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Abstract. In the following paper we present and partially solve an inverse

problem related to random walks on a graph. Given a special graph-with-

boundary and a set of edge probabilities on that graph, we can construct the

transition matrix P whose entries Pij are the expectations that a random

walk from node vi will be in the direction of node vj . The forward problem is

to calculate the absorption matrix B whose entries Bij are the expectations

that a random walk from the ith interior node will terminate at node vj .
The inverse problem, then, is to recover P from B and the graph. We present
Card’s Conjecture on a recoverability condition for random walk networks, and
demonstrate that the condition is necessary for recoverability. At the end of

the paper an example random walk network is presented, whose recoverability
is verified.

1. Preliminaries

Let G = (V, VB , E) be a directed edge graph-with-boundary, where V corre-
sponds to the set of nodes, VB ⊂ V is a proper subset of V corresponding to the
boundary nodes, and E corresponds to the directed edges connecting nodes in V .
Additionally, we impose the following restrictions on G:

(1) If two nodes vi, vj ∈ V −VB , i 6= j, are connected in G, they are connected
by exactly two edges (one for each direction).

(2) If two nodes vi ∈ V − VB , vj ∈ VB are connected in G, they are connected
by exactly one edge eij ∈ E (the edge directed from node vi to node vj).

(3) For all vi ∈ VB , the only edge from node vi is eii (a loop from node vi back
to itself).

(4) For all vi ∈ V − VB , there exists a set of directed edges linking node vi to
the boundary.

For such a graph G, a transition probability on G is a function ρ which assigns
to each eij ∈ E a real number ρ(eij), 0 < ρ(eij) ≤ 1, such that

∑

j,i∼j ρ(eij) = 1

for all i (where i ∼ j if and only if an edge exists from vi to vj). A random walk
network Γ = (G, ρ) is a graph G (as described above) together with a transition
probability function ρ.

We are interested in studying random walks on such a random walk network
Γ. The physical description of the random walk is as follows: beginning at a given
interior node, we walk from node to node along the directed edges of G in a random
fashion, where the probability of walking from node vi to node vj is given by ρ(eij).
By the restrictions placed on G, a walk always reaches and remains (terminates)
at a boundary node, and for this reason boundary nodes are often referred to as
absorbing nodes. As a means of characterizing our random walk network, we create
a matrix P whose entries Pij are the probabilities given by ρ that a step from vi

Date: August 15th, 2003.
1



2 TIMOTHY DEVRIES

will be in the direction of vj . Such a P is known as a transition matrix. If the
boundary nodes of our network are numbered first, then P will take the block form

P =

[

I 0
R Q

]

where the top-left block matrix is the identity because a walk beginning at a bound-
ary node remains at that boundary node, while the top-right block matrix has all
0 entries because no edges exist directed from the boundary to the interior. Note
that the construction of the transition matrix is such that all the row sums are
equal to 1.

Our construction of the random walk network naturally gives rise to two prob-
lems, which will be discussed in the following sections.

2. The Forward Problem

The first problem associated with random walk networks is the so-called forward
problem: given P , we want to form the absorption matrix B whose entries Bij are
the probabilities that a random walk starting at the ith interior node will terminate
at node vj ∈ VB . The solution is relatively straightforward.

First we note that the vector eiP ’s jth entry is the expectation that a walk
from vi will be at node vj after one step in the walk (where ei is the row vector
with a 1 in ith column and 0’s elsewhere). Similarly, eiP

n is the vector whose jth

entry is the expectation that a walk from vi will be at node vj after n steps. It is
thus clear that the matrix limn→∞ Pn should give us the expectations that a walk
from some vi ∈ V will terminate at boundary node vj ∈ VB , as the construction
of our network guarantees that all walks terminate at the boundary after a finite
number of steps. This fact also gives us an intuitive reason for why this limit must
ultimately converge. Thus we examine

lim
n→∞

Pn = lim
n→∞

[

I 0
(I +Q+ · · ·+Qn−1)R Qn

]

As the following theorem will show, the above matrix does in fact converge.

Theorem 2.1. The series
∑∞

n=0 Q
n converges for Q as described in our formula-

tion of a random walk network.

Proof. Let λ be an eigenvalue of Q over C, with υ a corresponding eigenvector.
Then:

Qυ = λυ

⇒ (Qυ)i =

n
∑

j=1

Qijυj = λυi for all i ∈ {1, 2, · · · , n}

⇒ |(Qυ)i| = |
n
∑

j=1

Qijυj | = |λυi| = |λ| · |υi|

⇒ |λ| =
|
∑n

j=1 Qijυj |

|υi|
for all i such that |υi| 6= 0

≤

∑n
j=1|Qij | · |υj |

|υi|
=

n
∑

j=1

Qij

|υj |

|υi|
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Denote by K = {k1, · · · , km} the set of indices such that |υki
| ≥ |υj | for all i ∈

{1, · · · ,m}, j ∈ {1, · · · , n}. Denote by L = {l1, · · · , lp} the set of indices corre-
sponding to interior nodes which are not adjacent to any boundary nodes.

Now we have:

|λ| ≤

n
∑

j=1

Qij

|υj |

|υi|
≤

n
∑

j=1

Qij ≤ 1 for all i ∈ K

The second inequality arises by observing that
|υj |
|υi|

≤ 1 for all j when i ∈ K, while

the third inequality arises by the construction of Q. Thus, |λ| ≤ 1.
Assume |λ| = 1 Let k ∈ K. Then we have:

|

n
∑

j=1

Qkjυj | = |υk|

But
∑n

j=1 Qkj · |υj | ≥ |
∑n

j=1 Qkjυj |, so we have:

n
∑

j=1

Qkj · |υj | ≥ |υk|

⇒

n
∑

j=1

Qkj

|υj |

|υk|
≥ 1

But as k ∈ K, 1 ≥
|υj |
|υk|

for all j ∈ {1, · · · , n} and thus:

n
∑

j=1

Qkj ≥ 1

But
∑n

j=1 Qkj ≤ 1 by construction of Q, and so we have:

n
∑

j=1

Qkj = 1 for all k ∈ K

This says that the row sum of row k in Q is equal to 1, which means that index k
corresponds to an interior node which is not adjacent to any boundary nodes, i.e.
k ∈ L. So we obtain:

K ⊂ L

Now we return to the inequality:

|λ| ≤

n
∑

j=1

Qij

|υj |

|υi|
≤

n
∑

j=1

Qij ≤ 1 for all i ∈ K

Because |λ| = 1, all the above inequalities must hold as equality. The second
inequality holds as equality only if Qij = 0 for j /∈ K. Thus, we must have:

|λ| = 1⇒ Qij = 0 for i ∈ K, j /∈ K

But this would imply that the nodes whose indices are in K connect only to other
nodes whose indices are in K. Since K ⊂ L, none of the nodes whose indices are
in K connect to the boundary. This implies that the nodes whose indices are in K
have no path to the boundary, which is a contradiction. Thus:

|λ| < 1
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As |λ| < 1 for all λ ∈ spectrum(Q), the spectral radius of Q, denoted by r, is
strictly less than 1. By the spectral radius formula, we also know that

r = limn→∞|Q
n|

1

n

So for n large enough

|Qn|
1

n < r′, where r < r′ < 1

⇒ |Qn| < r′n

But as
∑∞

n=0 r
′n converges, we must have that

∑∞
n=0|Q

n| converges. So we have:
∞
∑

n=0

|Qn| ≥ |

∞
∑

n=0

Qn| ⇒ |

∞
∑

n=0

Qn| is bounded

⇒

∞
∑

n=0

Qn converges.

¤

Note that the matrix
∑∞

n=0 Q
n (sometimes denoted byN) converges to (I−Q)−1,

as

lim
n→∞

(I −Q)

∞
∑

n=0

Qn = lim
n→∞

∞
∑

n=0

Qn −

∞
∑

n=1

Qn

= lim
n→∞

I −Qn+1

= I

And so we have

lim
n→∞

Pn = lim
n→∞

[

I 0
(I −Q)−1R 0

]

By extension of our argument above, ei(limn→∞ Pn) is the vector whose jth entry is
the expectation that a walk from vi will terminate at node vj . Thus, it is clear that
(ei(I−Q)−1R)j is the probability that a walk from ith interior node will terminate
at node vj ∈ VB , and so:

B = (I −Q)−1R

3. The Inverse Problem

The inverse problem associated with random walk networks is to recover the
transition matrix P (or equivalently Q and R) given a graph G and the absorption
matrix B. In this section, we present several results characterizing situations in
which such recovery is not possible. Afterwards, we present an example random
walk network and demonstrate it’s recoverability.

3.1. A Note on When the Inverse Problem is Ill-Formed.

Theorem 3.1. If the diagonal of Q is allowed to be non-zero, the inverse problem
will be ill-formed in the following sense: For any matrix B, there will exist an
infinite family of Q′ and R′ matrices such that B = (I −Q′)−1R′.
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Proof. Assume that we allow Q to have non-zero entries on the diagonal. In the
physical interpretation of the problem, this implies that we allow remaining at
certain interior nodes to be a valid step in our random walks. We intend to show
that this possibility implies that Q and R are not uniquely recoverable from B.

Let Q and R be matrices corresponding to a random walk network, as described
above. Let the number of rows in each matrix be denoted by n. We assume that
Qkk 6= 0 for some k ∈ {1, · · · , n}. Now we form the matrices Q′ and R′ as follows:

Q′ = Q and R′ = R except on row k, where we have:

Q′kk = tQkk where 0 < t < 1

Q′ki = sQki for all i 6= k and where s =
1− tQkk

1− (Q)kk

R′ki = sRki for all i

First we must check that these Q′ and R′ matrices make sense for our given
random walk network. Clearly these new matrices represent the same node-to-node
connections as the original Q and R matrices, as Q′ and R′ were formed simply by
scaling elements of the kth rows of Q and R respectively. Thus, we must merely
demonstrate that Q′ and R′ make sense as submatrices of a transition matrix P .
In other words, we must verify that:

∑

j

Q′ij +
∑

j

R′ij = 1 for all i ∈ {1, · · · , n}

Clearly this holds for all i 6= k, so we examine the case where i = k:
∑

j

Q′kj +
∑

j

R′kj = tQkk + s
∑

j
j 6=k

Qkj + s
∑

j

Rkj

= tQkk + s(
∑

j
j 6=k

Qkj +
∑

j

Rkj)

= tQkk + s(1−Qkk)

= tQkk + 1− tQkk = 1

Now, the claim is that:

B = (I −Q′)−1R′ for all t ∈ R, 0 < t < 1

where B = (I −Q)−1R is the B matrix corresponding to the original Q,R pair.
For convenience, we note that R′ = I ′R where I ′ differs from the n× n identity

matrix in that I ′kk = s. Then we have:

B = (I −Q′)−1R′ ⇔ (I −Q′)B = R′ ⇔ (I −Q′)B = I ′R

⇔ (I −Q′)B = I ′(I −Q)B ⇔ I ′−1(B −Q′B) = B −QB
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The only place where the above equality may fail is at row k, so we examine the
elements of I ′−1(B −Q′B) along row k:

(I ′−1(B −Q′B))ki =
1

s
(Bki −

∑

j

Q′kjBji)

=
1

s
(Bki − s

∑

j
j 6=k

QkjBji − tQkkBki)

=
1

s
(Bki(1− tQkk)− s

∑

j
j 6=k

QkjBji)

= Bki(1−Qkk)−
∑

j
j 6=k

QkjBji

= Bki −
∑

j

QkjBji = (B −QB)ki

And thus I ′−1(B −Q′B) = B −QB, which implies that B = (I −Q′)−1R′ for an
infinite family of valid Q′ and R′ matrices. Thus, Q and R can never be uniquely
recovered from B if we allow Q to be non-zero along the diagonal. ¤

Given the above information, we will assume from this point forward that a
random walk network contains no on the interior nodes.

3.2. Card’s Conjecture.

Conjecture 3.1. (Card’s Conjecture) A random walk network is recoverable if
and only if all the edges leaving any interior node can be simultaneously extended
to vertex-disjoint paths to the boundary.

While the formulation of the conjecture as written above is the due to Ryan
Card, a conjecture made in Krenz’s paper [2] relating to flow paths bears a striking
similarity. It is likely that this critereon for recoverability has been formulated in
several different ways over the years, by various people invsestigating random walk
networks.

Card’s conjecture has yet to be proved in general, but we can provide a proof
for one direction of the statement. Before providing this proof, however, we must
first present some terminology.

Definition 3.1. Fix an interior node vi ∈ V on a random walk network. A Choke
Set S ⊂ V for vi is a set of nodes such that any path from vi to the boundary passes
through at least one of the nodes in S. A Minimal Choke Set for vi is a choke set
on vi of minimal order (an example choke set can be seen in Figure 1).

We are now in a position to prove one direction of Card’s Conjecture:

Theorem 3.2. A random walk network is not recoverable if there exists an interior
node such that the edges leaving that node can not be simultaneously extended to
vertex-disjoint paths to the boundary.

Proof. Assume that we have a random walk network such that the edges leaving one
of the nodes, the xth interior node, can not be extended disjointly to the boundary.
Denote by S = {vk1

, · · · , vkd
} a minimal choke set for the xth interior node, and
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υ
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υ

Figure 1. An example choke set S (nodes on the dashed circle).

denote by l the valence of this node. As the edges leaving the xth interior node can
not be extended disjointly to the boundary, we must have1 that d < l (a picture of
this is provided in Figure 1). Now, we examine the vector

exB = [bx1, · · · , bxm]

where each bxi is the probability that a random walk starting at the xth interior
node will terminate at vi, and where ex is the row vector with a 1 in the xth column
and 0’s elsewhere. Because we have a choke set on the xth interior node, we can
define the following two structures as a means for rewriting the bxi’s. First, let

p̄x = [p̄xk1
, · · · , p̄xkd

]

where p̄xki
is the probability that vki

will be the last element of S reached in a walk
from the xth interior node to the boundary. Second, let

C =







ck11 · · · ck1m

...
...

ckd1 · · · ckdm







where ckji is the probability that a walk starting at node vkj
∈ S will terminate at

node vi ∈ VB without passing through any element of S. Then we have the relation

bxi = p̄xk1
ck1i + · · ·+ p̄xkd

ckdi

or
exB(P ) = p̄x(P )C(P )

1While this fact may be semi-intuitive, a rigorous proof of its verity gets ugly. For now, we

assume it to be fact. In future research, a Choke Lemma proving this fact would be very useful
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where the dependence of B, C and p̄x on P is explicitly noted. It is not hard to show
that the elements of C have no dependency on the edge probabilities leaving the
xth interior node. To see this, we can examine an arbitrary ckji, which is dependent
on certain walks beginning at node vkj

and terminating at node vi. Now, assume

that one of the walks on which it depends passes through the xth interior node.
Then the walk must pass back through a node in S to get to the boundary, and
ckji can not depend on this path by the construction of C. Thus C is independent

of all edge probabilities leaving the xth interior node.
Now, given a fixed P matrix, we examine the resultant space of P matrices in

which only the edge probabilities leaving the xth interior node are variable. Denote
this space by X . Over X , C is constant and we have

exB(P ) = p̄x(P )C

The vector p̄x has d elements, one of which is dependent on the others (as
∑d

i=1 p̄xki

is 1), so Y, the range of p̄x(P )C, is at most d− 1 dimensional. Thus, the range of
exB(P ) is at most a d-1 dimensional space Y. Now, we examine the smooth map

Φ =X → Y

P 7→ exB(P )

Because we are varying l−1 free variables in X (the valence of the xth interior node
with the added condition that the edge probabilities leaving the xth interior node
sum to 1), X is an l − 1 dimensional space. As l − 1 > d − 1, dim(X ) > dim(Y),
so Φ is not even locally injective. Thus, for each valid B matrix, there exists an
infinite family of edge probabilities on the edges leaving the xth interior node which
yield the same exB(P ). Denote this family of transition matrices by P ⊂ X .

Finally, we examine eyB(P ) for y 6= x. We have:

eyB = [by1, · · · , bym]

But each byi can be written as a sum of two terms, one of which does not depend
upon the edge probabilities leaving the xth interior node and one of which does:

eyB = [b
(x)
y1 + p̂yxbx1, · · · , b

(x)
ym + p̂yxbxm]

= [b
(x)
y1 , · · · , b

(x)
ym] + p̂yxexB

where b
(x)
yi is the probability that a walk from the yth interior node terminates at

vi without passing through the xth interior node, and p̂yx is the probability that a
walk from the yth interior node will reach the xth interior node before termination.

The first term in the above sum and the element p̂yx clearly have no dependency
on the edge probabilities leaving the xth interior node, while the term exB(P ) is
constant over the infinite family of edge probabilities in P described above. Thus,
eyB(P ) is constant for all y and P ∈ P, which implies that P is not uniquely
recoverable from B. ¤

3.3. Demonstrating Recoverability for an Example Tree. We are now going
to demonstrate the recoverability of a random walk network on a highly symmetric
binary tree graph. Before proceeding, however, we shall prove a lemma that will
aid us in examining a network’s recoverability.
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Lemma 3.1. Let A = M(I;J) be a square submatrix of an invertible n× n matrix

M , where I, J ⊂ K = {1, · · · , n}. Let B = M−1
(K−J;K−I), a square submatrix of

M−1. Then detB 6= 0⇒ detA 6= 0.

Proof. Let A,B and M be matrices as described above. Assume that detB 6= 0.
We want to show that detA 6= 0. First, we assume that our index sets I, J are such
that M is of the block form:

M =

[

A M1

M2 M3

]

(Note: if M is not in the above form, M can be placed in the above form by a
series of matrix operations which will not change the following argument.) Now,
we know:

detA 6= 0 if and only if A~x = ~0⇒ ~x = ~0

Which is equivalent to the condition:
[

A M1

M2 M3

] [

~x
~0

]

=

[

~0
~z

]

⇒ ~x = ~0

So we assume M

[

~x
~0

]

=

[

~0
~z

]

. This is true if and only if:

[

~x
~0

]

= M−1

[

~0
~z

]

We can write M−1 in block form as:

M−1 =

[

M ′
1 M ′

2

M ′
3 B

]

Because detB 6= 0, B~z = ~0⇒ ~z = ~0. So:
[

M ′
1 M ′

2

M ′
3 B

] [

~0
~z

]

=

[

~x
~0

]

⇒ B~z = ~0⇒ ~z = ~0

But if ~z = ~0, then:

M−1

[

~0
~z

]

= M−1~0 = ~0 =

[

~x
~0

]

⇒ ~x = ~0

And thus A~x = ~0⇒ ~x = ~0, which is equivalent to the condition that detA 6= 0. ¤

We will now demonstrate the recoverability of the network shown in Figure 2.
Note that we need only demonstrate the reoverability of the edge probabilities
leaving nodes v9, v13 and v15: the rest will be recoverable by symmetry. Now, for
all ith interior nodes we have the following equations:

Bik =
∑

j
i∼j

PijBjk for all k such that vk ∈ VB

To recover the edge probabilities leaving a node, we must use the above equations
to find as many independent equations as there are edges leaving the node. For v9
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1 2 3 4 5 6 7 8

9 10 11 12

13 14

15

Figure 2. A complete binary tree network, with black circles cor-
responding to interior nodes.

(the first interior node) we examine the equations

B1,1 = P9,1 · 1 + P9,2 · 0 + P9,13 ·B5,1

B1,2 = P9,1 · 0 + P9,2 · 1 + P9,13 ·B5,2

B1,3 = P9,1 · 0 + P9,2 · 0 + P9,13 ·B5,3

⇒





B1,1

B1,2

B1,3



 =





1 0 B5,1

0 1 B5,2

0 0 B5,3









P9,1

P9,2

P9,13





Which is clearly uniquely solvable for P9,1, P9,2 and P9,13.
For the fifth interior node, v13, we have:





B5,1

B5,3

B5,5



 =





B1,1 B2,1 B7,1

B1,3 B2,3 B7,3

B1,5 B2,5 B7,5









P13,9

P13,10

P13,15



 = A





P13,9

P13,10

P13,15





Which is uniquely solveable if and only if detA = detA> 6= 0. But as B =
(I −Q)−1R = NR, we have

A> =





B1,1 B1,3 B1,5

B2,1 B2,3 B2,5

B7,1 B7,3 B7,5





=





N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N7,1 N7,2 N7,3









R1,1 0 0
0 R2,3 0
0 0 R3,5







RECOVERABILITY OF RANDOM WALK NETWORKS 11

And so the edge probabilities leaving node v13 are uniquely recoverable if and only
if detL 6= 0, where L is the submatrix of N = (I −Q)−1 defined by

L =





N1,1 N1,2 N1,3

N2,1 N2,2 N2,3

N7,1 N7,2 N7,3





By our above lemma, detL 6= 0 if detL′ 6= 0, where L′ is the submatrix of (I −Q)
defined by









−Q4,3 1 −Q4,5 −Q4,6

−Q5,3 −Q5,4 1 −Q5,6

−Q6,3 −Q6,4 −Q6,5 1
−Q7,3 −Q7,4 −Q7,5 −Q7,6









Examining the connections of the graph above, we see that

detL′ =

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 −Q4,6

0 0 1 0
−Q6,3 −Q6,4 0 1

0 0 −Q7,5 −Q7,6

∣

∣

∣

∣

∣

∣

∣

∣

= Q6,4Q7,6 6= 0

And so the edge probabilities leaving node v13 are uniquely recoverable.
Analogously, the task of demonstrating the edge probabilities leaving node v15 to

be recoverable can be reduced to examining a submatrix of (I −Q). By examining
equations for B7,1 and B7,5 in terms of P15,13 and P15,14, we find that we can solve
for the edge probabilities leaving node v15 if detL′ 6= 0, where

L′ =













−Q2,1 1 −Q2,3 −Q2,4 −Q2,7

−Q4,1 −Q4,2 −Q4,3 1 −Q4,7

−Q5,1 −Q5,2 −Q5,3 −Q5,4 −Q5,7

−Q6,1 −Q6,2 −Q6,3 −Q6,4 −Q6,7

−Q7,1 −Q7,2 −Q7,3 −Q7,4 1













Examining the connections of the graph above, we see that

detL′ =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 1 0 0 0
0 0 0 1 0

−Q5,1 −Q5,2 0 0 −Q5,7

0 0 −Q6,3 −Q6,4 0
0 0 0 0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −Q5,1Q6,3 6= 0

Thus, the edge probabilities leaving node v15 are recoverable, and by symmetry the
entire transition matrix P is uniquely recoverable from B.
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