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Abstract

The set of solutions to an inverse problem is useful,interesting, and significant when the
solution is either unique or has a finite number of solutions. This paper explores the question of
determining when a network will have a finite number of solutions to Dirichlet inverse problem
for the discrete Schrodinger equation.
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1 Introduction

A solution to the continuous Schrodinger equation with real valued q on a domain Ω is a function u
such that Squ = ∆u− qu = 0 in the interior of Ω. To discretize the Schrodinger equation, consider
a graph, Γ = {V, V∂ , E} and real valued functions u and q, where V is the set of all vertices, V∂ ⊆ V

is the set of boundary vertices, E is the set of edges of the graph such that there are no two edges
whose endpoints are the same pair vertices, and u and q are vertex functions. Additionally, define
Vint = V \V∂ to be the set of interior vertices and N (i) to be the set of vertices which are adjacent
to the vertex i, then u is a solution to the discrete Schrodinger equation if for all interior nodes,

Sdqu(i) =





∑

j∈N (i)

u(j)− u(i)



− q(i)u(i) (1)

is zero. The function u will be referred to as the state function and q will be referred to as the
potential function; additionally, let |V | = n and |V∂ | = d. For the problems considered in this paper
the Dirichlet data will be the value of u on the boundary and the Neumann data will be the value
of (1) for boundary vertices i.
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As there are only a finite number of vertices in the graph, the Schrodinger operator can be

expressed as a matrix S, where Su =
[

φ
0

]

and φ is the Neumann data. S can most easily be

expressed as the sum of two matrices, K1 and Iq.

K1i,j =











0 i 6= j and ei,j 6∈ E

−1 i 6= j and ei,j ∈ E

|N (i)| i = j

, Iqi,j =

{

0 i 6= j

q(i) i = j

Then it can easily be seen that S = −(K1+Iq) is the Schrodinger operator. S is a symmetric matrix
because if the edge ei,j exists, then the edge ej,i exists, and is the same edge; additionally, per
convention, the first d rows and columns S will represent the boundary vertices and the remaining
n− d rows and columns will represent the interior vertices. This will allow S to be written in the
following block form,

S = −(K1 + Iq) = −

[

A+ Iq|∂ B

BT C + Iq|int

]

where A is a d×d dimensional matrix representing boundary-boundary connections, B is a d×(n−d)
dimensional matrix representing boundary-interior connections, and C is an (n − d) × (n − d)
dimensional matrix representing interior-interior connections.

2 Existence and Uniqueness of Some Forward and Inverse Prob-

lems

As there are two vertex functions, there are several types of forward and inverse problems which
can be considered. The first inverse problem is if the state function is known everywhere, can the
potential function be determined everywhere. For this problem, the answer is yes as long as u is
non-zero everywhere.

Proposition 2.1. Given a graph, Neumann data, ψ, defined on the boundary, and a state function
u, which is nonzero at all vertices, then there is a unique potential function q, which satisfies the
Schrodinger equation at all interior nodes and satisfies the given Neumann data on the boundary.

Proof. Let q = −I 1
u

([

ψ

0

]

+K1u

)

, q exists as u is nonzero at all nodes. Moreover, as− (K1 + Iq)u =

−K1u− Iqu = −K1u− Iuq = −K1u− Iu

(

−I 1
u

([

ψ

0

]

+K1u

))

= −K1u+ I

([

ψ

0

]

+K1u

)

=
[

ψ

0

]

, q satisfies the Schrodinger equation, with state function u. To show uniqueness, assume that

q1 and q2 both are potentials which satisfy the Schrodinger equation, for the same state function,

then − (K1 + Iq1)u =

[

ψ

0

]

and − (K1 + Iq2)u =

[

ψ

0

]

. Then (Iq1 − Iq2)u = 0⇒ Iu (q1 − q2) =

0; however, as u is nonzero at all nodes, Iu is nonsingular, so q1 − q2 = 0. Thus q is unique.

Even though this is a simple answer, it is one of the least likely scenarios, it is more likely that
the state function will be unknown. Once again, a state function can be found, but the condition
is less general than in Proposition 2.1, as it needs S to be invertible.
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Proposition 2.2. Given a graph, Neumann data, ψ, on the boundary, and a potential function
q, such that K1 + Iq is invertible, then there exists a unique state function u, which satisfies the
Schrodinger equation at all interior nodes and satisfies the given Neumann data on the boundary.

Proof. As K1 + Iq is invertible, it follows that −(K1 + Iq)u =

[

ψ

0

]

has a unique solution.

This forward problem will be referred to as the Neumann problem and will be used in this form
for Section 3, but a special case will be considered in Section 4, where the potential function is zero
on the boundary. The final forward problem which is considered will be referred to as the Dirichlet
problem, and it has a unique solution when C + Iq|int is invertible.

Proposition 2.3. Given a graph, a potential function q such that C + Iq|int is invertible, and the
state on the boundary, φ, then there exists a unique state function u which satisfies the Schrodinger
equation on the interior.

Proof. Let u =

[

φ

−
(

C + Iq|int
)−1

BTφ

]

. Then u is a solution to the Schrodinger equation as

− (K1 + Iq)u = −

[

A+ Iq|∂ B

BT C + Iq|int

] [

φ

−
(

C + Iq|int
)−1

BTφ

]

= −

[

(A+ Iq|∂ )φ−B(C + Iq|int)
−1BTφ

BTφ− (C + Iq|int)(C + Iq|int)
−1BTφ

]

= −

[

(−A− Iq|∂ +B(C + Iq|int)
−1BT )φ

0

]

Now, assume that u =

[

φ

x

]

is a solution to the Schrodinger equation, then (C+ Iq|int)x = −B
Tφ,

and as C + Iq|int is invertible, x is unique.

Most of the paper will consider the inverse Dirichlet problem, and since the Dirichlet problem
has a unique solution when C + Iq|int is invertible, assume that throughout the rest of this paper
C + Iq|int is invertible whenever it is encountered. Since C + Iq|int is invertible, the Dirichlet to

Neumann map to be the matrix −((A + Iq|∂ ) − B(C + Iq|int)B
T ), this will be referred to as the

response matrix for a graph; moreover, this is the Schur complement of the matrix S with respect
to the interior vertices. Additionally, the matrix (C + Iq|int)

−1BT will occur often when dealing

with the inverse Dirichlet problem and thus let D = (C + Iq|int)
−1BT .

3 The Inverse Dirichlet Problem

3.1 Recovery of the Potential Function

The inverse problem which will be considered for much of the rest of the paper will be as follows:
given a graph and the Dirichlet to Neumann map, find the potential function q for the graph.

Definition 3.1. For a set graph, let R be an equivalence relation on the potential functions where
C+Iq|int is invertible, where q1Rq2 if the response matrix for q1 equals the response matrix of q2. A
graph is uniquely recoverable if the cardinality of every equivalence class is 1, and nearly recoverable
if the cardinality of every equivalence class is finite. Moreover recoverable will refer to either nearly
recoverable or uniquely recoverable.
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Fact 3.1. For a given graph, the set of potentials q such that C + Iq|int is invertible is the same
for all other graphs related by adding or removing boundary-boundary edges.

Conjecture 3.1. If two graphs, Γ and Γ′ have the same set of q’s for which C + Iqint is invertible,
then the two graphs have the same interior-interior connections, and the valence of each interior
node is the same.

Proposition 3.1. A graph, Γ is recoverable iff any other graph found by adding or removing
boundary-boundary edges from Γ is recoverable.

Proof. Consider graphs Γ and Γ′, where the only difference between Γ and Γ′ is that Γ′ has a
boundary-boundary connection between nodes i and j, while Γ does not. Given a potential function,
let the response matrix for Γ be Λq and the response matrix for Γ

′ be Λ′q. For a given potential

function consider the differences between Λq and Λ
′
q. Λq = −((A + Iq|∂ ) − B(C + Iq|int)B

T and

Λ′q = −((A′ + Iq|∂ ) − B′(C ′ + Iq|int)(B
′)T . Moreover, as there is no difference in the boundary-

interior and boundary-boundary connections between Γ and Γ′, B = B′ and C = C ′. Additionally,
the only difference between A and A′ is that ai,i + 1 = a′i,i, aj,j + 1 = a′j,j , and ai,j = aj,i = 0 while

a′i,j = a′j,i = −1. Let E be the matrix where Ek,l =











0 k 6∈ {i, j} or l 6∈ {i, j}

−1 k = l = i or k = l = j

1 (k = i and l = j) or (k = j and l = i)

.

Then A + E = A′, thus Λ′q = −E − ((A + Iq|∂ ) − B(C + Iq|int)
−1BT ) ⇒ Λ′q + E = Λq. Note

that E is fixed and independent of q. Now assume that we are given a response matrix, Λq, for Γ
and Γ′ is recoverable, then the response matrix Λ′q can be calculated, and as Γ

′ is recoverable, the
equivalence class of potentials can be recovered. Similarly, if a response matrix, Λ′q, for Γ

′ is given,
and Γ is recoverable, then the equivalence class of potentials can be recovered.

The importance of the preceding proposition is that it simplifies all calculations in the re-
mainder of this paper. As adding or removing boundary-boundary edges neither aids nor hinders
recoverability, whenever it is convenient the assumption will be made that there are no boundary-
boundary connections, making A a diagonal matrix where the diagonal elements are the valence of
the boundary nodes. For the following proofs, it will be helpful to use the determinantal identity,
a more complete description and a proof which can be generalized to Schrodinger networks can be
found in [3].

det (−Λ(P ;Q)) ∗ det (C + Iq|int) = (−1)
k
∑

τ∈Sk

sgn(τ)











∑

α∈C(P ;Q)
τα=τ

∏

el,m∈α

Sl,m ∗ det (−S(Jα))











(2)

where P and Q are distinct subsets of the boundary vertices, k = |P |, Sk is the group of permu-
tations on k elements, C(P ;Q) is the set of simultaneous connections between the elements of P
and Q, Jα is the set of interior vertices which are not used in path α, and −S(Jα) is the principal
sumbatrix of C + Iq|int consisting of the vertices of Jα.

Proposition 3.2. Let j be a boundary node and i be an interior node of the graph Γ, then
Di,j(q) = 0, iff j is not connected to i through the interior.

Proof. To prove this proposition, first a lemma will be used to first show that an element, λi,j(q),
of the response matrix is zero iff there is no path between the vertices i and j.

4



Lemma 3.1. In the response matrix Λq, an element λi,j(q) is the zero polynomial iff there is no
path through the interior between nodes i and j.

Proof. To prove the reverse direction, note that by the determinantal identity,

−λi,j(q) ∗ det (C + Iq|int) = (−1)
k
∑

τ∈Sk

sgn(τ)











∑

α∈C(i;j)
τα=τ

∏

el,m∈α

Sl,m ∗ det (−S(Jα))











If there is no connection, then the right hand side of the equation is zero as there are no connections,
and as det (C + Iq|int) is nonzero, then λi,j(q) = 0.
To prove the forward direction, assume that λi,j(q) = 0, but there is a path between nodes i

and j. Additionally, as there is only one permutation in S1 and for all paths between i and j, for
each edge el,m on this path, Kl,m = 1. Then, by the determinantal identity,

0 =
∑

α∈C(i;j)

det (−S(Jα))

Now
∑

α∈C(i;j) det−S(Jα) is a polynomial in qd+1, · · · , qn where d is the number of boundary nodes.
Now, let m be the degree of the terms of highest degree, then the coefficient of each term of degree
m is positive. Therefore the sum is only zero when C = ∅, in other words, when there is no path
between nodes i and j.

Now to the proof of the proposition. Assume wlog, that we renumber the interior nodes so that
node i is node d + 1, where d is the number of boundary nodes, then the matrix K + Iq can be
written as:














A B

· · ·

K1i,j

yd+2
...
yn

· · ·

K1i,i + qi xd+2 · · · xn
xd+2
...
xn

G+ Iq′|int















and C+Iq|int =











K1i,i + qi xd+2 · · · xn
xd+2
...
xn

G+ Iq′|int











Where K1i,j , yd+2, · · · , yn is the j
th row of B, and K1i,i+qi, xd+2, · · · , xn is the 1

st row of C+Iq|int .
Let Γ′ be the graph with the same edges as Γ, but node i has been promoted to be a boundary
node. Then note that there exists a path through the interior between i and j in Γ iff there exists
a path through the interior between i and j in Γ′. By Lemma 3.1, then λ′i,j(q) = 0 iff there is no
path through the interior between i and j. Moreover, note that

Di,j(q) =

det

















K1i,j xd+2 · · · xn
yd+2
...
yn

G+ Iq′|int

















det [C+Iq|int ]
, λi,j(q)

′ =

det−

















K1i,j xd+2 · · · xn
yd+2
...
yn

G+ Iq′|int

















det−
[

G+Iq′|int

]

λi,i(q)
′ =

det−[C+Iq|int ]
det−

[

G+Iq′|int

]

It is easily seen that
λ′i,j(q)

λ′i,i(q)
= −Di,j(q). Moreover, λ

′
i,i(q) is never the zero polynomial because

C + Iq|int is invertible. This implies that Di,j(q) = 0 iff λ
′
i,j(q) = 0 so, Di,j(q) = 0 iff there does not

exist a path through the interior between boundary node j and interior node i.
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Definition 3.2. A directed path between two vertices, i and j, is an ordered list of internal vertices,
G = {g1, · · · , gs} such that for all k, 1 ≤ k ≤ s− 1, the edge egk,gk+1

exists, g1 = i, and gs = j. An
undirected path between two vertices, i and j, is the ordered list of internal vertices together with
the list in reverse order. An undirected path is a subpath of a directed path if one of the ordered
lists of the undirected path is a subpath of the directed path.

Definition 3.3. As C(i; j) is the set of connections between boundary vertices, i and j, let C ′(i; j)
be the set with multiplicity of all undirected paths from i to j after removing i and j from the
path, and {∅} for a direct connection between i and j.

Definition 3.4. For a set of internal vertices, G = {g1, · · · , gs}, then CG(i; j) is the set of paths
between vertices i and j which use exactly the vertices of G∪ {i, j}. C ′G(i; j) ⊂ C

′(i; j) is the set of
paths in C′G(i; j) which use exactly the vertices of G. Note that |CG(i; j)| = |C

′
G(i; j)|.

Theorem 3.1. λi,j(q) = λk,l(q) iff C
′(i; j) = C′(k; l)

Proof. It is easily seen that if C ′(i; j) = C′(k; l), then λi,j(q) = λk,l(q) through the determinantal
identity.
To prove the forward direction, two lemmas will be used, first that if λi,j(q) = λk,l(q), then

for all sets of interior nodes, G, |CG(i; j)| = |CG(k; l)| and secondly, if for all sets of interior nodes,
G,|CG(i; j)| = |CG(k; l)| then C

′
G(i; j) = C

′
G(k, l).

Lemma 3.2. Assume that λi,j(q) = λk,l(q), then for all sets of interior nodes, G, |CG(i; j)| =
|CG(k; l)|

Proof. Note that by the determinantal identity,

− λi,j ∗ det (C + Iq|int) = (−1)
m

∑

τ∈Sm

sgn(τ)











∑

α∈C(i;j)
τα=τ

∏

ep,q∈α

Sp,q ∗ det (−S(Jα))











=− λk,l ∗ det (C + Iq|int) = (−1)
m

∑

τ∈Sm

sgn(τ)















∑

β∈C(k;l)
τβ=τ

∏

ep,q∈β

Sp,q ∗ det (−S(Jβ))















Moreover, as |P | = 1 for both equations, there is only one element in S1, and Sp,q = 1 for every
edge in every path, the above equations can be reduced to

λi,j ∗ det (C + Iq|int) =
∑

α∈C(i;j)
τα=τ

det (−S(Jα))

=λk,l ∗ det (C + Iq|int) =
∑

β∈C(k;l)
τβ=τ

det (−S(Jβ))

⇒
∑

α∈C(i;j)
τα=τ

det (−S(Jα)) =
∑

β∈C(k;l)
τβ=τ

det (−S(Jβ)) (3)

Note that Jα = Vint \ Gα, where Gα is the set of internal vertices of the path α. Moreover, note
that the leading term of det (−S(Jα)) is the monomial consisting of all elements of Jα (and thus
has degree |Vint| − |G|).
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Proof by induction on |G|. Base step 0: assume that |G| = 0, then G = ∅ and thus corresponds
to an edge.
Case 1: assume |CG(i; j)| = 0, then there is no direct connection between vertices i and j.

Moreover, this implies that the degree of both polynomials is strictly less than |Vint|, by the above
note there cannot be a direct connection between k and l. Thus |CG(k; l)| = 0.
Case 2: assume now that |CG(i; j)| = cG 6= 0, then this implies that there is an edge between

vertices i and j. By construction, there are no pairs of parallel edges and thus |CG(i; j)| = cG = 1.
Then the leading term of the LHS (left hand side) of (3) is the monomial qd+1 · · · qn, which implies
by the note above, that |CG(k; l)| 6= 0⇒ |CG(k; l)| = 1. Thus |CG(i; j)| = |CG(k; l)|.
Inductive step: now, assume that for all sets of interior vertices G such that |G| = 0, · · · , s,

|CG(i; j)| = |CG(k, j)|. Let G = {g1, · · · , gs+1} be a set of internal vertices such that |G| = s + 1.
Then

∑

α∈C(i;j)
τα=τ
|Gα|≤s

det (−S(Jα)) +
∑

α∈C(i;j)
τα=τ
|Gα|>s

det (−S(Jα)) =
∑

β∈C(k;l)
τβ=τ

|Gβ |≤s

det (−S(Jβ)) +
∑

β∈C(k;l)
τβ=τ

|Gβ |>s

det (−S(Jβ))

As |CG(i; j)| = |CG(k, j)| for all G such that |G| ≤ s, by assumption, it is easily seen that

∑

α∈C(i;j)
τα=τ
|Gα|≤s

det (−S(Jα)) =
∑

β∈C(k;l)
τβ=τ

|Gβ |≤s

det (−S(Jβ))

⇒
∑

α∈C(i;j)
τα=τ
|Gα|>s

det (−S(Jα)) =
∑

β∈C(k;l)
τβ=τ

|Gβ |>s

det (−S(Jβ)) (4)

Case 1: assume that |CG(i; j)| = 0, then on the LHS of (4) there is no monomial g1 · · · gs+1.
Moreover, this implies that there is no monomial g1 · · · gs+1 on the RHS (right hand side) of (4),
and thus |CG(i; j)| = 0.
Case 2: now assume that |CG(i; j)| = cG 6= 0, then the coefficient on the LHS of the monomial

g1 · · · gn is cG. Which implies that coefficient of the monomial g1 · · · gs+1 on the RHS of (4) is cG.
Thus |CG(k; l)| = cG. Therefore |CG(i; j)| = |CG(k; l)|.

Lemma 3.3. If for all sets of interior nodes, G,|CG(i; j)| = |CG(k; l)| then C
′
G(i; j) = C

′
G(k, l)

Proof. Proof by induction on |G|. Base step 0: assume first that |G| = 0, then G = ∅ and
corresponds to an edge.
Case 1: if |CG(i; j)| = 0, then there is no edge between i and j and thus C

′
G(i; j) = ∅. As

|CG(k; l)| = |CG(i; j)| = 0, this also implies that C
′
G(k; l) = ∅.

Case 2: assume that |CG(i; j)| = cG 6= 0, then as this corresponds to an edge between i and j
and there are no parallel connections, |CG(i; j)| = cG = 1, as |CG(k, l)| = |CG(i; j)| = 1, this implies
that the edge between k and l exists. Thus C ′G(i; j) = C

′
G(k, l).

Base step 1: now assume that G is a set of internal vertices such that |G| = 1, then G = {g1}.
Case 1: if |CG(i; j)| = 0, then either the edge between i and g1 does not exist, or the edge between

j and g1 does not exist. Moreover, as |CG(k; l)| = |CG(i; j)| = 0, this implies that either the edge
between k and g1 or the edge between l and g1 does not exist, and thus C

′
G(i; j) = C

′
G(k, l) = ∅.

Case 2: now, if |CG(i; j)| = cG 6= 0, then as there is only one possible way to connect the nodes i
and j through one interior node, |CG(i; j)| = 1. Additionally, as |CG(k; l)| = |CG(i; j)| = 1 and there
is only one possible way to connect the nodes k and j through one interior node, C ′G(i; j) = C

′
G(k, l).
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Base step 3: now assume that G is a set of internal nodes such that |G| = 2, then G = {g1, g2}.
Case 1: if the edge between g1 and g2 does not exist, then it is easy to see that |CG(k; l)| =

|CG(i; j)| = 0 and thus C
′
G(i; j) = C

′
G(k, l).

Assume that the edge between g1 and g2 exists.
Case 2: now let |CG(k; l)| = 0, then neither (the edge between i and g1 and the edge between

j and g2 exist) nor (the edge between i and g2 and the edge between j and g1 exist). Moreover,
as |CG(k; l)| = |CG(i; j)| = 0, then neither (the edge between k and g1 and the edge between
l and g2 exist) and (the edge between k and g2 and the edge between l and g1 exist). Thus
C′G(i; j) = C

′
G(k, l) = ∅.

Case 3: now let |CG(k; l)| = 1, then either (the edge between i and g1 and the edge between j
and g2 exist) or (the edge between i and g2 and the edge between j and g1 exist), but not both. As
|CG(k; l)| = |CG(i; j)| = 1, either (the edge between k and g1 and the edge between l and g2 exist)
or (the edge between k and g2 and the edge between l and g1 exist), but not both. It is easily seen
that in either case, C ′G(i; j) = C

′
G(k, l).

Case 4: finally, let |CG(k; l)| = 2, then the edges between i and g1 and i and g2 both exist and
the edges between j and g1 and j and g2 both exist. Additionally, as |CG(k; l)| = |CG(i; j)| = 2,
then the edges between k and g1 and k and g2 both exist and the edges between l and g1 and l
and g2 both exist. Then it is easily seen that C

′
G(i; j) = C

′
G(k, l) and the undirected paths have the

same multiplicity in each.
Inductive step: finally, assume that for all sets of internal vertices, G, such that |G| ≤ s, assume

that |CG(i; j)| = |CG(k; l)| ⇒ C′G(i; j) = C
′
G(k, l). Now let G be a set of internal nodes such that

|G| = s+ 1.
Case 1: if |CG(i; j)| = 0, then it is easily seen that |CG(k; l)| = 0 and that C

′
G(i; j) = C

′
G(k, l) = ∅.

Case 2: Assume that |CG(i; j)| 6= 0, then let α ∈ CG(i; j) and β ∈ CG(k; l). Let α
′ ∈ C′G(i; j),

such that α′ is a subpath of α, and β′ ∈ C′G(k; lj), such that β
′ is a subpath of β. Now, let α1 be the

second vertex of α (and thus the first vertex after i), similarly let αs+1 be the second to last vertex
of α (and thus the last vertex before j). Similarly define β1 and βs+1. Now, if either (α1 = β1 and
αs+1 = βs+1) or (α1 = βs+1 and αs+1 = β1), then it is easily seen that α

′ ∈ C′G(k; l). Assume that
neither α1 = β1 and αs+1 = βs+1) nor (α1 = βs+1 and αs+1 = β1) occurs. Then the undirected
subpath with endpoints of α1 and αs+1 form a proper subpath of β

′, let this subpath be called π.
As the edge between i and α1 and the edge between j and αs+1 exist, then as π is a path of shorter
length than s, by our inductive hypothesis, it must also be a connection between k and l, then this
implies that either (the edge between k and α1 and the edge between l and αs+1 exist) or (the edge
between k and αs+1 and l and α1 exist), thus α ∈ C

′
G(k, l). Therefore, C

′
G(i, j) ⊆ C

′
G(k, l), and by

symmetry, C′G(i, j) ⊇ C
′
G(k, l), thus C

′
G(i, j) = C

′
G(k, l).

From the two lemmas above, it is easily seen that if λi,j(q) = λk,l(q), then C
′(i; j) = C′(k; l) as

C′(i; j) =
⋃

G⊆Vint
C′G(i; j)

Corollary 3.1. LetR = {(r1, r2)|r1 6= r2, r1 ∈ V∂ , r2 ∈ V∂} and T be defined similarly.
∑

I∈R λI(q) =
∑

J∈T λJ(q) iff
⋃

I∈R C
′(I) =

⋃

J∈T C
′(J) with multiplicity.

Proof. The proof follows the exact method as Theorem 3.1.

4 Future Work and Conjectures

Future Work 4.1. Prove Conjecture 3.1. It is nearly proved and might be done by the end of the
day, using Bezout’s theorem.

8



Future Work 4.2. Find a graph theoretic reason to the case when λi,jλk,l = λm,nλo,p. There is
one known case where this occurs and it can be related to the determinantal identity, but not much
else is known.

Future Work 4.3. Some special cases on the value of the potential function (especially on the
boundary) are worth considering, for instance if q|∂ = 0.

Conjecture 4.1. All relations between elements of the response matrix can be found through the
determinantal identity and that a graph is nearly recoverable if there are n independent solutions
equations in the response matrix
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