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1. The Forward and Inverse Problem

Suppose G = (V, VB , E) is a simple graph in which V is the set of nodes, the set
of boundary nodes VB is a nonempty subset of V , I = V − VB is the set of interior
nodes, and E is the set of edges. Let γ be a positive edge conductivity function
defined on E. Then Γ = (G, γ) is called a resistor network. Choose an indexing of
the nodes where boundary nodes precede interior nodes. Then the Kirchhoff matrix
K is defined as follows.

Kij =

{

−γij if the edge ij exists,
∑

k 6=i γik if i = j.

The Kirchhoff matrix K maps voltages to currents. The forward problem is given
K compute the response matrix Λ = ((λij)), the map from boundary voltages to
boundary currents such that Kirchhoff’s Law is satisfied at the interior nodes. If
K is expressed in the block form

K =

(

A B

BT C

)

where A corresponds to the boundary nodes, then

Λ = A−BC−1BT .

The inverse problem is given Λ and G recover K.

2. Connections

If p and q are boundary nodes, a path from p to q is a sequence of edges
{pr1, r1r2, . . . , rhq} where r1, . . . , rh are interior nodes. If P = (p1, . . . , pk) and
Q = (q1, . . . , qk) are disjoint sets of boundary nodes, then a k-connection P ↔ Q

is a set of disjoint paths, pi to qτ(i) for 1 ≤ i ≤ k where τ is a permutation.
The main result from connections used in this paper is as follows. If there is

only one valid permutation for a connection P ↔ Q then detΛ(P ;Q) 6= 0.

3. Relations in Annular Networks

Consider graphs such as mentioned in the next section which have n circles and
2n − 3 rays. For example, let us look at the following numbering of nodes. Then
there is the following relation.

(1) λ17λ28λ39λ4,10λ56 − λ1,10λ59λ48λ37λ26 = 0
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Analygously, in the case of 3 circles and 3 rays there is the following relation

(2) λ15λ26λ34 − λ16λ35λ24.

The conjecture for n circles and 2n− 3 rays where n is odd should now be obvious.
In the 3 circles and 3 rays case we can see why this might by true by first con-

jecturing that the resistive network is unrecoverable. Then consider the following
boundary conditions. We number the boundary nodes as follows. There is clearly
a connection from boundary node 5 to boundary node 3. Hence, the boundary
conditions are realizable. From the boundary conditions we get

(3) λ51 + αλ53 = 0

(4) λ21 + αλ23 = −γ12 − αγ23.

Plugging in for α in the second equation gives

(5) λ53γ12 − λ51γ23 = λ51λ23 − λ53λ21.

If we rotate the boundary conditions and repeat the same computations we’ll get 2
other equations, one with γ23 and γ13, the other with γ12 and γ13. If we now view
this as 3 equations in the 3 unknowns: γ12, γ13, γ23 and compute the determinant
of the coefficient matrix and set it equal to 0 we get exactly

(6) λ15λ26λ34 − λ16λ35λ24.

That the determinant should be 0 follows from our guess that the resistive network
is unrecoverable. For if the determinant were nonzero then the network would
necessarily be recoverable.
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Figure 1. G(3, 4): An indexing of the nodes

4. Recoverable Annular Networks

Figures 1 and 3 are examples of G(n, 2(n− 1)) graphs which have n circles and
2(n− 1) rays. Networks with such graphs where the nodes on the outer and inner
circles are boundary nodes are recoverable.
Boundary to boundary, boundary to interior, and interior to interior edges will

be abbreviated ∂ − ∂, ∂ − int, and int− int, respectively.
To recover the network shown in Figure 1 begin by applying the boundary condi-

tions shown in Figure 2 which will recover the ∂−∂ conductivity γ7,8. The currents
flowing into node 9 and the currents flowing out of node 12 are determined by the
boundary conditions, therefore α and β are uniquely determined and the boundary
conditions are realizable. This is also shown by the existence of only one possible
correspondence in the connection (1, 8)↔ (3, 6) which shows that

∣

∣

∣

∣

λ38 λ31

λ68 λ61

∣

∣

∣

∣

6= 0.

Thus

λ38α+ λ31β = −λ35

λ68α+ λ61β = −λ65
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Figure 2. G(3, 4): Boundary conditions and resulting current flows

from which

α =
λ31λ65 − λ35λ61

λ38λ61 − λ31λ68

β =
λ35λ68 − λ38λ65

λ38λ61 − λ31λ68
.

Since there is only one possible correspondence in the connection (3, 6) ↔ (1, 5),
α 6= 0 and

−αγ7,8 = λ75 + λ78α+ λ71β.

Hence

γ7,8 = λ78 + λ75
λ31λ68 − λ38λ61

λ31λ65 − λ35λ61
+ λ71

λ38λ65 − λ35λ68

λ31λ65 − λ35λ61
.

Now the ∂ − int conductivity γ7,11 can be recovered by changing the voltage at
node 7 to 1. Then denoting the new resulting α and β by α′ and β′, respectively,

γ7,11 = α′λ78 + β′λ71 + λ75 + λ77 + γ7,8(α
′ − 1)

where

λ38α
′ + λ31β

′ = −λ35 − λ37

λ68α
′ + λ61β

′ = −λ65 − λ67

from which γ7,11 can be computed.
Now to recover the int− int edges apply the original boundary conditions shown

in Figure 2. The middle circle has three unknown currents and three independent
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Figure 3. G(4, 6): First set of boundary conditions

equations from Kirchhoff’s current law applied at nodes 9, 10, and 12. From those
currents the int− int edge conductivities can be computed.
Recovering arbitrarily large n circles and 2(n−1) rays networks requires a new set

of boundary conditions in addition to a generalization of the boundary conditions
in Figure 2.
For example, the 4 circles and 6 rays network can be recovered using the bound-

ary conditions shown in Figures 3 and 4. The ∂−∂ conductivities can be recovered
using the boundary conditions shown in Figure 3 whereas the rest of the conduc-
tivities can be recovered using the boundary conditions in Figure 4.
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Figure 4. G(4, 6): Second set of boundary conditions


