
TWO TO ONE NETWORKS

TRACY LOVEJOY

Abstract. The topic of this paper is to generalize our existing notions of two

to one networks, that is, networks on which two sets of conductances K give

rise to only one response matrix Λ. The outline of a theorem establishing

a general class of 2-1 networks will be exposed. Also, and idea relating to

adding sets of conductances on a graph, and coverings of loops in Λ space will

be examined.
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1. Introduction

I hope that by exposing a clear and general explanation of the algebra that brings
about 2− 1 networks other people interested in the topic will be able to pick it up
quickly. Much of this work was made possible by close analogy to that found in
[1]. In further sections the hope is to increase the understanding of these special
networks by examining the locus of degenerate points, probing questions about the
topology of our set of response matrices, and outlining computational techniques
that I have found to either help or hinder the process.

2. Creating a large set of two to one networks and how

Section One. This section hopes to clearly detail how it comes about that a
specific conductor in the network can be determined, through a series of algebraic
manipulations, as a quadratic function of the entries in the response matrix. The
network shown is the most arbitrary yet known example of a 2− 1 network.
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Figure 1. Most Arbitrary Yet Known 2− 1 Network

2.1. The node numbering. Understanding this figure requires some imagination.
First, you are meant to imagine that you are looking at part of a shape with the
inner ring a regular polygon of n-vertices. These n nodes are the only interior nodes
of the network and are numbered a,b...,n-1,n. Off each side of this polygon are an
unspecified number of ”petals” (hence the dotted lines after the second line.) The
center of these lines have black dots marking the boundary nodes. The numbering
of these boundary nodes starts in the inner polygon and grows as you go out to
further petals. For example: 1,2,3... or +,++,+++,.... etc.... Because of our node
numbering a high degree of rotational symmetry is apparent and this will be used
much to our benefit throughout these calculations.

2.2. Getting two γ’s from entries in the response matrix. Firstly, we will
write out three entries in the response matrix, and claim, by rotational symmetry
that we needn’t write out any more. (Note: σk is the sum of the conductors adjacent
to node k.) To write these out we will use the fact that the voltage at and interior
node is given by the average of the voltages at neighboring nodes weighted by the
conductances. Since we are applying a voltage of one at one boundary node and
zeros elsewhere the voltage at and interior node is given by simply the ratio of the
conductor joining the interior node to the nonzero boundary node, and the sum of
conductors around the interior node. Finding the current response becomes trivial
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at this point.

(1) λ12 = −
γ1aγ2a

σa
−
γ1nγ2n

σn

λ2II = −
γ2aγIIa

σa
λ1II = −

γ1aγIIa

σa
(2)

The ratio of the two entries of Λ found in equation (2) will prove to be invaluable
to our cause.

(3)
γ1a

γ2a

=
λ1II

λ2II

At this point, on the grounds of rotational symmetry we can write down another
such ratio of λ’s.

(4)
γ1n

γ2n

=
λ1ii

λ2ii

We are just about to obtain one of the typical equations of 2− 1 networks. We
need only to substitute eqs (3) and (4) into equation (1). This gives us

(5) λ12 =
γ2a

γIIa
λ1II +

γ2n

γiin
λ1ii.

By massaging this equation a little we arrive at one of only two equations we really
need to get a quadratic for a γ in terms of entries of Λ. We’ll call this equation
equation I (remember, it did come from equation (1))

(I)
γIIa

γ2a

=
1

λ12

λ1II
− γ2n

γiin

λ1ii

λ1II

We note that this equation has the ratio γ2n

γiin
in it, but that we can easily write

out this ratio because it looks just like Equation I rotated by one petal. This
new equation will in turn have the ratio

γ=(n−1)

γii(n−1)
in it. We can repeat the process

descibed above until eventually we have a formula that has only the ratio γIIa

γ2a
in

it. For clarity, the last formula we substitute in will be

(6)
γ++b

γIIb
=

1
λIII

λ1++
− γIIa

γ2a

λ2I

γI++

.

The other equation, equation II, comes from one of the equations in (2) and we’ll
use the first for example. It is at this point, and this is the first and only point we
were in becomes relevant, that we must explicitly write out σa.

(7) λ2II(γ1a + γ2a + γ3a + · · ·+ γIa + γIIa + γIIIa + . . . ) = −γ2aγIIa

We get a form of what we call equation II by substituting in ratios like equations
(3) and (4) which yields

γ2aλ1II +γ2aλ2II +γ2aλ3II + · · ·+γIIaλ2I +γIIaλ2II +γIIaλ2III + · · · = −γ2aγIIa.

However, this equation won’t look useful until we divide by γIIa and solve for γ2a

to get

(II) −γ2a =
γ2a

γIIa
λ1II +

γ2a

γIIa
λ2II +

γ2a

γIIa
λ3II + · · ·+ λ2I + λ2II + λ2III + . . .

and call it equation II!
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Equations I and II together give a system of two equations in two unknowns (λ’s
known and γ2a and γIIa unknown) that can be solved by the quadratic formula.
This claim, I will have to leave without justification for now.
Supposing now that we could see a clear quadratic expression for both of our γ’s

we would be led to believe that this means there are four possible and equally satis-
factory solutions. However, we in fact only have two solutions because one gamma
determines all the rest exactly. Firstly, the ratios like equations (3) determine all
the other γ’s equavalent to the one we’ve solved for through inversions (eg. known-
ing γ1a determines γ2a, γ3a and so on). Secondly, the entries like equation (2) tells
us the other γ exactly showing us that there are only two sets of the conductances.
While this algebraic argument should be sufficient to quickly work any specific

example that fits the picture above, it is not a proof. Even though we should have
a quadratic equation,it is quite difficult to explicitly write it down. Even then it is
still possible that the lead term could be zero, or that the equation factors leaving
only one solution. I challenge the reader (myself included) to come up with a proof
that does not rely on the algebraic argument given here but instead upon some
kind of geometric or toplogical (hopefully not pathological) intuition.

3. The Locus of Degenerate Points

4. Summing Conductances and the Topology of Response Matric

Space

5. MATLAB. A Source of Confusion

Why would a numerical solver find only one solution of and equation which
clearly has two?
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