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Abstract. We present an algorithm for recovering conductivities on arbitrary

networks. This algorithm finds the full solution set of possible conductivities

on any given graph that produce a particular response matrix. This set con-

sists of rational functions of entries of the response matrix, and possibly some

parameters under a system of polynomial constraints.
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1. Graphs With Boundary and Multiplicity

A graph with boundary and multiplicity (or a multi-graph) is a triple G =
(V, VB ,M) where V is a set of nodes, VB is any subset of V , designated as the
boundary nodes, andM is the edge-multiplicity function, defined on pairs of vertices
such that M(i, j) is the number of edges joining nodes i and j. M is always a non-
negative integer, and M(i, j) =M(j, i).
We say i is adjacent to j, or i ∼ j, if M(i, j) is positive, and we say they are

connected by a single edge (or a singleton) when M(i, j) = 1. If M(i, j) = m is
greater than one, we say that (i, j) are joined by a cable of multiplicity m. IfM(i, j)
is zero or one for all pairs (i, j), we say that G is simple.

Date: August 14, 2003.
Thanks to Sam Coskey and Tracy Lovejoy for figures, Simon Pai for the neat organization

of the algebra in Theorem 3.1, Dr.Jim Morrow for numerous valuable discussions, and Nicolas

Addington for many of the ideas in this paper. And props to everybody at the University of

Washington REU and the NSF—go team! It has also since come to my attention that earlier
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2. The Forward and Inverse Problems

A network is a pair Γ = (G, γ) where G is a graph and γ is a positive conductivity
function defined on all cables in G. If G is a simple graph, then γ is defined on G’s
edges. If G is not simple, then γ is assigns a conductivity to each cable of G, not
to individual edges. The Kirchhoff matrix 1 for Γ, denoted K is defined such that

(1) Kij =





γij i ∼ j
−∑

k 6=iKik i = j

0 i 6∼ j and i 6= j

K is symmetric and negative semi-definite [1]. Suppose that we write

(2) K =
∂ int

∂
int

[
A B
B> C

]

Then the response matrix of Γ is defined in terms of the Kirchhoff matrix as the
Schur complement

(3) Λ = K/K(I; I) = A−BC−1B>

We will refer to the (easy) problem of computing Λ for a given network as the
forward problem.
Λ is itself a Kirchhoff matrix; in particular, it is the Kirchhoff matrix of a com-

plete graph with conductivities given by its off-diagonal entries.
Note that we can solve the forward problem by successively interiorizing nodes.

Consider a connected network Γ with N nodes and n interior nodes i1, i2, ... in.
Consider an identical network where all nodes are considered to be boundary nodes.
Denote this by Γ0. The response matrix Λ0 of Γ0 is precisely equal to the Kirchhoff
matrix of Γ. Now consider one node to be an interior node, and denote the new
network by Γ1. The response matrix Λ1 of Γ1 is equal to the Schur complement
Λ0/Λ0(in; in). We then continue to interiorize the nodes, one by one. At each stage
the response matrix is a Schur complement of the previous response matrix. The
original network Γ is equal to Γn, and so we conclude that

(4) Λ = Λn = K/K(in; in)/K(in − 1; in − 1)/ · · · /K(i1; i1)

Taking a Schur complement is the same as doing Gaussian elimination, so this result
shows that in this case we can perform Gaussian elimination in any order. This
perspective is also useful because it has a nice geometric interpretation, which we
will discuss later in this paper.
Suppose that Λ and G are given. We say that a network Γ is recoverable when

Λ determines the conductivity γ uniquely, and we say a graph G is recoverable
when Γ = (G, γ) is recoverable for any positive γ. The inverse problem is to (1)
determine when Γ is recoverable, and (2a) compute γ in terms of Λ and G when
Γ is recoverable, or (2b) compute the set of all γ that yield Λ on G when Γ is not
recoverable.

1Note that the sign convention used in this paper is the opposite of that used in many works,

such as [1]
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3. F and K
An n-star, denoted Fn, is a graph with boundary that has n boundary nodes

and one interior node, where each boundary node is connected by a single edge to
the interior node and there are no other edges. The complete graph on n vertices,
denoted Kn, is a graph with n boundary nodes, no interior nodes, and a single edge
connecting every pair of nodes (Figure 1).

Figure 1. F5 and K5

The response matrix of a complete graph is easy: λij is equal to the conductivity
on the edge joining i and j. Conversely, any response matrix can be thought of as
coming from a complete graph with conductivies equal to the entries. Thus every
network Γ is response-equivalent to the complete graph whose conductivities are
equal to the entries in Γ’s response matrix. In particular, every n-star is response-
equivalent to a complete graph, and there is a simple relationship between the
conductivities of the two networks.
Consider networks on Fn and Kn. Denote the n conductivities on Fn by γ1, γ2,

..., γn, and the n(n− 1)/2 conductivities on Kn by λij . Then we can transform the
star to the K that corresponds to the star’s response matrix, which we calculate by
interiorizing the central node. This yields the formula

(5) λij =
γiγj∑n
k=1 γk

We refer to this as the F−K transformation.
Clearly not every complete graph (i.e., not every response matrix) corresponds

to a star, however. In fact, we will show that a complete graph comes from a star
if and only if the following condition is satisfied:

(6) λijλkl = λikλjl for all i 6= j 6= k 6= l

This condition is the same as the determinantal condition corresponding to the
fact that a star has no two-connections. It can also be interpreted geometrically.
Consider the quadrilateral ijkl in the complete graph. The determinantal condition
says that the conductivities on each pair of opposite edges have the same product.
Hence we call Equation 6 the quadrilateral condition (Figure 2).
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Figure 2. The quadrilateral condition.

The quadrilateral condition is equivalent to the fact that
λijλik

λjk
(i 6= j 6= k) is

the same quantity regardless of how j and k are chosen. This fact can also be
interpreted geometrically. Fix a vertex i in Kn. Then for all triangles with a vertex
at i, the product of the two adjacent sides over the opposite side is always the same
number. We call this the triangle condition (Figure 3).

1j

j 2

k2

k1

i

Figure 3. The triangle condition.

Suppose that a network on Kn with conductivities λij satisfies (6). Then we can
calculate the corresponding conductivities on Fn by this formula:

(7) γi = −λii +
λijλik
λjk

=
∑

i6=j

λij +
λijλik
λjk

where i 6= j 6= k and λii is the ith entry in the diagonal of the response matrix.
Because of the triangle condition, this expression is unambiguous. Formula 7 is the
K−F transformation. We will prove in the following lemma that K−F is actually
the inverse of F−K.
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Theorem 3.1. A network on a complete graph is response-equivalent to a (unique)
star if and only if its conductivities satisfy Equation 6.

Proof. The preceding discussion shows that any complete graph that is response-
equivalent to a star must satisfy the quadrilateral condition. On the other hand, if
(6) is satisfied, then so is the triangle condition, and we can write without ambiguity

(8) αi =

√
λijλik
λjk

and so

(9) αiαj =

√
λijλik
λjk

√
λjiλjk
λik

= λij

Then define γ according to Equation 7:

(10) γi =
λijλik
λjk

+
∑

j 6=i

λij = α2
i +

∑

j 6=i

αiαj = αi
∑

j

αj

We need to check that (Fn, γ) is response-equivalent to (Kn, λ)—that is, we need
to check that if we perform the F−K tranformation, on γ, we get λ. This we see
because

(11)
γiγj∑
k γk

=
(αi

∑
k αk) (αj

∑
k αk)∑

k (αk
∑

l αl)
=

αiαj(
∑

k αk)
2

(
∑

k αk)
2 = αiαj = λij

¤

Corollary 3.2. For star networks, the range of the map L : γ 7→ Λγ is the set

V = {Λ : λijλkl = λikλjl for i 6= j 6= k 6= l, λij > 0 for i 6= j, and
∑

j

λij = 0 for each i}

and L is a diffeomorphism onto V (the foregoing theorem demonstrates a continuous
inverse).

This is an independent (and much more direct) proof of a special case of Theorem
3.1 in [4], which is in turn an extension of an argument in §4.6 of [1].
Remark 3.3. Because of the triangle condition we can also write Equation 7 in a
more symmetric form:

(12) γi =
∑

i6=j

λij +
2

(n− 1)(n− 2)
∑

i6=j 6=k

λijλik
λjk

We can also interpret this formula geometrically. For each triangle with a vertex at
i, calculate the product of the sides adjacent to i over the opposite side. Take the
average of this value over all such triangles. The conductivity γi is equal to this
average plus the sum of the conductivities of the edges in Kn that meet at i.
Performing a F−K transformation on any network on Fn will produce a con-

ductivity function λ that satisfies (6). Moreover, every conductivity function sat-
isfying (6) corresponds to a unique star-network, whose conductivity function is
determined by Equation (7). Thus the conductivity functions λ on Kn that satisfy
Equation (6) are in 1-1 correspondence with networks on Fn.
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4. Recovering a Star

Suppose we have a network on Kn where some of the conductivities are known
and some are unknown. What conductivities can be assigned to the unknown edges
in order to satisfy all of the star conditions?
Consider a graph Kn. Let E be the set of edges in Kn, E0 be the set of edges with

known conductivities and λ a conductivity function defined on E0. We will call λ
a partial conductivity function. The values of λ determine a unique star-network if
and only if there exists a unique extension λ defined on E that satisfies condition
6. The problem, then, is to find λ.
We can consider this algebraic problem from a graph theoretic perspective. Each

of the equations corresponds to the quadrilateral in Kn with vertices i, j, k, l. If
an unknown edge is part of a quadrilateral ijkl in Kn where the three other edges
are known, we can immediately deduce the only possible value of the fourth edge
from (6), namely

(13) λij =
λjkλil
λkl

We call this “closing a quadrilateral”.
Note: if an edge can be calculated by closing two different quadrilaterals, and

the two formulae give different results, then there is no possible extension of λ.
Once we have determined the value of λij by this method, we can treat it as one

of the knowns and search for another quadrilateral. Continuing in this way, we may
be able to determine the conductivities of all edges in E—or then again, we may
not. Let E0 denote the set of all edges whose conductivities may be determined by
closing quadrilaterals.

False Theorem 4.1. Suppose λ is a partial conductivity function on Kn such that
there exists an extension λ such that (Kn, λ) comes from a star network (Fn, γ).
Then the network (Fn, γ) is unique if and only if E0 = E.

In fact, this can fail. Consider a partial conductivity function λ defined on K6

such that λ13, λ24, λ35, λ46, λ51, and λ62 are known and the rest unknown (Figure
4). Then, since the known edges form two disjoint triangles, it’s clear that no
quadrilaterals can be formed. Nonetheless, it turns out that the full conductivity
function λ can be determined uniquely.
One way to see why this is so is to rearrange the nodes so the known edges

form two concentric triangles as in Figure 4. If we assign a parameter t to one
of the unknown edges, the parameter propagates by closing quadrilaterals in both
directions. Then the two propagations meet in the opposite quadrilateral. Applying
Equation 6 to this quadrilateral fixes t uniquely.

Remark 4.2. In most cases quadrilateral closure will be enough to determine
whether a unique extension exists. If quadrilateral closure is insufficient to fix
λ on all edges, then we can assign a parameter to an unknown edge and close
quadrilaterals again. We proceed, assigning parameters and closing quadrilaterals
until we find a value of λ for every edge.
The problem that the counterexample above points out is that we may introduce

false parameters by this method—that is, we may write a parametric formula for
an edge which is actually known uniquely due to restrictions on the parameter.
This is a hassle, but spurious solutions will be eliminated if we simply check for
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Figure 4. Star of David rearranged

the constraints on parameters which are induced by Condition 6 on quadrilaterals
with parametrized edges. In this case, the problem of spurious parameters can be
avoided by using an extended method, but this is an issue which will arise again in
other places.

5. Recovering a Star For Real

Let’s take a step back and look at quadrilaterals again in a different light.
A quadrilateral in a network on Kn corresponds to four positions in the network’s

Kirchhoff matrix (i.e. the response matrix of the corresponding star-network)—the
coordinates (i, j), (i, l), (k, j), and (k, l) (Figure 5). Closing a quadrilateral consists
in calculating the value of λ at one of these pairs of coordinates when λ is known
for the other three pairs. The ordered pairs correspond to edges in Kn.
The diagonal of the matrix is a peculiar exception: λii does not correspond to

an edge in Kn, and entries on the diagonal can not be calculated by quadrilateral
closure. Equation 6 requires that i 6= j 6= k 6= l—but in the matrix, we can just as
easily pick out coordinates when some of these values are equal. Of course, because
the Kirchhoff matrix is defined differently on the diagonal than on off-diagonal
entries, if we tried to apply Equation 6 to the diagonal, we would produce false
equations.
So let’s shift our attention from the Kirchhoff matrix to another, closely re-

lated matrix. We can write the response matrix for a network on an n-star with
conductivities γ = (γ1, γ2, ..., γn) as

(14) Λγ = −Dγ +
γγ>

σ

where Dγ is the diagonal matrix corresponding to the entries of γ and σ =
∑

k γk.
Then consider the matrix

(15) Mγ =
γγ>

σ
To make my life easier and your life miserable, in the subsequent sections we will

use the letter λ to refer to the entries in Mγ—and not Λγ .
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Figure 5. A quadrilateral in the response matrix

This matrix is equal to the response matrix of (Fn, γ) (i.e., the Kirchhoff matrix
of the corresponding (Kn, λ)) everywhere except on the diagonal, and it satisfies
Equation 6 on all of its entries—in particular, on the diagonal:

(16) λiiλjk = λijλik.

Thus, if we are given a partial conductivity function Λ on Kn, we can use this
extension of quadrilateral closure in order to calculate diagonal entries of the cor-
responding matrix M . Moreover, we can use symmetry to calculate an off-diagonal
entry using only two diagonal entries, instead of the usual three off-diagonal entries:

(17) λiiλjj = λijλji = λ2
ij

and so

(18) λij =
√
λiiλjj

Figure 6. Using an extended quadrilateral

We will use the term “extended quadrilateral” to refer either to an ordinary
quadrilateral or to a quadrilateral that involves the diagonal. Given a set of ordered
pairs (i.e., edges in Kn) E = {(i, j)}, the q-closure of E, written E, is the set of all
pairs (k, l) which can be reached by closing extended quadrilaterals from E. A set
Q is called q-closed iff Q = Q.
We will prove below that False Theorem 4.1 is true when we use extended quadri-

laterals.
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Lemma 5.1. Every q-closed set Q is a set of ordered pairs of the form

(19) Q = D ×D ∪
⋃

i

(Ai ×Bi ∪Bi ×Ai)

where D, Ai, and Bj are pairwise disjoint.

Proof. Let Q be a q-closed set of ordered pairs of nodes in Kn. Let D = {d :
(d, d) ∈ Q}. By (18), if (d1, d1) ∈ Q and (d2, d2) ∈ Q then it follows that (d1, d2)
and (d2, d1) are also in Q. Thus D ×D ⊂ Q.
Now for each (a, b) ∈ Q, where a and b are not in D, we define

Ab = {x : (x, b) ∈ Q}
Ba = {y : (a, y) ∈ Q}

Then the following are facts:

(i) Ab ×Ba ⊂ Q and Ba ×Ab ⊂ Q
If (x, y) ∈ Ab ×Ba then (x, b), (a, y), and (a, b) are in Q. By closing the

quadrilateral, (x, y) ∈ Q. The second statement is true by symmetry.
(ii) Ab ∩D = Ba ∩D = ∅

If x is in Ba then (a, x) ∈ Q, and by symmetry (x, a) ∈ Q. If x is in D
then (x, x) ∈ Q. Then we close the quadrilateral, so (a, a) ∈ Q—so a ∈ D.
But a was chosen not to belong to D.

(iii) Ab ∩Ba = ∅
If (x, x) ∈ Ab ×Ba then x ∈ D, and so x is contained in Ab ∩D.

(iv) If a1, a2 ∈ Ab then Ba1
= Ba2

. Likewise if b1, b2 ∈ Ba then Ab1 = Ab2 .

We know (a1, b) and (a2, b) are in Q. If b̂ ∈ Ba1
, then (a1, b̂) ∈ Q, so

closing the quadrilateral yields (a2, b̂) ∈ Q, and so b̂ ∈ Ba2
. So Ba1

⊂ Ba2
,

and conversely by the same argument.
(v) Suppose (a1, b1) and (a2, b2) are in Q. If Ab1∩Ab2 or Ba1

∩Ba2
is non-empty,

then Ab1 = Ab2 and Ba1
= Ba2

.
Say â is in Ab1 and Ab2 ; i.e., (â, b1) and (â, b2) are in Q. Then b1 and b2

are both contained in Bâ. Thus, by (4), Ab1 = Ab2 . By the same argument,
Ba1

= Ba2
.

Thus we have produced a finite collection of sets Ai and Bi which are pairwise
disjoint and each disjoint with D. We have shown that D × D and each product
Ai×Bi and Bi×Ai is contained in Q. Moreover, every element (a, b) ∈ Q is either
contained in D or else in the product Ab ×Ba, so we have equality.

¤

We can visualize this decomposition as splitting a q-closed set into blocks as in
Figure 7.
Thinking of the set in terms of the graph, we can also say it like this: every

q-closed set is a union of a complete graph and some bipartite graphs.
One simple consequence of the lemma is that if a q-closed set Q contains a

bipartite graph on sets of nodes A and B, and Q also contains an edge connecting
two points in A, then Q must contain the complete graph on A ∪B.
Let N denote the set of nodes of Kn, and write N2 for N × N . The response

matrix can be thought of as a function on N 2. Let ∆S signify the diagonal of
S2. A partial function on N2 is said to be q-consistent if it satisfies the extended
quadrilateral condition wherever it is defined.
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Figure 7. Block decomposition of a q-closed set

It follows from Theorem 3.1 that if a function λ is defined on a set containing
N2−∆N , then (Kn, λ) is response equivalent to a star-network (Fn, γ) if and only
if λ is q-consistent.

Lemma 5.2. Say M ⊂ N . Suppose that ∆M ⊂ X ⊂ M2, and let λ : X → R

be a q-consistent partial function. Then λ has a unique q-consistent extension to
M2; i.e., there exists a unique function λ : M 2 → R such that λ|X = λ and λ is
q-consistent.

In particular, if X ⊃ ∆N , then λ has a unique q-consistent extension over all of
N2.

Proof. Since X contains the diagonal, the entries λ11, λ22, ..., λnn are known. Then
we can calculate λ uniquely everywhere in M 2 by

(20) λij =
√
λiiλjj

(Note that in particular λii =
√
λiiλii = λii.) The extension λ is clearly q-

consistent, since

(21) λijλkl =
√
λiiλjjλkkλll =

√
λiiλkk

√
λjjλll = λikλjl

Finally, λ|X = λ, since the q-consistency of λ requires that if (i, j) ∈ X then (since
(i, i) and (j, j) are also in X)

(22) λij =
√
λiiλjj = λij

¤

The following fact follows from the proof of the lemma:

Corollary 5.3. A partial function λ defined on a set X such that ∆M ⊂ X ⊂M2

is q-consistent if and only if λij =
√
λiiλjj for each (i, j) in X.

This will also be a handy fact:

Lemma 5.4. Suppose X ⊂ M 2 and Y ⊂ (N −M)2. Then if λ1 is a q-consistent
function on X and λ2 is a q-consistent function on Y , then λ = λ1 ∪ λ2 is a
q-consistent function on X ∪ Y .
Proof. Every quadrilateral in X ∪ Y either has all subscripts contained in X or all
subscripts contained in Y . ¤
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Combining the two preceding lemmas, we also obtain

Lemma 5.5. If ∆M ⊂ X ⊂M2, Y ⊂ (N −M)2, and λ is a q-consistent function
on X ∪ Y , then λ has a unique q-consistent extension to M 2 ∪ Y .
Proof. Let λ1 = λ|X and λ2 = λ|Y . Use Lemma 5.2 to find λ1 : M

2 → R. Then
the function λ = λ1 ∪ λ2 is the only possible extension of λ over M

2 ∪ Y , and by
Lemma 5.4 it is q-consistent. ¤

Let E0 be a set of edges—i.e., ordered pairs of nodes—in Kn. (E0 ⊂ N ×N .)

Theorem 5.6. Suppose λ is a partial conductivity function on Kn defined on E0.
Suppose also that λ has a q-consistent extension λ (in particular, λ is itself q-
consistent), so (Kn, λ) comes from a star network (Fn, γ). Then

(1) The network (Fn, γ) is unique if and only if E0 = N ×N .
(2) If γ is not unique, we can determine from λ and E0 a parametrization of

the set of all possible functions γ.
(3) Suppose that

E0 = D2 ∪ (A1 ×B1 ∪B1 ×A1) ∪ · · · ∪ (Am ×Bm ∪Bm ×Am)

where D, Ai, and Bi are disjoint, and C = N −D −⋃
Ai ∪ Bi. Then the

number of parameters is equal to m+ |C|.

Proof. By hypothesis, λ has a q-consistent extension λ defined on N 2. If E0 =
N2 then closing quadrilaterals pins down the possible values of λ uniquely on all
of N × N . Since conductivities on the n-star are in 1-1 correspondence with q-
consistent functions on N 2, (Fn, γ) is determined uniquely. The other direction
will come out of our proof of parts (2) and (3).
Suppose that E0 is a proper subset of N ×N . Then using Lemma 5.1, write

(23) E0 = D2 ∪ (A1 ×B1 ∪B1 ×A1) ∪ · · · ∪ (Am ×Bm ∪Bm ×Am)

whereD, Ai, and Bi are disjoint. Also, let C = {c1, c2, ..., c|C|} = N−D−⋃Ai∪Bi.

We will also write D0 = D×D and Di = (Ai∪Bi)
2. In a final flurry of notation,

write

(24) Si =

i⋃

j=0

Dj ∪
m⋃

j=i+1

(Aj ×Bj) ∪ (Bj ×Aj)

and let Li denote the set of all possible extensions λ
(i)
to Si. That is to say,

λ
(i)
: Si → R is in Li if and only if λ

(i)
= λ on E0 and λ

(i)
satisfies the extended

quadrilateral condition.
The initial set S0 = E0, so L0 contains one element, the unique extension λ to

E0. Now we want to calculate Li from Li−1.

Suppose we know Li−1, and we can parametrize the set of functions λ
(i−1)

in

terms of parameters t1, t2, ..., ti−1. Let’s pick a particular function λ
(i−1)

(t1, t2, ..., ti−1)
from Li−1. For the sake of simplicity, in the next few paragraphs we’ll refer to this
function as λ.
Let’s focus our attention on the square Di. (See Figure 8) We will show that

parametrizing one unknown entry in this block will consistently fill out the whole
block, and affect nothing outside of Di.
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Bi

Ai

Ai Bi

t i

Figure 8. Parametrizing a block

For simplicity, we’ll use local coordinates in Di, starting the numbering of nodes

with (1, 1) in the upper left corner. Let’s assign a parameter ti to λ
(i)

11 . Thus far

λ
(i)
is q-consistent for any choice of ti, since (1, 1) does not close any quadrilateral

from Si−1.

Next we’ll assign2 λ
(i)
on the diagonal of Ai ×Ai to be

(25) λ
(i)

aa = ti

(
λba
λb1

)2

and the entries on the diagonal of Bi ×Bi by

(26) λ
(i)

bb =
λ2
b1

ti

We now have λ
(i)
defined on a set that contains the diagonal of Di. Let’s check

that this definition is consistent:

(27)

√
λ

(i)

aaλ
(i)

bb =

√

ti

(
λab
λb1

)2 (
λb1

2

ti

)
= λab = λ

(i)

ab

As we pointed out before, this is sufficient for consistency. Thus, by Lemma

5.5, we have a unique extension λ
(i)
defined over all of Si. Expanding our ab-

breviated notation, this is function is actually unique in terms of the function

λ
(i−1)

(t1, t2, ..., ti−1) and the parameter ti. So the set Li contains all of the func-
tions λ

(i)
(t1, t2, ..., ti) : Si → R.

Continuing this way, we can calculate the parametrized family Lm of functions
λ

(m)
(t1, t2, ..., tm) : Sn → R.
Then, cracking our knuckles before one last bout, we extend the function to the

set Sn ∪ ∆C by adding a parameter tj to each of the entries (cj , cj). By Lemma
5.4, this function is also q-consistent no matter how we choose the parameters.
Moreover, (Sn ∪ ∆C) contains the full diagonal of N

2. So, at long last, we use
Lemma 5.2 to obtain an extension λ(t1, t2, ..., tm+|C|) defined q-consistently over
all of N ×N for each choice of parameters.

2These formulae are motivated by quadrilaterals in Di, but their ultimate justification is that

they produce a q-consistent extension, as we will show.



F AND K SOLVE THE INVERSE PROBLEM 13

A21BA1 B2

B2

A2

1B

A1

t3

t2

t1

t5

t4

D

D

C

C

Figure 9. Parametrizing the matrix M .

In particular, note that unless D0 = N2 (in which case we had E0 = N2) we get
at least one free parameter floating around, and so the extension λ is not unique. ¤

Corollary 5.7. Since the map H : t 7→ λ(t) from parameter-space to conduc-
tivity functions is smooth and injective, the set of q-consistent extensions of a

partial conductivity function λ, considered as vectors in Rn2

, comprise an (m+|C|)-
dimensional manifold.
The set of q-consistent extensions of λ is diffeomorphic to the set of possible

conductivity functions γ on the original n-star that correspond to λ; thus the set
of possible conductivity functions is an (m+ |C|)-dimensional manifold in Rn.

Corollary 5.8. If the ordinary quadrilateral-closure of E0 is equal to E (all edges
of Kn), then it easily follows that the extended q-closure E0 = N ×N , and so we
can calculate γ uniquely.

Example 5.9. Extended quadrilateral closure easily recovers the Star of David
graph. The known edges are shown as X’s in Figure 10. Every entry on the
diagonal can be calculated by closing an extended quadrilateral. Then, by Formula
18, we can calculate λ for the whole matrix.
If we’re in an imaginative mood, we can visualize an extended quadrilateral as

one that has two or three sides in the graph, and also involves a “side” (or two)
connecting a node to itself (Figure 11). So the triangles in the Star of David,
which were useless for finding ordinary quadrilaterals, give perfectly good extended
quadrilaterals.

Remark 5.10. If a conductivity function is recoverable from a partial function λ
by using extended quadrilaterals, but not by using ordinary quadrilaterals, then
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Figure 10. Recovering the Star of David.

λ

jk

ikij

j
λ

k

λλ

ii

i

Figure 11. An extended quadrilateral

the resulting γ may not be a rational function of λ: in particular, it can involve
square roots.

6. The Forward Problem Again

Observation 6.1. Every graph is locally a star.

Consider an arbitrary network Γ = (G, γ). Every interior node i is the central
node of a star, where the rays are simply all the edges that meet at i. We will
call this an embedded star. If G is a graph with multiplicity, some of the rays of
the star may actually comprise multiple edges, but we shall simply ignore this and
treat edge-cables in the same way as singleton edges. (Recall that the conductivity
function γ is defined not on individual edges in this case, but on cables. Therefore
transforming and recovering stars involving cables is identical to when all the rays
are singletons.)
We can perform a F − K transformation on an embedded star as above. This

results in both a new graph and a new conductivity function. Denote the network
obtained by performing a F−K transformation around node i by Σi(Γ). The new
graph will have multiplicity greater than one on any edge between two vertices that
had an edge between them in G and were on rays of the star.
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Wherever the transformation creates a cable of multiplicity greater than one, the
conductivity on the new cable will be equal to the sum of the conductivity from
the F − K with the original conductivity on that edge. Conductivities of edges
between nodes that are not in the transformed star will of course be unaffected by
the transformation.
The Kirchhoff matrix of Σi(Γ) is determined by the new conductivity function,

which we described by Equation 5. In fact, it is related in a simple way to the
original Kirchhoff matrix: we simply take the Schur complement with respect to i,
K/K(i; i).

Observation 6.2. Performing a F − K transformation around node i is alge-
braically equivalent to interiorizing i.

Suppose we successively interiorize all of the interior nodes inG. This gives rise to
the network Γ = Σin ◦· · ·◦Σi1(Γ), which has no interior nodes. The response matrix
of a network with no interior nodes is equal to its Kirchhoff matrix. Moreover, the
Kirchhoff matrix of Γ is equal to K/K(i1; i1)/K(i2; i2)/ · · · /K(in; in), which, as we
pointed out, is the response matrix of Γ. Thus the response matrix of Γ is equal to
the response matrix of Γ.
This gives a new geometric interpretation to the solution of the forward problem:

the response matrix Λ of Γ is determined by successive F − K transformations
(which are equivalent to interiorization). This presents a natural approach to the
inverse problem: if we calculate Λ from K by a sequence of F−K transformations,
we may be able to calculate K from Λ by a sequence of K −F transformations.

7. Solving the Inverse Problem

Algorithm 7.1. Let Γ = (G, γ) be a connected simple network—i.e., Γ has no
parallel connections. For each k = 1, 2, ..., n let

(28) Γk = Σik ◦ Σik−1 ◦ · · · ◦ Σi1(Γ) = Σik(Γk−1)

The Kirchhoff matrix of Γn (same as Γ in the preceding section) is the response
matrix of Γ. Given the Kirchhoff matrix of Γk, we will calculate the Kirchhoff
matrix of Γk−1.
Let’s say the same thing in slightly different terms. We can read the conductivity

function on the cables of Γn directly from the response matrix of Γ. Now, given
the conductivities of the cables of Γk, we intend to calculate the conductivities on
the cables of Γk−1. By induction, we can then determine the conductivities of the
cables of Γ0 = Γ. Since all of Γ’s cables are singletons, we will have calculated the
conductivity of every edge in Γ.
Consider the networks Γk = (Gk, γk), Γk−1 = (Gk−1, γk−1), and the node ik. The

graph Gk contains an embedded Kr which is response equivalent to the embedded
Fr around ik in Gk−1. Because Σik preserves conductivities outside of the star
around ik, we know γk−1 everywhere except on the star right off the bat. The only
problem, then is to recover the star (and the edges connecting the nodes on the
star’s rays).
Some of the cables in the embedded Kr are singletons and others contain multiple

edges. If a cable c is a singleton, its conductivity came completely from the star.
If, on the other hand, c is has higher multiplicity, then one of its edges belongs to
the star, and so only part of its conductivity can be attributed to the star. Let
λ = γk|Kr

, restricting the conductivity function to the embedded complete graph.
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Figure 12. Embedded K −F.

If all cables were singletons, then because (Kr, λ) comes from a star, satisfies
Equation 6, and we can recover the conductivities on the star. If not all cables
are singletons, treat the conductivities λij on singletons as known, and consider
the conductivities on cables with higher multiplicity as unknown. That is, define
the function λ∗ = λ on the set of singletons, then use Theorem 5.6 to find either
a unique extension λ∗ (if the quadrilateral-closure of the set of singletons is all of
Kr), or else a family of possible extensions λ∗(t1, t2, ..., tm), where {t1, t2, ..., tm} is
a set of independent parameters.
In either case, we can then calculate the set of all possible conductivity functions

γk−1. Namely, γk−1(t1, t2, ..., tm) is equal to

• γk, on edges that do not join nodes in the star around ik.
• the K −F transformation (Formula 7) of λ∗, on rays of the star.
• γk − λ∗(t1, t2, ..., tm), on edges connecting rays of the star.

If λ∗ could be determined uniquely, then γk−1 is known uniquely in terms of γk.
Otherwise, γk−1 is known in terms of γk and some set of parameters. If γk was
already parametrized, then γk−1 inherits those parameters as well.
Following this procedure from Γn to Γ0 will yield a set containing all possible

conductivity functions γ on the cables (i.e. the edges) of Γ. If this set contains
only one element, we are done: Γ is a recoverable network, and we have successfully
recovered its conductivity function.
However, if the set is parametrized, the set we obtain by this process may actually

be too large: in order to find the correct set of conductivities, we need to take into
account restrictions on the parameters’ domains. These restrictions are introduced
in two ways:
First, the determinantal condition may introduce polynomial restrictions on the

parameters. If, having inherited a set of parameters from Γk, we find that the
embedded Kr in Γk−1 contains a quadrilateral of singletons, then these four values
of λ must satisfy Condition 6. Since λij , λjk, λkl, and λil are rational functions
of parameters, Condition 6 introduces a constraint which can be expanded as a
polynomial in the parameters. The correct set of possible conductivities includes
only those where the parameters satisfy all of these polynomial constraints.
Second, at the end of the day all conductivities should be positive. So all conduc-

tivities we obtain that do not satisfy this condition should be discarded from the set
of possibilities. We can think of this constraint as introducing further restrictions
on the parameters’ domains.
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The set of conductivities γ0(t1, t2, ..., tM ), where the parameters’ domains are re-
stricted by the above constraints—certain polynomial equations and inequalities—is
the full set of possible conductivities for Γ. Thus Γ is a recoverable network ex-
actly when this set contains a single element. In general, this algorithm in principle
presents a means of calculating the complete set of possible conductivites for an
arbitrary network.

¤

8. An Example

Example 8.1. Consider the graph in Figure 13. The sequence of F−K transfor-
mations on the graph is shown in Figure 14.
At each stage the node we interiorize has two “spikes”, which have no edges

connecting them to each other or any other nodes. This means that in the complete
graph after interiorization all of the edges to these two spike-nodes are known. But
then it’s easy to see that the whole matrix Mγ can be recovered.
Suppose we wish to calculate the conductivity function that corresponds to a

response matrix

(29) Λ =



λ1,1 · · · λ1,8

...
...

λ8,1 · · · λ8,8




This is the Kirchhoff matrix for the last graph in the F−K sequence.
Let’s consider the extraction of node 9. The partial function λ∗9 on singleton

edges is the following:

(30)




λ1,2 λ1,3 λ1,4 λ1,5 λ1,6 λ1,7 λ1,8

λ2,1 λ2,8

λ3,1 λ3,8

λ4,1 λ4,8

λ5,1 λ5,8

λ6,1 λ6,8

λ7,1 λ7,8

λ8,2 λ8,2 λ8,3 λ8,4 λ8,5 λ8,6 λ8,7




By q-closure, we extend the function over the whole matrix M shown below.

(31)

M9 =




λ1,8λ1,2

λ2,8
λ1,2 λ1,3 λ1,4 λ1,5 λ1,6 λ1,7 λ1,8

λ2,1
λ2,8λ1,2

λ1,8

λ2,8λ1,3

λ1,8

λ2,8λ1,4

λ1,8

λ2,8λ1,5

λ1,8

λ2,8λ1,6

λ1,8

λ2,8λ1,7

λ1,8
λ2,8

λ3,1
λ3,8λ1,2

λ1,8

λ3,8λ1,3

λ1,8

λ3,8λ1,4

λ1,8

λ3,8λ1,5

λ1,8

λ3,8λ1,6

λ1,8

λ3,8λ1,7

λ1,8
λ3,8

λ4,1
λ4,8λ1,2

λ1,8

λ4,8λ1,3

λ1,8

λ4,8λ1,4

λ1,8

λ4,8λ1,5

λ1,8

λ4,8λ1,6

λ1,8

λ4,8λ1,7

λ1,8
λ4,8

λ5,1
λ5,8λ1,2

λ1,8

λ5,8λ1,3

λ1,8

λ5,8λ1,4

λ1,8

λ5,8λ1,5

λ1,8

λ5,8λ1,6

λ1,8

λ5,8λ1,7

λ1,8
λ5,8

λ6,1
λ6,8λ1,2

λ1,8

λ6,8λ1,3

λ1,8

λ6,8λ1,4

λ1,8

λ6,8λ1,5

λ1,8

λ6,8λ1,6

λ1,8

λ6,8λ1,7

λ1,8
λ6,8

λ7,1
λ7,8λ1,2

λ1,8

λ7,8λ1,3

λ1,8

λ7,8λ1,4

λ1,8

λ7,8λ1,5

λ1,8

λ7,8λ1,6

λ1,8

λ7,8λ1,7

λ1,8
λ7,8

λ8,1 λ8,2 λ8,3 λ8,4 λ8,5 λ8,6 λ8,7
λ1,8λ2,8

λ1,2



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Figure 13. Our first victim
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Figure 14. Mutilating the poor graph. (Dashed lines represent
multiple edges.)
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Then we can calculate the Kirchhoff matrix of the graph second-to-last graph,
which is the following, except on the diagonal.

(32)

Λ9 =




λ1,1 − λ1,8λ1,2

λ2,8
0 · · · 0 0 γ1(M9)

0 λ2,2 − λ2,8λ1,2

λ1,8
· · · λ2,7 − λ2,8λ1,7

λ1,8
0 γ2(M9)

0 λ3,2 − λ3,8λ1,2

λ1,8
λ3,7 − λ3,8λ1,7

λ1,8
0 γ3(M9)

...
...

. . .
...

...

0 λ7,2 − λ7,8λ1,2

λ1,8
· · · λ7,7 − λ7,8λ1,7

λ1,8
0 γ7(M9)

0 0 · · · 0 λ8,8 − λ1,8λ2,8

λ1,2
γ8(M9)

γ1(M9) γ2(M9) · · · γ7(M9) γ8(M9) γ9(M9)




where γ(M9) denotes the conductivity function on the star that corresponds to
the matrix M9, namely

(33) γi(M9) =
∑

j 6=i

µij +
µijµik
µjk

=
∑

j

µij

where µij is the (i, j)th entry in M9.
This completes one step. We leave the thrilling algebra of the next three steps

to the reader.

9. The Moral of the Story

The algorithm as described in this paper produces good results on a large vari-
ety of graphs. Star-complexes (graphs where each internally-connected components
([5]) is a star), graphs where nodes can be ordered so each node has two “spikes”
when interiorized, and graphs which in some sense have a low degree of connectivity
are straightforward to analyze. Some basic results: any tree with no series connec-
tions is recoverable; any star-complex with no loops such that the intersection of
each pair of ICC’s contains less than three nodes is recoverable.
This approach has also proved fruitful in examining 2-1 graphs that were not

well understood in the past. Lovejoy’s [3] presents an in-depth examination of some
of these graphs. I expect that these methods will soon present the necessary tools
to resolve open questions on the existence and nature of n-1 graphs.
The full extent of the terrain that this algorithm deals with efficiently and

straightforwardly has not yet been charted.
On the other hand, many recoverable graphs do not produce pleasant results by

this algorithm as it currently stands. Graphs with a high degree of connectivity,
such as grids and the infamous “circles and rays” graphs ([6]) are often less tractable.
While the present recovery algorithm does correctly produce a description of the
set of conductivity functions corresponding to a given response matrix, it often
does so in parametric form, with a large number of polynomial constraints on the
parameters—even when the graph is recoverable. In this form, it is not always easy
to determine from the constraints whether or not the graph is recoverable: that is,
whether the constraints are resolved uniquely. In these cases the algorithm outlined
in this paper effectively reduces one vast mess of polynomial equations to another,
less vast but still messy system of polynomial equations.
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Parameters that appear in recoverable networks and later drop out because of
constraints—called “spurious parameters”—are the largest mystery of this algo-
rithm, and gaining a deep, topologically motivated understanding of when they
appear and how they are eliminated is the major outstanding challenge related to
this program for incremental recovery. It is known that the constraints that appear
are related to determinantal conditions imposed by connections in the graph, but
much is left to be explored.
TheF−K transformation promises to have applications to other problems relat-

ing to electrical inverse problems, besides recovery. Because stars can be analyzed
by elementary methods where more general graphs cannot, and because general
graphs can be constructed from stars, one can examine properties of general graphs
in terms of the properties of the corresponding stars.
For example, one may be able to directly prove that the map L is a diffeomor-

phism for recoverable graphs by composition of the diffeomorphism for stars. F
and K may as well provide insight into characterizing the set of response matrices
of an arbitrary graph. If all of the nodes of a graph are considered to be boundary
nodes, then the set of response matrices is simply an e-dimensional vector space, e
being the number of edges in the graph. When we interiorize a node, the new set
of response matrices is equal to the algebraic F−K transformation of the previous
set. So the geometry of the set of response matrices can be calculated in terms of
the geometry of the response matrices for successive interiorizations.

Remark 9.1. This could go places.
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