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Abstract

We develop a method for recovering arbitrary graphs, a generalization of the star–k method that

avoids spurious parameters. They key is to recognize that the inverse problem amounts to undoing the

Schur complement and to analyze the residue term − BC
−1

B
>.
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1 Introduction

We assume that the reader is familiar with the basics of Curtis and Morrow’s inverse problem [1]: graphs,
Kirchhoff matrices, response matrices, and the Schur complement.

The forward problem is to take a Kirchhoff matrix K and find its response matrix Λ. This is easily done
using the Schur complement: if we write K in the block form

(

A B
B> C

)

where C represents the interior-to-

interior connections, Λ = A − BC−1B> = K/C, the Schur complement of C in K. At times it will be
convenient, albeit awkward-sounding, to say “K Schur C” rather than “the Schur complement of C in K.”
It will also be convenient to refer to −BC−1B> as the “residue term.”

The inverse problem is to take a graph and its response matrix and find the Kirchhoff matrix, that
is, knowing K Schur C and knowing which entries of K are zero, to recover the remaining entries of K.
The inverse problem, then, amounts to undoing the Schur complement. This is difficult because the Schur
complement destroys a lot of information: if a graph has eight boundary nodes and eight interior nodes, we
are trying to recover a 16 × 16 matrix from an 8 × 8 with the help of a few zeros. The inverse problem has
been solved for circular planar graphs [1] and annular graphs have been studied some [3]; in this paper we
are interested in the recoverability of arbitrary graphs.

Our plan is to set up a sequence of intermediate matrices between the Kirchhoff matrix and the response
matrix and pull the information in the response matrix back through these intermediate matrices to the
Kirchhoff matrix. In §2 we study the simplest case, graphs with a single interior node. In §3 we describe
the “star–k method,” which amounts to iterating the one-node case. In §4 we develop a general recovery
method, which is our main result. In §5 we suggest directions for future research.

2 Graphs with One Interior Node

2.1 Basic Recovery Technique

Consider a graph with n boundary nodes and one interior node. Fix an ordering of the nodes with the
boundary nodes first. Let γ1, . . . , γn be the conductances of the edges joining the interior node to the
boundary nodes 1, . . . , n, let γ = (γ1 · · · γn)> be the column vector of these conductances, and let σ =
γ1 + · · · + γn be their sum. Then when we write K in block form,

K =





A −γ

−γ> σ





so Λ = A − γγ>

σ
. We wish to view this in the following manner: Λ is just the upper left corner of K

superimposed with a residue R = −γγ>

σ
from the elimination of the interior node. Let us introduce the

notation K| for the upper left corner of K (the size of which will always be clear from context), so Λ = K|+R.
If we imagine laying these matrices flat, we can write

R − − − −
+ K − − − − −

Λ − − − −
. (2.1.1)

Recall that K and Λ are symmetric, and observe that R must be as well.
We are given all of Λ and the position of the zeros in K, so wherever there is a zero in K, we can read

the corresponding entry of R directly from Λ. Now

R = −γγ>

σ
= − 1

σ















γ1
2 γ1γ2 γ1γ3 . . . γ1γn

γ1γ2 γ2
2 γ2γ3 . . . γ2γn

γ1γ3 γ2γ3 γ3
2 . . . γ2γn

...
...

...
. . .

...
γ1γn γ2γn γ3γn . . . γn

2














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so any 2× 2 submatrix of R has determinant 0. Thus if we know three entries in some 2× 2 submatrix of R,
we can recover the fourth. If there are sufficiently many well-placed zeros in K, we may be able to recover
all of R this way. Once we have R, we can get all but the last row and column of K since K| = Λ−R. Since
K is a Kirchhoff matrix, its rows and columns sum to zero, so we can recover the last row and column as
well.

2.2 Example: The Kite

Consider the “kite” graph (Figure 1). We are given Λ = (λij) and we wish to recover K. We know that k13,
k23, k24, and k34 are all zero since there are no edges between the corresponding pairs of nodes, so we know
the following entries of R:

R =









? ? λ13 ?
? ? λ23 λ24

λ13 λ23 ? λ34

? λ24 λ34 ?









.

Since r13r24 − r14r23 = 0, we recover r14 = λ13λ24

λ23

. We can recover all of R similarly:

R =











λ13
2λ24

λ23λ34

λ13λ24

λ34

λ13
λ13λ24

λ23

λ13λ24

λ34

λ23λ24

λ34

λ23 λ24

λ13 λ23
λ23λ34

λ24

λ34

λ13λ24

λ23

λ24 λ34
λ24λ34

λ23











.

Observe that there are several ways to recover a given entry, for example r11 = r13r14

r34

= r12r13

r23

= r14
2

r44

, but
these all give the same result. (Observe also that “the indices cancel” in each expression.) It appears that
in general, if we begin with a set of entries in R which is independent, that is, if no entry in our set can be
gotten from the others, then no matter how we recover the remaining entries we get the same values.

Now that we have R, we can recover the upper left corner of K:

K =















λ11 − λ13
2λ24

λ23λ34

λ12 − λ13λ24

λ34

0 λ14 − λ13λ24

λ23

?

λ12 − λ13λ24

λ34

λ22 − λ23λ24

λ34

0 0 ?

0 0 λ33 − λ23λ34

λ24

0 ?

λ14 − λ13λ24

λ23

0 0 λ14 − λ24λ34

λ23

?

? ? ? ? ?















and since the rows and columns of K sum to 0, we can recover all of K.
Observe that

k12 = λ12 −
λ13λ24

λ34

=

∣

∣

∣

∣

λ12 λ13

λ24 λ34

∣

∣

∣

∣

λ34

and that the determinant in the last expression corresponds to the 2-connection from nodes 1 and 4 to 2
and 3. Since there is an edge between nodes 1 and 2, k12 is negative, so this determinant is positive, and
the connection exists. Removing this edge would break this connection, but it would also make k12 = 0 and
hence make this determinant 0. Thus we see the link between 2-connections and determinants very clearly
by studying graphs with one interior node.

2.3 Quadrilaterals: A Pictorial Tool

We can identify a network (i.e. a graph with conductances) with its Kirchhoff matrix, and a response matrix
is the Kirchhoff matrix of a complete graph, so we can understand taking the Schur complement of the
Kirchhoff matrix as replacing the interior nodes and the edges incident to them with a response-equivalent
complete graph (Figure 2).
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For graphs with one interior node, we can identify the superimposed complete graph with the off-diagonal
entries of the residue R, since R = Λ except on the diagonal if there are no boundary-to-boundary connec-
tions. Thus our statement Λ = K| + R can be interpreted pictorially as in Figure 3. In this interpretation,
a 2 × 2 submatrix of R

(

rik ril

rjk rjl

)

corresponds to a quadrilateral in the superimposed complete graph as in Figure 4, so if we know three sides
of this quadrilateral we can recover a fourth.

Quadrilaterals provide a quick way to check the recoverability of a graph. To show that the kite is
recoverable, we begin by drawing the picture in Figure 5. Where there are doubled edges, knowing the
response matrix gives us their sum, so we need to separate that number into the part that came from the
boundary-to-boundary connection and the part that came from the superimposed complete graph. For the
edge 1–2, we know the other three sides of the quadrilateral 1–3–4–2, and the quadrilateral 1–3–2–4 gives us
the edge 1–4. Now we know the boundary-to-boundary connections and the superimposed complete graph,
i.e. the off-diagonal entries of R, so we know we can recover the diagonal R, so the kite is recoverable.

If instead we were trying to recover the “bowtie,” we would draw the picture in Figure 6. Any quadrilateral
with 1–4 as a side also has 2–3 as a side, so we cannot get three sides of any quadrilateral to recover 1–4 or
2–3, and the bowtie is not recoverable.

2.4 The Square Root Trick

In §2.1 we said that since any 2× 2 submatrix of R is singular, we can recover an entry in a 2× 2 submatrix
given the other three. Since R is symmetric, however, more is true. If our 2 × 2 submatrix is principal and
we know only the two diagonal entries, we can recover the off-diagonal entries:

0 =

∣

∣

∣

∣

rii rij

rij rjj

∣

∣

∣

∣

= riirjj − r2
ij ,

so rij = −√
riirjj ; the entries of R are necessarily negative. Observe again that “the indices cancel.”

The “Star of David” graph (Figure 7) can be recovered using this square root trick but not without it.

3 The Star–K Method

3.1 With Matrices

In this section we shall assume that our graph has 12 boundary nodes and 4 interior nodes to avoid drowning
the reader in a sea of index variables; what is meant in general should be clear.

Let K16 = K be the Kirchhoff matrix of the original network. Let K15 equal K16 Schur its lower right

1×1 corner. Let R16 be the residue −γγ>

σ
from this Schur complement, i.e. the residue from the elimination

of node 16, so K15 = K16|+ R16. Similarly, let K14 equal K15 Schur its lower right 1× 1 corner and R15 be
the residue, so K14 = K15| + R15. Continue in this fashion down to K12.

Proposition 1. K12 equals K16 Schur its lower right 4 × 4 corner, that is, K12 = Λ.

Proof. In [2], Crabtree and Haynsworth show that if C is an invertible square submatrix of M and D is an
invertible square submatrix of D then M/D = (M/C)/(C/D). It is easy to check that the lower right 1× 1
corner of K15 equals the lower right 2× 2 corner of K16 Schur its lower right 1× 1 corner, so K14 equals K16

Schur its lower right 2 × 2 corner. The desired result is obtained by induction.

We are given the graph, or equivalently, the zeros of K = K16. From this we can determine the zeros
of R16 and hence the zeros of K15, and so on down to K13. Given Λ = K12 and the zeros of K13 we may
be able, using our one-interior-node method, to recover R14 and hence K14. From this we may be able to
recover K15, and so on back up to K16. If this process succeeds, we know that the graph is recoverable.

If at some point during this process we get stuck, that is, we know a few entries of some Rn but cannot
recover any more using 2×2 submatrices, we can parametrize one of the unknown entries and continue. The
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number of parameters gives a measure of the “irrecoverability” of our graph. It may also happen that at
one stage we do not have enough information to continue, so we introduce a parameter, but at a later stage
we have more information than we need and are able to use 2 × 2 submatrices to eliminate the parameter.
An example will be given in §3.3.

3.2 With Quadrilaterals

In §2.3, we replaced the interior node and the edges incident to it, or the “star” around the interior node,
with the response-equivalent complete graph, or “k.” Now that we are dealing with several interior nodes,
we make this star–k replacement several times and obtain a sequence of intermediate graphs as in Figure
8. The Kn of the previous section are the Kirchhoff matrices of these intermediate graphs; specifically, Kn

is the intermediate graph with n nodes. If each intermediate graph is recoverable, the original graph is
recoverable.

Here again, quadrilaterals provide a quick check of recoverability. Consider the “hexagons on a tetrahe-
dron” in Figure 9. With the quadrilateral 1–5–4–2 we can separate the two edges 1–2, and by symmetry
all the doubled edges, so we can recover all four interior nodes. This example is interesting because it
is a “flower:” it has neither a boundary-to-boundary connection nor a boundary spike (a boundary node
connected to a single interior node). Curtis and Morrow have shown that no circular planar flower is recov-
erable; this flower is, of course, not circular planar. Jeff Russell and Tracy Lovejoy’s “toy drum” (Figure 10)
is another example of a recoverable flower.

3.3 Example: The Marshmallow

Consider the “marshmallow” graph (Figure 11), so called because the presentation in which the author
introduced it involved a marshmallow model. For this graph,

K7 =





















? 0 0 0 0 ? 0
0 ? 0 0 0 ? ?
0 0 ? 0 0 ? ?
0 0 0 ? 0 ? ?
0 0 0 0 ? ? ?
? ? ? ? ? ? 0
0 ? ? ? ? 0 ?





















K6 =

















? 0 0 0 0 ?
0 ? ? ? ? ?
0 ? ? ? ? ?
0 ? ? ? ? ?
0 ? ? ? ? ?
? ? ? ? ? ?

















K5 =













λ11 λ12 λ13 λ14 λ15

λ12 λ22 λ23 λ24 λ25

λ13 λ23 λ33 λ34 λ35

λ14 λ24 λ34 λ44 λ45

λ15 λ25 λ35 λ45 λ55













so

R6 =













? λ12 λ13 λ14 λ15

λ12 ? ? ? ?
λ13 ? ? ? ?
λ14 ? ? ? ?
λ15 ? ? ? ?













.

No further entries of R6 can be recovered, but if we parametrize the 1, 1 entry by t < 0, we can get everything
else:

R6 =















t λ12 λ13 λ14 λ15

λ12
λ12

2

t
λ12λ13

t
λ12λ14

t
λ12λ15

t

λ13
λ12λ13

t
λ13

2

t
λ13λ14

t
λ13λ15

t

λ14
λ12λ14

t
λ13λ14

t
λ14

2

t
λ14λ15

t

λ15
λ12λ15

t
λ13λ15

t
λ14λ15

t
λ15

2

t















.

From here we can get K6 and complete the recovery. Along the way, however, an interesting thing happens.
In R5, rows 2 and 3 by columns 4 and 5 are

(

λ24 − λ12λ14

t
λ25 − λ12λ15

t

λ34 − λ13λ14

t
λ35 − λ13λ15

t

)

=
1

t2













∣

∣

∣

∣

t λ12

λ14 λ24

∣

∣

∣

∣

∣

∣

∣

∣

t λ12

λ15 λ25

∣

∣

∣

∣

∣

∣

∣

∣

t λ13

λ14 λ34

∣

∣

∣

∣

∣

∣

∣

∣

t λ13

λ15 λ35

∣

∣

∣

∣












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but since this is a 2 × 2 submatrix of an Rn, it is singular, so by the six-term identity,

0 =
1

t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t λ12

λ14 λ24

∣

∣

∣

∣

∣

∣

∣

∣

t λ12

λ15 λ25

∣

∣

∣

∣

∣

∣

∣

∣

t λ13

λ14 λ34

∣

∣

∣

∣

∣

∣

∣

∣

t λ13

λ15 λ35

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1

t

∣

∣

∣

∣

∣

∣

t λ14 λ15

λ12 λ24 λ25

λ13 λ34 λ35

∣

∣

∣

∣

∣

∣

.

If
(

λ24 λ25

λ34 λ35

)

is invertible, this allows us to solve for t, that is, t was a spurious parameter.

Observe that
(

λ24 λ25

λ34 λ35

)

corresponds to the 2-connection from nodes 2 and 3 to 4 and 5. This connection
exists, but the corresponding determinant may be zero because we can also connect 2 and 3 to 5 and 4 (the
opposite permutation). For most graphs in which spurious parameters arise, it is possible to decide whether
the necessary determinant is invertible or not by examining connections; the marshmallow is something of a
pathalogical case in this respect.

If
(

λ24 λ25

λ34 λ35

)

is invertible, the marshmallow is recoverable. By symmetry, if
(

λ23 λ25

λ34 λ45

)

or
(

λ23 λ24

λ35 λ45

)

is
invertible, it is also recoverable. If all three of these are singular, it is possible to exhibit a one-parameter
family of Kirchhoff matrices with the same response matrix. The marshmallow, then, is “almost always”
recoverable. “Tracy’s J” (Figure 12) has the same property. It is interesting to compare this sort of graph
with the 2-to-1 graphs studied by Ernie Esser and Tracy Lovejoy [5], which are “almost never” recoverable—
the former are recoverable unless certain submatrices of Λ are singular, whereas the latter are recoverable
only if certain submatrices of Λ are singular.

4 A General Recovery Method

4.1 Shortcomings of the Star–K Method

The star–k method has two main shortcomings. First, it only works unequivocally when each of the inter-
mediate graphs is recoverable. This is often true for small graphs, such as the tophat (Figure 8), and graphs
with few connections, such as hexagons on a tetrahedron, but it fails for many denser graphs. There is no
order of interior nodes for which the star–k method can recover Ernie Esser’s “2 circles, 4 rays” (Figure 13a)
or even the well-connected graph on 5 nodes shown in Figure 14a, which is circular planar. Both these graphs
are known to be recoverable by other means. Second, the star–k method is very sensitive to the order in
which the interior nodes are eliminated. Figure 15a is recoverable using the star–k method, but Figure 15b
is not. In the previous section, the recovery of the marshmallow required one parameter, but if we switch
the order of nodes 6 and 7, it requires four parameters (three of which end up being spurious).

Parameters which come and go provide a way around these shortcomings, and it may be that all recov-
erable graphs can be recovered using the star–k method and spurious parameters. This method is inelegant,
however, and does not reflect what is really going on. If a spurious parameter arises in the star–k recovery of
a graph, it is because one of the intermediate graphs was not recoverable but the original graph was; some
information was present in the chain of intermediate graphs that could not be seen by looking only from one
graph to the next. In the previous section we saw how when we look across several steps, 3× 3 determinants
arise from 2 × 2 determinants of 2 × 2 determinants by way of the six-term identity. In this section we will
use 3 × 3 and larger determinants directly, without the help of spurious parameters.

4.2 Looking at Multiple Layers

In §2.1 we wrote Λ = K| + R, or when we laid K and R flat,

R − − − −
+ K − − − − −

Λ − − − −
.

We were given certain entries of the matrices in this sum: the zeros of K and R and all the entries of Λ.
We used vertical information—knowing kij and λij we could find rij , and knowing rij and λij we could find
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kij—and horizontal information—the singularity of certain submatrices of R and the fact that the rows and
columns of K summed to zero—to recover all the entries of everything, and particular to recover K.

In §3.1 we had

K12 = K13| + R13

= K14| + R14| + R13

= K15| + R15| + R14| + R13

= K16| + R16| + R15| + R14| + R13

or if we lay the matrices flat,

R13 − − − − − − − − − − − −
R14 − − − − − − − − − − − − −
R15 − − − − − − − − − − − − − −
R16 − − − − − − − − − − − − − − −

+ K16 − − − − − − − − − − − − − − − −
K12 − − − − − − − − − − − −

. (4.2.1)

Here we did the same thing: we began with the known zeros of K16 (and hence of the Rn) and the known
entries of Λ = K12 and used vertical and horizontal information to peel off the Rn one at a time and recover
K16.

The following sort of thing happens often: the i, j entries of K16, R16, and R15 are zero but the i, j
entries of R13 and R14 are not, so we can recover the sum of these two entries, but we do not know what
portion of the number comes from R13 and what portion from R14. To make use of this information, we
introduce a matrix R13

14 = R14|+ R13; we typically know more about this matrix than we do about R13 and
R14 separately.

This is our plan: in addition to considering the single layers R13, . . . , R16, we will also consider all sums
of contiguous blocks of them, for example R13

15 = R15| + R14| + R13 and R15
16 = R16| + R15 and even K14 =

K16| + R16| + R15. These multi-layer gadgets add up nicely: R13
16 = R14

16| + R13 = R15
16| + R13

14 = R16| + R13
15.

Thus we understand the vertical information for the Rm
n .

To recover a graph, we wish to use horizontal information about the Rm
n to recover their entries from

a few given entries. For single layers, we used the fact that 2 × 2 submatrices were singular. For multiple
layers, we will use larger submatrices.

4.3 Recovery with Larger Submatrices

The following Lemma was used tacitly in §3.3 and will be used extensively in what follows.

Lemma 2. If an n × n matrix M is singular, we know all but one entry mij, and the cofactor Mij is

invertible, we can recover the unknown entry.

Proof. By cofactor expansion along the ith row,

0 = detM = (−1)i+1mi1 det Mi1 + · · · + (−1)i+jmij det Mij + · · · + (−1)i+nmin detMin,

so since det Mij 6= 0, we can solve for mij .

In §2.4, we used the symmetry of R to do slightly better for 2 × 2 matrices. It is unclear whether it is
worth doing this for larger matrices. Suppose that a square matrix M is singular and symmetric, with the
block form

M =





a B x
B> C D
x D> e





7



where the corners a, x, and e are 1 × 1. We wish to solve for x. By the six-term identity,

0 = |M ||C|

=

∣

∣

∣

∣

a B
B> C

∣

∣

∣

∣

∣

∣

∣

∣

C D
D> e

∣

∣

∣

∣

−
∣

∣

∣

∣

B x
C D

∣

∣

∣

∣

∣

∣

∣

∣

B> C
x D>

∣

∣

∣

∣

=

∣

∣

∣

∣

a B
B> C

∣

∣

∣

∣

∣

∣

∣

∣

C D
D> e

∣

∣

∣

∣

−
∣

∣

∣

∣

B x
C D

∣

∣

∣

∣

2

=

∣

∣

∣

∣

a B
B> C

∣

∣

∣

∣

∣

∣

∣

∣

C D
D> e

∣

∣

∣

∣

−
(∣

∣

∣

∣

B 0
C D

∣

∣

∣

∣

+ (−1)nx|C|
)2

so if C is invertible,

x =
(−1)n+1

|C|

(

∣

∣

∣

∣

B 0
C D

∣

∣

∣

∣

±
√

∣

∣

∣

∣

a B
B> C

∣

∣

∣

∣

∣

∣

∣

∣

C D
D> e

∣

∣

∣

∣

)

.

If the plus-or-minus term is nonzero, we have two possible values for x. If one is positive and one negative,
in our application we will know which one we want, but there is no obvious way of telling whether the two
solutions are of the same or opposite sign. On the other hand, if the plus-or-minus term is zero, |B x

C D | = 0,
so we can find x from that.

It is not known whether any graphs can be recovered using this generalized square root trick but not
without it. We guess that there are none, but suspect that this trick is at work in 2-to-1 graphs.

4.4 Testing for Singularity

To make use of Lemma 2, we need to be able to test submatrices of the Rm
n for singularity. We continue to

assume that our graph has 16 nodes.

We defined R15 (for example) as the residue term −γγ>

σ
from K15 Schur its lower right 1× 1 corner. We

wish to show that R14
15 (for example), which we defined as R15|+R14, is the residue from K15 Schur its lower

right 2 × 2 corner. Let C14
15 be that corner: rows 14 to 15 by columns 14 to 15 of K15. Let K15| be rows 1

to 13 by columns 1 to 13 and B be rows 1 to 13 by columns 14 to 15, so

K15 =





K15| B

B> C14
15



 .

Now K13 = K15| + R15| + R14 = K15| + R14
15, but by Proposition 1, K13 = K15| − B (C14

15 )−1B> as well, so

R14
15 = −B (C14

15 )−1B>, i.e. the residue from the elimination of nodes 15 and 14.
K13 is the Schur complement of C14

15 in K15. R14
15 is the Schur complement of C14

15 in a closely related
matrix: with B as above, define

Z14
15 =





0 B

B> C14
15



 ,

that is, K15 with the upper left 13 × 13 corner replaced with zeros. Now

R15
14 = 0 − B (C14

15 )−1B> = Z14
15/C14

15 .

Proposition 3. Let M be the submatrix of R14
15 consisting of rows r1, . . . , rn by columns c1, . . . , cn. Let N

be the submatrix of Z14
15 consisting of rows r1, . . . , rn, 14, 15 by columns c1, . . . , cn, 14, 15. Then M is singular

if and only if N is.

Proof. M = N/C14
15 , so det M = (detN)/(det C14

15 ). C14
15 is not singular since it is a principal proper

submatrix of a Kirchhoff matrix.

8



In other words, to decide whether a square submatrix M of R14
15 is singular, we can take the same

submatrix of Z14
15 (which is just K15 with the upper left corner suppressed), tack on the rows and columns

that would be chopped off in taking the Schur complement of C14
15 , and decide if that is singular.

We know which entries of K15 are zero, which are positive (the diagonal entries), and which are negative
(the off-diagonal entries that are not zero). We can try to decide whether a submatrix N of Z14

15 is singular
as follows. Expand the determinant as a polynomial in the entries of N (hence of K15). If the terms are all
zero, N is singular. If the terms are all positive or all negative, N is invertible. If some of the terms are
positive and some negative, the signs of the entries alone are not enough to decide.

4.5 Recovering an Arbitrary Graph

Now we are in a position to outline a method for recovering the Kirchoff matrix of an arbitrary graph from
its response matrix. Suppose our graph has M boundary nodes and N nodes altogether.

1. Write down the signs of all the entries of KN , which we know from the graph. From these, determine
the signs of all the entries of KM , . . . ,KN−1. We will use these to test submatrices for singularity using
Proposition 3.

2. Make empty matrices KM , . . . KN , RM+1, . . . , RN , and Rm
n , M < m < n ≤ N of the appropriate sizes:

Kn is n×n, and Rn and Rm
n are n− 1×n− 1. Fill in the zeros of all these, which can be derived from

the zeros of KN . Fill in the entries of KM , the response matrix.

3. Whenever we know two of three entries from something of the form R13
16 = R15

16| + R13
14 or

K13 = K15| + R14
15, recover the third.

4. Whenever we know all but one entry of a submatrix of any matrix, if the submatrix is singular and
the cofactor of the unknown entry is invertible, recover the unknown entry using Lemma 2. Also use
the basic square root trick from §2.4.

5. Whenever we know all but one entry in a row of a Kn, recover it using the fact that the rows of
Kirchhoff matrices sum to zero.

6. If at any point no more entries can be recovered but some are still missing, parametrize an unknown
entry. The first single layer Rn with unknown entries (first in the sense that n is least) seems to be
the best place to parameterize.

Observe that if we restrict our recovery to the single layers Rn and omit the mutli-layers Rm
n , this is

exactly the star–k method.
This method, while powerful (there is no known recoverable graph that it fails to recover), is impractical

to work by hand for large graphs, as we shall see in the next section, and unnecessary for small graphs, where
the star–k method usually works. It is ideally suited to a computer, however. The author has implemented
the method as a C++ program, which is available at http://www.math.washington.edu/∼reu/.

4.6 Example: 2 Circles, 4 Rays

Consider 2 circles, 4 rays (Figure 13a), which has 8 boundary nodes and 8 interior nodes. An ad hoc proof
of this graph’s recoverability is given by Ernie Esser in [3]. Here we recover it using our general method.

These are the signs of the entries in K16, the Kirchhoff matrix:

K16 =





























+ 0 0 0 0 0 0 0 0 0 0 0 − 0 0 0
0 + 0 0 0 0 0 0 0 0 0 0 0 − 0 0
0 0 + 0 0 0 0 0 0 0 0 0 0 0 − 0
0 0 0 + 0 0 0 0 0 0 0 0 0 0 0 −

0 0 0 0 + 0 0 0 − 0 0 0 0 0 0 0
0 0 0 0 0 + 0 0 0 − 0 0 0 0 0 0
0 0 0 0 0 0 + 0 0 0 − 0 0 0 0 0
0 0 0 0 0 0 0 + 0 0 0 − 0 0 0 0
0 0 0 0 − 0 0 0 + − 0 − − 0 0 0
0 0 0 0 0 − 0 0 − + − 0 0 − 0 0
0 0 0 0 0 0 − 0 0 − + − 0 0 − 0
0 0 0 0 0 0 0 − − 0 − + 0 0 0 −

− 0 0 0 0 0 0 0 − 0 0 0 + − 0 −

0 − 0 0 0 0 0 0 0 − 0 0 − + − 0
0 0 − 0 0 0 0 0 0 0 − 0 0 − + −

0 0 0 − 0 0 0 0 0 0 0 − − 0 − +




























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We are given K8, the response matrix. First we wish to recover R9, the residue from the elimination of node
9. This is an 8 × 8 matrix, all of whose entries are negative. Now

R10
16 =













− − − − 0 − − − −

− − − − 0 − − − −

− − − − 0 − − − −

− − − − 0 − − − −

0 0 0 0 0 0 0 0 0
− − − − 0 − − − −

− − − − 0 − − − −

− − − − 0 − − − −

− − − − 0 − − − −













K9 = K16| + R10
16 =













+ − − − 0 − − − −

− + − − 0 − − − −

− − + − 0 − − − −

− − − + 0 − − − −

0 0 0 0 + 0 0 0 0
− − − − 0 + − − −

− − − − 0 − + − −

− − − − 0 − − + −

− − − − 0 − − − +













so we know the following entries of R9 = K8 − K9|:

R9 = K8 − K9| =

























? ? ? ? λ15 ? ? ?
? ? ? ? λ25 ? ? ?
? ? ? ? λ35 ? ? ?
? ? ? ? λ45 ? ? ?

λ15 λ25 λ35 λ45 ? λ56 λ57 λ58

? ? ? ? λ56 ? ? ?
? ? ? ? λ57 ? ? ?
? ? ? ? λ58 ? ? ?

























.

To recover R9, it suffices to recover the 5, 5 entry, for then we can the rest using 2× 2 submatrices as we did
in §2.2. We will recover the 5, 5 entry by way of R9

16.
Consider the submatrix M of R9

16 consisting of rows 1, 2, 4, 5 by columns 3, 5, 7, 8. Since R9
16 = K8−K16|

and the submatrix 1, 2, 4, 5 × 3, 5, 7, 8 of K16 is zero except at 5, 5, we have

M =









λ13 λ15 λ17 λ18

λ23 λ25 λ27 λ28

λ34 λ45 λ47 λ48

λ35 ? λ57 λ58









It suffices to show that 1, 2, 4, 5× 3, 5, 7, 8 is singular but 1, 2, 4× 3, 7, 8 is invertible, for then we can recover
the 5, 5 entry by Lemma 2; then since R9 = R9

16 − R10
16|, and the 5, 5 entry of R10

16 is 0, we can recover the
5, 5 entry of K9.

From §4.4 we know that the submatrix 1, 2, 4 × 3, 7, 8 of R9
16 is invertible if and only if the submatrix

1,2,4,9–16 × 3,7,8,9–16 of K16 with the upper left 3 × 3 corner changed to zeros is invertible:

3 7 8 9 10 11 12 13 14 15 16

1 0 0 0 0 0 0 0 − 0 0 0
2 0 0 0 0 0 0 0 0 − 0 0
4 0 0 0 0 0 0 0 0 0 0 −

9 0 0 0 + − 0 − − 0 0 0
10 0 0 0 − + − 0 0 − 0 0
11 0 − 0 0 − + − 0 0 − 0
12 0 0 − − 0 − + 0 0 0 −

13 0 0 0 − 0 0 0 + − 0 −

14 0 0 0 0 − 0 0 − + − 0
15 − 0 0 0 0 − 0 0 − + −

16 0 0 0 0 0 0 − − 0 − +

.

By cofactor expansion along the top row, this submatrix is invertible if and only if the submatrix
2,4,9–16 × 3,7,8,9–12,14–16 is invertible; that is, since there is a single nonzero entry in the top row, we can
cross out row 1 by column 13 (the reader is encouraged to get a pencil and do this). Similarly, we can cross
out 2 × 14, 4× 16, 15 × 3 (going down the left-hand column now), 11× 7, 12 × 8, 13 × 9, and 10× 11. This
leaves us with the submatrix 9, 14, 16 × 10, 12, 15:

10 12 15

9 − − 0
14 − 0 −

16 0 − −

which is necessarily invertible, so the submatrix 1, 2, 4×3, 7, 8 of R9
16 is invertible. For 1, 2, 4, 5×3, 5, 7, 8, we

play the same game, but after crossing out a few things we find a row of all zeros, so that matrix is singular.
Thus R9 is recoverable, so K9 is recoverable. The recovery of K10, . . . ,K16 is similar.

Exercise. Show that the well-connected graph on 5 nodes (Figure 14a) is recoverable. (Hint: Recover the
1, 1 entry of R6

9 using the submatrix 1, 2, 3 × 1, 4, 5.)
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4.7 Connections and Determinants

In the previous example, we saw that a certain submatrix of R9
16 was invertible because a related submatrix

of Z9
16 was. Because of the placement of zeros in K16, the submatrix of R9

16 was equal to a submatrix of
K8 and the submatrix of Z9

16 was equal to a submatrix of K16. But we know that the subdeterminant
1, 2, 4× 3, 7, 8 of K8, the response matrix, corresponds to a 3-connection from nodes 1, 2, and 4 to 3, 7, and
8. The calculation we just made shows us how.

The reader is encouraged to mark Figure 13a with a pencil. First we crossed out row 1 by column 13. A
3-connection from 1, 2, 4 to 3, 7, 8, must include the edge from node 1 to node 13; from node 1, we cannot
go anywhere else. Similarly, we must go from 2 to 14, 4 to 16, 15 to 3, 11 to 7, and 12 to 8. Now we could
go from 13 to 14, 16, or 9, but if we went to 14 or 16 we would collide with the connections coming from 2
and 4, so we must in fact go to 9. Similarly, we must get to 11 from 10. Now there are only two ways to
complete the connection: either 9 to 10, 14 to 15, and 16 to 12, or 9 to 12, 14 to 10, and 16 to 15; these
correspond to the two non-zero terms in the determinant of

10 12 15

9 − − 0
14 − 0 −

16 0 − −

.

How subdeterminants of Rm
n translate into connections like this has not been studied carefully. We can

say a few things. The lower index n indicates the intermediate graph through which the connection is going;
subdeterminants of R9

14, for example, correspond to connections not through the original graph but through
the intermediate graph with 14 nodes (where nodes 15 and 16 have been “star–k’d”). The upper index m
indicates how many nodes are considered boundary nodes; in R9

16, nodes 1–8 were boundary nodes, but for
R11

16, nodes 1–10 would act as boundary nodes. The fact that any 2× 2 submatrix of a single layer, say R11,
is singular reflects the fact that there are no 2-connections through a star. Similarly, for an Rm

n comprising
k = n−m + 1 layers, any k + 1× k + 1 submatrix is singular since there are no k + 1 connections through a
graph with k interior nodes.

There are many questions, however. What does it mean to replace the upper right corner of a Kirchhoff
matrix with zeros? If the zeros in K16 had not been so fortuitously placed, how would a subdeterminant
of R9

16 differ from a subdeterminant of K8? What does it mean when a subdeterminant intersects the
diagonal—does it make sense to speak of the connection from nodes 1, 2, and 3 to 1, 4, and 5, as we seem
to have been doing in §3.3?

A circular planar graph is recoverable if and only if it is “critical,” that is, if deleting or contracting any
edge (replacing its conductivity with 0 or ∞) would break some connection. What is the analoguous result
for non-planar graphs? To recover a piece of information with our method, we need some determinant to
be zero, but become nonzero when we crossed off the unknown entry’s row and column (i.e. consider the
unknown entry’s cofactor); this must be closely related to criticality.

5 Directions for Future Research

Our study on undoing the Schur complement raises many questions.

1. If our method succeeds, the graph is recoverable. Is the converse true? Are there any recoverable
graphs for which this method fails?

2. If we have to introduce a parameter, does it matter where we introduce it? Suppose we can recover
some but not all entries of the Kn, Rn, and Rm

n . We parametrize an unknown entry α, which allows
us to recover one or more additional entries β. We would hope that parametrizing any β would have
allowed us to recover α; that is, any entry in the set we gain is as good as any other. This does not
appear to be the case. If we parametrize entries of single layers at the top of the pile (4.2.1), say R14 if
R13 is completely recovered, this seems to give us more than if we parametrize near the bottom, say in
K16. Things propogate down better than they propogate up. Thus we suspect that we have overlooked
some information available to us, just as the star–k method overlooked the multi-layers Rm

n .
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One solution may be to look at things like this. Using the notation of §2.1,

(

−γiγj

σ
γj

−γiγk

σ
γk

)

is singular. Half of this matrix comes from R and half from K; it is as though sitting in R in (2.1.1), we
have peered over the ledge, down into K. Now −γj is the sum of the jth row of R, so more generally,
we can consider sums of entries in R: the matrix

(

rik + ril rim

rjk + rjl rjm

)

is singular, for example, and as we have seen, we often know more about the sum than about the
summands, and investigating this can be fruitful. Some things can be said about the row sums of the
Rm

n as well. We do not want to use these facts piecemeal, however. What is the general phenomenon
that is at work here?

3. Is any of the information we are using redundant? Can our recovery method be simplified? In par-
ticular, is it necessary to consider submatrices of the intermediate Kn or do the the Rm

n suffice? Are
there any graphs that can be recovered by looking at the Kn but not by looking at the Rm

n alone?

4. Is our recovery method independent of the order of interior nodes? That is, if it succeeds for one order,
does it succeed for all possible orders? This appears to be true. Some orders are nicer than others,
however. It is much easier to recover 2 circles, 4 rays with the order shown in Figure 13b (due to Jeff
Russell) than with the usual order (Figure 13a). Using the star–k method, the former requires fewer
spurious parameters. Figure 14b is similar. Why is this? What makes one order nicer than another?
How should one choose an ordering of the interior nodes to make the recovery as fast as possible?

5. During the recovery process, most of the work is done at the surface, in the single-layer Rns, but we
usually need at least one determinant buried in the thickest Rm

n s. In §4.6, this was the submatrix
1, 2, 4, 5× 3, 5, 7, 8 of R9

16, which is a residue matrix eight layers thick. Currently, the only way to find
these is for a human to have some intuition about the graph or for the computer to search exhaustively.
Is there some way to make this search smarter? How can we know in advance which deeply buried
submatrices will be helpful? Where should we look for them?

6. If we have to introduce parameters, it appears that the graph is not recoverable. However, for 2-to-1
graphs, which are almost recoverable, the parameter is almost spurious—presumably some determinant
somewhere forces it to take only finitely many values. Where exactly does this 2-to-1–ness come from
in the Rm

n ? What role does the generalized square root trick of §4.3 play? Are there any 3-to-1 graphs?

7. The questions about determinants, connections, and critical graphs from the end of the previous section.

8. Aside from the square root trick, we did not use the symmetry of our matrices. How easily can
our method be applied to directed graphs? How can we understand ordinary (undirected) graphs
as directed graphs with some additional constraints, just like layered networks? What about vertex
conductivity networks?

9. Michael Goff makes an extensive study of networks with negative conductivities in [4]. The Schur
complement still plays a key role for such networks, but they can be quite pathalogical—principal
proper submatrices of Kirchhoff matrices need not be invertible, for example. Our method relied
heavily on the signs of the entries of Kirchhoff matrices being nice. Can it be modified to work with
negative conductivities?

10. What does our method allow us to say about special classes of graphs, such as three-dimensional
lattices?
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