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1 General Definitions, Graph Arithmetic

Definition 1.1. A graph G consists of an ordered set of boundary nodes ∂G, a set of interior nodes intG,
and a set of edges. Unless explicitly stated, we shall assume that all graphs are connected.

Definition 1.2. A network Γ is a graph G together with a real-valued conductivity function γ on the edges
of G. We place no restriction on the sign of γ. We call Γ positive if all conductivities are positive, negative if
all are negative, or of mixed sign otherwise. We do not distinguish between an edge with conductivity zero
and the absence of an edge.

Definition 1.3. We define the response matrix of a network Γ as in [1] and denote it by Resp(Γ). We say
that Γ1 is response-equivalent to Γ2 and write Γ1 ≈ Γ2 if Resp(Γ1) = Resp(Γ2).

Definition 1.4. Given a network Γ with n boundary nodes, we define Γ to be the unique network on the
complete graph with n nodes such that Γ ≈ Γ.

Definition 1.5. Given a real number α and a Γ, γ, and G as above, we define αΓ to be the network on G

with conductivity function αγ. Clearly Resp(αΓ) = αResp(Γ).

Definition 1.6. Given networks Γ1 and Γ2 with n boundary nodes, we define Γ1 + Γ2 to be the network
obtained by identifying the first boundary node of Γ1 with the first boundary node of Γ2, the second with
the second, and so on. We will sometimes refer to this construction as gluing Γ1 and Γ2 together.

Lemma 1.7. Let Γ1 and Γ2 be networks with n boundary nodes. Then Resp(Γ1+Γ2) = Resp(Γ1)+Resp(Γ2).

Proof. Let Λ = Resp(Γ1 + Γ2), and let Γ = Γ1 + Γ2. The reader may convince him or herself that since
Γ1 ≈ Γ1 and Γ2 ≈ Γ2, Γ1 + Γ2 ≈ Γ1 + Γ2 = Γ. Thus Λ = Resp(Γ). Now any pair of nodes in Γ is connected
by two edges in parallel, so we may add their conductivities and replace them with a single edge. Thus
Λ = Resp(Γ1) + Resp(Γ2).

Remark 1.8. It may be observed that our definitions of addition and scalar multiplication make the set
of networks with n boundary nodes (mod response-equivalence) into a vector space over R. This seems
interesting until it is observed that this space is just isomorphic to the space of n× n response matrices.

2 Nullity Lemma

Lemma 2.1. Let Γ be a (not necessarily connected) positive network with n boundary nodes, and let Λ =
Resp(Γ). Then the nullity of Λ is the number of connected components of Γ.

Proof. Let {Ci} be the connected components of Γ, and for each Ci, let xi ∈ Rn be the vector of potentials
which is 1 on ∂Ci and 0 on the rest of ∂Γ. Clearly, the xi’s are independent, and Λxi = 0 for each xi. We
wish to show that {xi} spans kerΛ. Suppose Λy = 0, and for each Ci let yi ∈ R be the value of y on some
node of ∂Ci. By harmonic continuation y is constant on all of ∂Ci, so y =

∑

yixi. Thus {xi} is a basis for
kerΛ.
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3 Diagonalization

Let Λ and Λ′ be real symmetric n×n matrices which share at least n (orthogonal) eigenvectors {x1, . . . , xn}.
Then they can be diagonalized:

Λ = QDQ−1 and Λ′ = QD′Q−1

with the same orthogonal matrix

Q =













x1 · · · xn













Thus we can add their eigenvalues:
Λ + Λ′ = Q(D +D′)Q−1

Remark 3.1. For this manipulation, it is not necessary that all eigenvectors of Λ be eigenvectors of Λ′ (or
vice versa), only that they share at least n eigenvectors. If, for example, Λ has repeated eigenvalues, it may
be that one choice of eigenbasis for Λ is also an eigenbasis for Λ′, while another is not.

4 Stars

4.1 General Stars

Let the graph G be a star with n rays, that is, let G have n boundary nodes, one interior node, and one
edge between each boundary node and the interior node. Let x ∈ Rn such that no component xi of x is 0,
and let Fx be the network on G where the conductivities on the rays are given by the components xi. The
reader may verify that

Sx = Resp(Fx) =











x1

x2

. . .

xn











−
xx>

x>~1
(1)

where ~1 is the vector in Rn with all entries equal to 1.

Remark 4.1. Note that in the case where x ⊥ ~1, that is, when the sum of all the conductances around the
star is 0, the second term of (1) blows up. If we consider Fx, we find that all the conductivities are infinite.
This is not meaningless: a network containing such a star is response-equivalent to one where the star is
replaced with a single node. In general, an edge with infinite conductivity has the effect of identifying its
endpoints.

Conjecture 4.2. The map x 7→ Sx is linear.

4.2 Constant Stars

Sx has 0 as an eigenvalue and ~1 as a 0-eigenvector (like any response matrix), but the other eigenvalues
and eigenvectors are not elegant in general. Since this paper is largely concerned with eigenvalues and
eigenvectors, we restrict our discussion to constant stars, that is, F = F~1 and multiples of it, so (1) becomes

S = Resp(F) = I −
~1~1>

n
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The reader may verify that Sx = 0 if x = ~1 and Sx = x if x ⊥ ~1, so if {~1, x2, . . . , xn} is an orthogonal basis
for Rn, we may diagonalize S as

S =







1
... x2 · · · xn

1

















0
1

. . .

1

















1
... x2 · · · xn

1







−1

4.3 Gluing Stars

Fix a positive connected network Γ with n boundary nodes, and let Λ = Resp(Γ). From [1] we know that Λ
is symmetric and positive semi-definite, and its 0-eigenspace is R~1. Let {0, λ2, . . . , λn} be eigenvalues of Λ
and {~1, x2, . . . , xn} be a corresponding orthogonal basis of eigenvectors, and diagonalize Λ:

Λ =







1
... x2 · · · xn

1

















0
λ2

. . .

λn

















1
... x2 · · · xn

1







−1

If we glue a constant star of conductivity α to Γ, we obtain the following diagonalization:

Resp(Γ + αF) =







1
... x2 · · · xn

1

















0
λ2 + α

. . .

λn + α

















1
... x2 · · · xn

1







−1

That is, gluing αF to Γ leaves the eigenvectors of Λ unchanged and adds α to all the non-zero eigenvalues.

4.4 Eigenstars

Let λ 6= 0 be an eigenvalue of Λ, and glue a star −λF to Γ. Then by the previous section, we subtract λ
from each non-zero eigenvalue of Λ, and in particular the λ-eigenspace of Λ is in the nullspace of Λ − λS.
We verify this with a calculation: if Λx = λx, then

(Λ− λS)x = Λx− (λI −
~1~1>

n
)x = λx− λx+ 0 = 0

since ~1>x = 0.

Remark 4.3. This gives a strange answer to the question, what does it mean for λ and x to be eigenvalues
and eigenvectors of Λ? If we glue a −λ star to Γ and apply the (non-constant) potentials x to the boundary,
no current will flow in or out of the network. In Figure 1, the current flows in loops. Clearly the analogy
to a physical network of resistors breaks down in this case, because the construction employs negative
conductances.

In view of our nullity lemma, we might imagine that the addition of the eigenstar has the effect of
chopping Γ into several components. Figure 2 affirms this interpretation. In Figure 3, however, we still have
loops, but Γ is not disconnected.

Our eigenstar construction circumvents the nullity lemma because Γ − λF is of mixed sign, but not
all mixed-sign networks misbehave this way: [2] exhibits a circular planar network of mixed sign which is
response-equivalent to a positive non-planar network. We present two conjectures:

Conjecture 4.4. A connected network has nullity greater than 1 if and only if it is of mixed sign and contains
loops in some sense, like those in the examples above. (The definition of loop must be made precise.)

Conjecture 4.5. Let Γ± be a critical circular planar network of mixed sign. Then there is no positive
critical circular planar network Γ+ such that Γ± ≈ Γ+.
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Remark 4.6. There are several possible approaches to proving this. Morrow suggests using determinental
identites. Another approach might involve medial graphs: the conjecture is easily proved if we consider
only Y −∆ equivalences rather than general response-equivalences, so any counterexample to the conjecture
would necessarily involve changing the connections of Γ± or, equivalently, permuting the endpoints of the
geodesics of its medial graph (see [1], page 8).

References

[1] Curtis, M., and James A. Morrow. “Inverse Problems for Electrical Networks.” Series on applied math-
ematics – Vol. 13. World Scientific, c©2000.

[2] Schrøder, Konrad. “Negative Conductors and Network Planarity.” 1993.

4



Figure 1: Current flowing in loops.

Figure 2: Starred kite equivalent to disconnected graph.

Figure 3: Problematic example.
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