (γ∇u) = 0, the scattering problem
requires instead that

∇ · (γ∇u) + λu = 0 (2)

where γ = 1
ρ , ρ being the density, and λ is the frequency of the sound waves propagated. Discretizing

(2) results in

−Ku+ λu = −(K − λI)u = 0 (3)

with K representing the usual Kirchhoff matrix.

Recovering the γ values in the Kirchhoff matrix allow us to know the density of the mass at dis-
crete points within the region. The response matrix Λ consists of entries based on how waves of a
particular frequency λ exit the region in scattered form.

One particular applcation of this technique is in the case of oil drilling. The surface of the earth
is considered to be the boundary, where sound waves are produced. By recovering the densities of
the mass below the surface, the location of oil can be determined.

A more in-depth interpretation of scattering can be found in Erkki Heikkola’s thesis [2], while
a discretization of the continuous case can be found in a paper by Michelle Covell and Krzystof
Fidkowski [3].

1.3 The Scattering Problem

The scattering problem has to do with a slightly different Kirchhoff matrix than that in (1), now
dependent on a frequency λ:

K − λI =

[

A− λI B
BT C − λI

]

Taking the Schur complement of (C − λI) in (K − λI) gives a response matrix Λ(λ) in terms of
the frequency λ:
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Λ(λ) = (A− λI)−B(C − λI)−1BT (4)

Since (C − λI)−1 is not defined when λ is an eigenvalue of C, we consider only values of λ > ‖C‖,
i.e. λ is larger than any eigenvalue of C. Then (C − λI)−1 can be expanded in (4) to write Λ(λ) as
a power series:

Λ(λ) = A− λI +
Λ1
λ
+
Λ2
λ2
+ . . .+

Λn
λn
+ . . . , (5)

where each Λn = BCn−1BT . Assuming we have Λ(λ) for any value of λ, we can now attempt
to recover as much of the original Kirchhoff matrix K as possible.

2 Matrix A

2.1 Recovering A

A close look at the series expansion for Λ(λ) in (5) shows A to always be recoverable. Since Λ(λ)
and λ are known, we can take a limit:

lim
λ→∞

[Λ(λ) + λI] = lim
λ→∞

A+
Λ1
λ
+
Λ2
λ2
+ . . . = A

We now know the conductivities of all the boundary to boundary edges in our network Γ.

2.2 Equations Derived From A

By construction, the diagonal entries of A are the negative sum of all the nondiagonal entries of
their row in K. That is,

Aii = −
∑

j 6=i,j∈VB

Aij −
∑

j /∈VB

Bij (6)

Because all values of A are known, we can define values ki such that

ki = −
∑

j∈VB

Aij (7)

Combining equations (6) and (7) we get

ki =
∑

j /∈VB

Bij (8)

3 Matrix B

3.1 Characterizing Λ1

Let B = (bij) be an m× n matrix. That is, Γ consists of m boundary nodes and n interior nodes.
As in (5), Λ1 = BBT and can be written as
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Λ1 =











b11 b12 . . . b1n
b21 b22
...

. . .

bm1 bmn





















b11 b21 . . . bm1
b12 b22
...

. . .

b1n bmn











Looking at the diagonal entries, we can see that

(Λ1)ii =
n
∑

j=1

b2ij

In particular, since (Λ1)ii is a sum of squares, we can make certain observations about (Λ1)ii:

Observation 3.1 A boundary node i is not connected to any interior nodes ⇐⇒ (Λ1)ii = 0.

Observation 3.2 A boundary node i is connected to exactly one interior node ⇐⇒ (Λ1)ii = k2i .

In considering the entries of Λ1 that are not along the diagonal, note that

(Λ1)ij =
n
∑

l=1

bilbjl i 6= j

In particular, we can make the following observation:

Observation 3.3 Boundary nodes i, j are connected to the same interior node(s) ⇐⇒ (Λ1)ij 6= 0.

3.2 One Interior Node Networks

In a one interior node network with m boundary nodes, B has dimension m× 1. That is,

B =











b11
b21
...

bm1











where bij is the i, jth entry of B. Then, by (8),

ki = bi1 ∀i = 1, 2, . . . ,m

Hence B is fully recoverable by looking solely at A. C consists of only one term which, by definition,
is the negative sum of all of the entries in B. More concretely,

c = −

m
∑

i=1

bi1

and so C is also recoverable.
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3.3 Two Interior Node Networks

In a two interior node network, B is m× 2 and can be written as

B =











b11 b12
b21 b22
...

...
bm1 bm2











Then, by (8),

ki = bi1 + bi2 ∀i = 1, 2, . . . ,m (9)

and one column of B can be put in terms of the other:

B =











b11 k1 − b11
b21 k2 − b21
...

...
bm1 km − bm1











The terms in the first column of Λ1 form m equations with m unknowns, namely b11, b21, . . . bm1:

(Λ1)11 = b211 + (k1 − b11)
2

(Λ1)21 = b11b21 + (k1 − b11)(k2 − b21)

...

(Λ1)m1 = b11bm1 + (k1 − b11)(km − bm1)

Looking at the first equation, letting λ11 = (Λ1)11, and rearranging the terms, we get

2b211 − 2k1b11 + (k
2
1 − λ11) = 0

Solving for b11 gives two solutions:

b11 =
1

2
k1 ±

1

2

√

2λ11 − k21 (10)

Going back to (9) and solving for b12, we get

b12 =
1

2
k1 ∓

1

2

√

2λ11 − k21,

the same two values as b11 but in reverse. Setting aside for the moment the ambiguity of the
ordering and letting λi1 = (Λ1)i1,

λi1 = b11bi1 + (k1 − b11)(ki − bi1)

= b11bi1 + k21 − b11ki − bi1k1 + b11bi1

This results in a linear equation for bi1 which allows us to solve for the remaining values of B in
terms of b11:
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bi1 =
λi1 + b11ki − k21
2b11 − k1

This equation has the added requirement that k1 6= 2b11, which occurs only when b11 = b12. For
now we assume that b11 6= b12. Using the value of b11 corresponding to the positive squareroot in
(10) to solve for bi1, we get

bi1 =
1

2
ki +

λi1 + k1ki − k21
√

2λ11 − k21

Solving for bi2 using (9) gives the solution

bi2 =
1

2
ki −

λi1 + k1ki − k21
√

2λ11 − k21

Had b11 been chosen to correspond to the value with the negative squareroot in (10), i.e. switching
the values of b11 and b12, the two values for bi1 and bi2 would have also been reversed.

In the case that b11 = b12, the first equation exactly determines the two values. However, the
remaining equations cannot be used to solve for the other unknown entries in B. Suppose for some
i, 1 ≤ i ≤ m, bi1 6= bi2, which can be verified by examining (Λ1)ii. Then the entries along the ith
column can be used to recover each value of the B matrix. If no such i exists, then the diagonal
entries are sufficient to recover B.

Thus, B is recoverable, save for an ambiguity in the ordering of the two columns, in any network
with exactly two interior nodes.

3.4 Larger Networks

Consider a network Γ with n interior nodes, n > 2, such that each boundary node is connected to
at most two interior nodes. B in this network is somewhat sparse. The diagonal entries of Λ1 can
be used to determine the number of interior nodes a particular boundary node is connected to.

If (Λ1)ii = 0 =⇒ node i is not connected to any interior nodes. (by 3.1)

If (Λ1)ii = k2i =⇒ node i is connected to exactly one interior node by an edge of conductivity −ki.
(by 3.2)

Otherwise, because of the restriction on our network Γ, node i is connected to exactly two interior
nodes by edges whose conductivities can be found using b2i1 + b2i2 = (Λ1)ii and bi1 + bi2 = ki.

Once the values of each row are recovered, the next step is to determine which column in B they
each fall into. To do this, we can look at the nondiagonal entries of Λ1.

By 3.1, we know that the i, jth entry is nonzero when boundary nodes i and j are adjacent to the
same interior node(s). Suppose nodes i, j are each connected to two interior nodes i1, i2, j1, j2 by
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edges with conductivities bi1, bi2, bj1, bj2, respectively. Then there are six ways for the two nodes to
be connected by the interior nodes, each corresponding to a particular value in Λ1:

matching nodes (Λ1)ij

i1 = j1 bi1bj1

i1 = j2 bi1bj2

i2 = j1 bi2bj1

i2 = j2 bi2bj2

i1 = j1 and i2 = j2 bi1bj1 + bi2bj2

i1 = j2 and i2 = j1 bi1bj2 + bi2bj1

Comparing these six potential values to the actual value in Λ1 reveals which of the connections is
the accurate one (assuming only one of the six is equivalent to the value in Λ1). In this way, we
can determine which boundary nodes are connected to a particular interior node, and reconstruct
the columns of B. If either node i or j (or both) is connected to only one node, the same method
applies, but with fewer possible connections between the two nodes.

A problem arises when Γ contains an interior node i which is not connected to any boundary nodes.
In this case, the ith column of B is made up entirely of zeros. This information is lost when looking
at Λ1, and the existance of such an interior node cannot be recovered by the method described above.

Thus, B can be determined up to an ambiguity in the order of its columns and without any zero
columns in this case.

3.5 When B has rank 1

In the case that B has rank 1, that is, all columns of B can be written as a scalar multiple of any
one column of B, and B is of dimension m× n, B can be written in the form

B =











b11 k2b11 . . . knb11
b21 k2b21 . . . knb21
...

...
...

bm1 k2bm1 . . . knbm1











Then, Λ1 can be written as

Λ1 = (1 + k22 + k23 + . . .+ k2n)











b211 b11b21 . . . b11bm1
b11b21 b221
...

. . .

b11bm1 b2m1











B has (m + n − 1) unknowns in need of being recovered, namely b11, b21, . . . , bm1, k2, k3, . . . , kn.
From Λ1, we can only recover the ratios of the conductances, that is

7



λ21
λ11

=
b21
b11

,
λ31
λ11

=
b31
b11

, . . . ,
λm1
λ11

=
bm1
b11

(11)

The other entries of Λ1 only provide similar ratios which are easily derived from (11). Thus, if any
one of the bi1 values is known, the remaining values can be recovered as well. Otherwise, we can
only determine the ratios between any two conductances.

If the bi1 values can be recovered, only then will two equations for the ki values make themselves
known, derived from A and Λ1. These two matrices give us values α and β such that

1 + k22 + k23 + . . .+ k2n = α from Λ1

1 + k2 + k3 + . . .+ kn = β from A

The ki values, since there are exactly two equations, can only be recovered if n ≤ 3, that is, the
network Γ has no more than 3 interior nodes.

4 Matrix C

4.1 When B Has Full Rank

Let B be a matrix of dimension m× n whose columns are linearly independent. This implies that
n ≤ m and B has rank n, as does BT . Then the n × n matrix BTB is also of rank n, and has an
inverse (BTB)−1. Using the matrix Λ2 = BCBT , consider

(BTB)−1BTΛ2B(B
TB)−1 = (BTB)−1BTBCBTB(BTB)−1 = C

Thus C can be recovered when B has linearly independent columns.

4.2 Characterizing the Λn Sequence

The Λ(λ) series contains infinitely many terms, but only finitely many of them have the potential
to be useful. The following theorem places an upper bound on the number of terms which are not
redundant.

Theorem 4.1 If C is n× n the terms Λn+1,Λn+2, . . . can be written in terms of Λ1,Λ2, . . . ,Λn.

Proof. Let p(λ) = det(λI−C) be the characteristic equation of C. Then, because C has dimen-
sion n× n, p(λ) must have degree n with leading coefficient 1. As the characteristic equation of C,
p(λ) also satisfies the property that p(C) = 0.

Let p(λ) be rewritten as

p(λ) = λn − αnλ
n−1 − αn−1λ

n−2 − . . .− α2λ− α1 (12)

Then, substituting C into (12), we get
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p(C) = Cn − αnC
n−1 − αn−1C

n−2 − . . .− α2C − α1I = 0 (13)

Rearranging the terms of (13), Cn can be written in terms of the lower powers of C:

Cn = αnC
n−1 + αn−1C

n−2 + . . .+ α2C + α1I

Now consider Λn+1:

Λn+1 = BCnBT

= B[αnC
n−1 + αn−1C

n−2 + . . .+ α2C + α1I]B
T

= αn(BC
n−1BT ) + αn−1(BC

n−2BT ) + . . .+ α2(BCB
T ) + α1(BB

T )

= αnΛn + αn−1Λn−1 + . . .+ α2Λ2 + α1Λ1

Thus Λn+1 can be written as a linear combination of Λ1,Λ2, . . . ,Λn. We can now consider Λn+2:

Λn+2 = BCn+1BT

= B[C(αnC
n−1 + αn−1C

n−2 + . . .+ α2C + α1I)]B
T

= B[αnC
n + αn−1C

n−1 + . . .+ α2C
2 + α1C]B

T

= αn(BC
nBT ) + αn−1(BC

n−1BT ) + . . .+ α2(BC
2BT ) + α1(BCB

T )

= αnΛn+1 + αn−1Λn + . . .+ α2Λ3 + α1Λ2

The Λn+1 term can be replaced by the linear combination of Λ1,Λ2, . . . ,Λn above, allowing Λn+2
to be written in terms of only Λ1,Λ2, . . . ,Λn.

Continuing in this manner, all terms Λn+1,Λn+2, . . . can be written in terms of Λ1,Λ2, . . . ,Λn.

4.3 When C is 2× 2, B has rank 1

Let B be a matrix of dimension m × n. If m < n, that is, if the network has more interior
nodes than boundary nodes, then B is guaranteed to have linearly dependent columns. It is also
possible that the columns of B may be linearly dependent (i.e. B has rank < n) even when m ≥ n.

In the case that B is m × 2 with rank 1, there is a real constant k such that B can be written in
the form

B =











b11 kb11
b21 kb21
...

...
bm1 kbm1











Let c be the conductivity between the two interior nodes, Σ1 = −c−
∑

bi1, and Σ2 = −c− k
∑

bi1.
Then

9



C =

[

Σ1 c
c Σ2

]

Looking at Λ2 = BCBT we get

Λ2 =











b11 kb11
b21 kb21
...

...
bm1 kbm1











[

Σ1 c
c Σ2

] [

b11 b21 . . . bm1
kb11 kb21 . . . kbm1

]

Let λ11 = (Λ2)11. Then

λ11 = (b11Σ1 + kb11c)b11 + (b11c+ kb11Σ2)kb11

λ11

b2
11

= −(
∑

bi1)− c+ kc+ kc− k3(
∑

bi1)− k2c

= −c(k2 − 2k + 1)− (k3 + 1)(
∑

bi1)

= −
(

c(k − 1)2 + (k3 + 1)(
∑

bi1)
)

Solving for c results in

c =
−λ11 − b211(k

3 + 1)(
∑

bi1)

b211(k − 1)
2

Thus, when k 6= 1, C is recoverable in a network of m boundary nodes and 2 interior nodes.
However, it is possible for C to be irrecoverable when k = 1, that is, when the columns of B are
identical.

5 Unfinished Business

This section concerns paths begun but not yet finished.

5.1 Recovering the Eigenvalues of C

As stated in theorem (4.1) and its proof, the Λn sequence forms a recurrence relation based on the
characteristic polynomial of C. The theorem deals only with the existence of the relation. What
is as yet unknown is whether the relation is recoverable by examining the Λn sequence, though it
appears that it should be. If we can actually determine the relation, that is, the αi values in section
4.2, then we can recover the characteristic polynomial of C. The characteristic polynomial (12) has
the eigenvalues of C as its roots. Thus, there may be a way to determine the eigenvalues of C,
which would possibly help in recovering C as well.

5.2 Nonrecoverable Edges of C

Conjecture 5.1 Suppose the ith and jth columns of B are identical. Then the i,jth element of C,
cij is not recoverable.
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Let B be a 3× 3 matrix of rank 1. Then B can be written as

B =





b11 k1b11 k2b11
b21 k1b21 k2b21
b31 k1b31 k2b31





for some real values k1, k2, and C is then a 3× 3 matrix in the form

C =





Σ1 c12 c13
c12 Σ2 c23
c13 c23 Σ3





where each Σi is the negative sum of row entries of the Kirchhoff matrix. That is,

Σ1 = −(b11 + b21 + b31 + c12 + c13)

Σ2 = −(k1b11 + k1b21 + k1b31 + c12 + c23)

Σ3 = −(k2b11 + k2b21 + k2b31 + c13 + c23)

(14)

Λ2 = BCBT , and if we examine (Λ2)11 we get

(Λ2)11 = b11 [b11(Σ1 + k1c12 + k2c13)] + k1b11 [b11(c12 + k1Σ2 + k2c23)]

+k2b11 [b11(c13 + k1c23 + k2Σ3)]

Dividing through by the b11 terms, and replacing the Σi terms, the equation becomes

(Λ2)11
b2
11

= (−Σbi1 − c12 − c13) + k1c12 + k2c13 + k1c12 + k21(−k1Σbi1 − c12 − c23) + k1k2c23

+k2c13 + k1k2c23 + k22(−k2Σbi1 − c13 − c23)

= −Σbi1(1 + k31 + k32)− c12(k
2
1 − k1 − k1 + 1)− c13(k

2
2 − k2 − k2 + 1)− c23(k

2
1 − k1k2 − k1k2 + k22)

= −Σbi1(1 + k31 + k32)− c12(k1 − 1)
2 − c13(k2 − 1)

2 − c23(k1 − k2)
2

Note that columns 1 and 2 of B being identical corresponds to k1 = 1. In this case, the term
containing c12 drops out of the above equation, and cannot be used to recover that particular edge.
The same follows if any other set of columns of B are identical. This is true for the equations of all
entries of Λ2. Looking further to Λ3 = BC2BT , we can again look at the entry in position 1,1:

(Λ3)11 = b211
[

(Σ21 + c212 + c213) + k1(c12Σ1 + c12Σ2 + c13c23) + k2(c13Σ1 + c12c23 + c13Σ3)
]

+k1b
2
11

[

(c12Σ1 + c12Σ2 + c13c23) + k1(c
2
12 +Σ

2
2 + c223) + k2(c12c13 + c23Σ2 + c23Σ3)

]

+k2b
2
11

[

(c13Σ1 + c12c23 + c13Σ3) + k1(c12c13 + c23Σ2 + c23Σ3) + k2(c
2
13 + c223 +Σ

2
3)
]

(15)
Through algebraic manipulations, this equation eventually becomes
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(Λ3)11
b2
11

= (
∑

bi1)
[

2(k1 + 1)(k1 − 1)
2c12 + 2(k2 + 1)(k2 − 1)

2c13 + 2(k1 + k2)(k1 − k2)
2c23

]

−(
∑

bi1)
2(1 + k41 + k42) + 2(k1 − 1)

2c212 + 2(k2 − 1)
2c213 + 2(k1 − k2)

2c223

+2(k1 − 1)(k2 − 1)c12c13 + 2(k1 − k2)(k1 − 1)c12c23 + 2(k1 − k2)(k2 − 1)c13c23

As in the previous equation (15), the terms containing c12 in this equation drop out when k1 = 1,
causing c12 to not be recoverable from this equation. That is, when the first two columns of B are
identical, Λ3 cannot be used to recover c12, similar to Λ2. The same is true when a different pair
of columns of B are identical for the remaining entries of C.
While this has not yet been proven, it seems that this should be true of the remaining matrices in
the Λn sequence.

5.3 Patterns in the Λn Sequence

Suppose B has dimension 3× 3 and rank 1. We can write B and C in the form

B =





b11 k1b11 k2b11
b21 k1b21 k2b21
b31 k1b31 k2b31





C =





Σ1 c12 c13
c12 Σ2 c23
c13 c23 Σ3





where the Σi values are as in (14). Then Λn turns out to be

Λn = y





b211 b11b21 b11b31
b11b21 b221 b21b31
b11b31 b21b31 b231



 (16)

with y varying with n. For Λ1,

y = 1 + k21 + k22

For Λ2,

y = Σ1 + k21Σ2 + k22Σ3 + 2k1c12 + 2k2c13 + 2k1c23k2

The y values for each Λn become increasingly complicated as n increases, but a definite pattern
shows up. This pattern can be generalized to a B matrix with higher dimensions.

When B has rank 2 with dimension 3× 3, B can be written as

B =





b11 b12 αb11 + βb12
b21 b22 αb21 + βb22
b31 b32 αb31 + βb32




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with C as before. Then each Λn matrix has the form

Λn =



















b211x+ 2b11b12y + b212z b11b21x+ (b11b22 + b12b21)y b11b31x+ (b11b32 + b12b31)y
+b12b22z +b12b32z

b11b21x+ (b11b22 + b12b21)y b221x+ 2b21b22y + b222z b21b31x+ (b21b32 + b22b31)y
+b12b22z +b22b32z

b11b31x+ (b11b32 + b12b31)y b21b31x+ (b21b32 + b22b31)y + b22b32z b231x+ 2b31b32y + b232z
+b12b32z +b22b32z



















(17)
where x, y, z vary with n, as in the previous case. For Λ1,

x = 1 + α2, y = αβ, z = 1 + β2

For Λ2,

x = Σ1 + 2αc13 + α2Σ3, y = αβΣ3 + βc13 + αc23 + c12, z = Σ2 + 2βc23 + β2Σ3

And so the pattern continues for all of the matrices Λn, with messier values for x, y, and z.

Clearly, patterns will ensue for the Λn sequence based on the rank of B. Besides the pattern among
the Λn matrices, a pattern also shows up in the general form of the Λn for a matrix B of rank k.
That is, a pattern shows up between the forms (16) and (17), and could easily be extended to B
matrices of higher rank.

The question remains as to how useful these patterns are. One possible outcome may be to put a
lower bound on the recurrence relation than the one already in place in theorem (4.1). That is, if
C is an n × n matrix, there may be a recurrence relation between the Λn matrices where there is
some k < n such that

Λk = αkΛk + αk−1Λk−1 + . . .+ α2Λ2 + α1Λ1

5.4 Further Questions

Here are some other questions that have come up, but that have been explored in less detail...

• What happens in the case of larger networks, when there are more than two interior nodes,
in terms of recovering B? in terms of recovering C when B does not have full rank?

• How does the rank of B affect the recoverability of itself and C?

• Is it possible to recover C without first recovering B?

• What restrictions must be placed on B and/or C to make them recoverable? In what cases
are they not recoverable?
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