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Abstract. We begin by examining the triangle in triangle network as a ba-

sis for understanding the properties of the n-gon in n-gon networks. These

networks can also be viewed as cycles of n F4’s connected at two boundary

nodes. These graphs have the property that the inverse problem does not

have a unique solution, but rather two solutions. This paper analyzes the

properties of the response matrix and the recurrence relation used in solving

the F − K transformed network and generalizes the properties of 2m to 1
networks composed entirely of Fn’s.
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1. Introduction

A graph with boundary and multiplicity (or a multi-graph) is a triple G =
(V, VB ,M) where V is a set of nodes, VB is any subset of V , designated as the
boundary nodes, andM is the edge-multiplicity function, defined on pairs of vertices
such that M(i, j) is the number of edges joining nodes i and j. M is always a non-
negative integer, and M(i, j) =M(j, i) [6].
We say i is adjacent to j, or i ∼ j, if M(i, j) is positive, and we say they are

connected by a single edge (or a singleton) when M(i, j) = 1. If M(i, j) = m is
greater than one, we say that (i, j) are joined by a cable of multiplicity m. IfM(i, j)
is zero or one for all pairs (i, j), we say that G is simple [6].
A network is a pair Γ = (G, γ) where G is a graph and γ is a positive conductivity

function defined on all cables in G. If G is a simple graph, then γ is defined on G’s
edges. If G is not simple, then γ assigns a conductivity to each cable of G, not to
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individual edges [6]. The Kirchhoff matrix for Γ, denoted K, is defined such that

(1) Kij =





γij i ∼ j
−
∑

k 6=iKik i = j

0 i 6∼ j and i 6= j

K is symmetric and negative semi-definite [3]. Suppose that we write

(2) K =
∂ int

∂
int

[
A B
B> C

]

Then the response matrix of Γ is defined in terms of the Kirchhoff matrix as the
Schur complement

(3) Λ = K/K(I; I) = A−BC−1B>

Given a graph G and its response matrix Λ, the inverse problem is the recovery of
the original Kirchhoff matrix associated withG from Λ. A graph is called recoverable
if it has a unique Kirchhoff matrix that maps to a given response. A graph is n to
1 recoverable whenever there are n distinct Kirchhoff matrices on the same graph
which produce the same response matrix.

Definition 1.1. An n-star, denoted Fn, is a graph with boundary that has n
boundary nodes and one interior node, where each boundary node is connected by
a single edge to the interior node and there are no other edges.

Definition 1.2. The complete graph on n vertices, denoted Kn, is a graph with
n boundary nodes, no interior nodes, and a single edge connecting every pair of
nodes [6].

The response matrix of a complete graph is Λ = (λij), where λij is equal to the
conductivity on the edge joining i and j. Conversely, any response matrix can be
thought of as corresponding to a complete graph with conductivies equal to the
entries. Thus every network Γ is response-equivalent to the complete graph whose
conductivities are equal to the entries in Γ’s response matrix. In particular, every
n-star is response-equivalent to a complete graph, and there is a simple relationship
between the conductivities of the two networks.
Consider networks onFn and Kn. Denote the n conductivities onFn by γ1, γ2,

..., γn, and the n(n− 1)/2 conductivities on Kn by λij . Then we can transform the
star to the K that corresponds to the star’s response matrix, which we calculate
by interiorizing the central node. This yields the formula

(4) λij =
γiγj∑n
k=1 γk

We refer to this as the F−K transformation.
Not every complete graph (i.e., not every response matrix) corresponds to a F.

Therefore, the characterization of the response matrices of aFn network is needed.

Theorem 1.3. A network on a complete graph is response-equivalent to a (unique)
F if and only if its conductivities satisfy the following property:

(5) λijλkl = λikλjl for all pairwise distinct i, j, k, l.

Proof. For proof see [6]. ¤
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This condition is the same as the determinantal condition corresponding to the
fact that a star has no two-connections. It can also be interpreted geometrically.
Consider any quadrilateral formed by edges in a complete graph. The determinantal
condition says that the conductivities on each pair of opposite edges have the same
product. Hence we call equation (5) the quadrilateral condition [6].
The motivation for the examination of 2 to 1 graphs came from papers by Tracy

Lovejoy and Jeffrey Russell, which apply the F − K tool in order to solve the
inverse problem. It is important to realize that all graphs mentioned in this paper
are really multi-graphs. The K is essentially the response matrix found by taking
the Schur complement of the original Kirchhoff matrix with respect to the interior
nodes. Denote the n conductivities on Fn by γ1, γ2, ..., γn, and the n(n − 1)/2
conductivities on Kn by λij ≥ 0. The sign convention used in this paper is opposite
of that used by Curtis and Morrow. We have adopted the convention of considering
all off-diagonal conductivities in our Kirchhoff matrix to be positive. Thus terms
on the diagonal are negative, chosen so that row sums are zero. The formula for
recovering the conductivities in Fn is:

(6) γi = −λii +
λijλik
λjk

=
∑

i6=j

λij +
λijλik
λjk

where i, j, k are pairwise distinct[4]. In order to recover a particular edge of a star
embedded in a network, all conductivities from the response matrix required for
calculation must be known. When cables of multiplicity greater than 1 are created
in F−K transformations of adjacent stars in the original network, it is difficult to
recover the individual conductivities of these edges since only their sum appears as
a single entry in the response matrix. These cables allow for non-unique solutions
of the inverse problem, hence n to 1 networks.

2. The n-gon in n-gon Networks

Figure 1 is a simple triangle in triangle network. It can be perceived as three
F4’s centered at interior nodes 7, 8, and 9, connected in a cycle. After applying
F −K transformation on the network, the resulting network becomes three K4’s
connected in a cycle, a completely connected graph of six boundary nodes without
interior nodes, where edges (1,4), (2,5), and (3,6) are cables of multiplicity 2.

Definition 2.1. An n-gon in n-gon (or polygon in polygon) graph is a sequence
C1C2C3...CnC1 of n F4’s where two boundary nodes of Ci are identified with two
boundary nodes of Ci+1 such that the resulting graph is a cycle resembling one
polygon embedded in another.

The convention for numbering nodes of an n-gon in n-gon graph will be to
start from the inner polygon and number the boundary nodes clockwise around
the polygon. Then number the boundary nodes of the outer polygon starting from
the node aligned with node 1. The interior nodes are then numbered clockwise
beginning with the interior node adjacent to node 1 and node n. (Refer to figures
1, 2 and 3.)
To recover the single edge α in the F−K transformed network in figure 1, we

can use the quadrilateral conditions on the K4 transformed from the F4 centered
at node 7 in figure 1 and continue in a cycle around the triangle counterclockwise
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[4], resulting in the equation:

(7) α = λ14 −
λ12λ45

λ25 −
λ23λ56

λ36 −
λ13λ46

α
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Figure 1. The triangle in triangle network before and after F−K transformation.
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Figure 2. The square in square network before and after F−K transformation.
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Figure 3. The pentagon in pentagon network before and after
F−K transformation.

Simplifying the equation results in a quadratic in terms of entries in the response
matrix. In particular, all polygon in polygon networks will be studied in a similar
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manner by examining a continued fraction that can be expressed as a quotient of
terms, which satisfy a recursive determinantal relation. The continued fraction is:

(8) a1 +
b2

a2 +
b3

a3 +
b4

a4 +
b5

a5 + . . .
bk

ak

=
pk
qk

where pk and qk are defined recursively as:

(9)
pk = akpk−1 + bkpk−2 and,
qk = akqk−1 + bkqk−2

and the initial values are defined to be p0 = 1, p1 = a1, q1 = 1, and q2 = a2 [2].
By inspection of equations (7) and (9), a generalization of the continued fraction
in terms of α and entries of the response matrix Λ for arbitrary n-gon in n-gon
networks, where k = n + 1, follows by noticing that ak = α and pk

qk
= α. The

parameter α satisfies:

(10) α =
αpk−1 + bkpk−2

αqk−1 + bkqk−2
.

We can rewrite this equation in quadratic form:

(11) α2qk−1 + α(bkqk−2 − pk−1)− bkpk−2 = 0.

These pk’s and qk’s are determinants of a tri-diagonal matrix [2] which is a
sub-matrix of the response matrix Λ. For any matrix M , M(i, j;n,m) is the sub-
matrix of M formed by the ith and jth rows and the nth and mth columns. We
will define Pj to be the tri-diagonal matrix of which pj is the determinant, and Qj

analogously. Thus qn = detΛ(2, n + 3, 4...;n + 2, 3, n + 4...) [4]. For any n-gon in
n-gon network, the continued fraction will terminate at the index k = n + 1, and
pk is the determinant of the following n+1 by n+1 matrix where α is the bottom
rightmost entry:

(12) Pk =




λ1,n+1 λ1,2 0 . . . 0 0 0
λn+1,n+2 λ2,n+2 λ2,3 0 . . . 0 0
0 λn+2,n+3 λ3,n+3 . . . 0 0 0

0
...

. . . . . . 0 0 0
...

...
. . .

...
...

...
0 0 . . . λn−1,2n−1 λn−1,n 0
0 0 . . . 0 λ2n−1,2n λn,2n λ1,n

0 0 . . . 0 0 λn+1,2n α




.

Note that aj = λj,n+j is the j
th diagonal entry, and bj = −λj,j+1λn+j,n+1+j , a

product of off-diagonal terms. For any matrix M , letM [i; j] denote the sub-matrix
of M formed by removing the ith row and jth column. The recursively defined p’s
and q’s are all sub-determinants of this matrix: pk−1 = |Pk[n+ 1;n+ 1]| = |Pk−1|,
pk−2 = |Pk[n, n+1;n, n+1]|. Similarly, qk−1 = |Pk[1, n+1; 1, n+1]| = |Pk−1[1, 1]|,
and qk−2 = |Pk−2[1, 1]|. In order for the solutions to equation (11) to be positive
real conductivities, it is important to determine the signs of the determinants pk−1,
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pk−2, qk−1, and qk−2. As we have adopted the convention of considering all off-
diagonal conductivities in our Kirchhoff matrix to be positive, all of the entries in
matrix Pk are positive.

3. Tri-Diagonal Matrices

The following results all rely on some important properties unique to the determi-
nants of tri-diagonal matrices. We have already mentioned that these determinants
obey a recursive relation. The result of interest is that redistribution across the
main diagonal doesn’t change determinants. Recall that bi stands for the negative
of the product of the two off-diagonal terms across the diagonal term ai.

Claim 3.1. Given a tri-diagonal matrix M , which is n × n with diagonal entries

a1, a2, ...an, if M̃ is a new matrix such that M and M̃ have the same diagonal

entries, then detM = detM̃ if bn = b̃n.

Proof. The proof goes by induction on n. Assume pi = p̃i and qi = q̃i for all i < n.
The base case is trivial since p1 = p̃1 = a1 and q2 = q̃2 = a2 by assumption. Now

|M | = pn = anpn−1 + bnpn−2 and |M̃ | = p̃n = anp̃n−1 + b̃np̃n−2, which in turn

equals anpn−1 + b̃npn−2 by the induction hypothesis. Thus pn = p̃n if bn = b̃n. ¤

Intuitively, this explains that in the determinant of a tri-diagonal matrix, any
off-diagonal term only occurs in product with its off-diagonal pair.

Corollary 3.2. Given matrices M and M̃ as in Claim 3.1, M and M̃ have the
same eigenvalues.

Proof. Let M and M̃ be the matrices with diagonal entries a1, a2, ..., an such that
the products of the off-diagonal terms are all the same as in Claim 3.1. Construct

new matrices Mλ and M̃λ such that the diagonal entries are now a1 − λ, a2 −
λ, ..., an − λ. By Claim 3.1, detMλ = detM̃λ. Written as polynomials in λ, these

determinants are the characteristic polynomials of M and M̃ , and are in fact the

same polynomial. Thus M and M̃ have the same eigenvalues. ¤

Corollary 3.3. Any tri-diagonal matrix M with all real entries has all real eigen-
values.

Proof. Redistribution across the diagonal of the matrixM may be done to produce

a matrix M̃ such that M̃ is symmetric. Since all of the eigenvalues of M̃ are real,
by Corollary 3.2, M has all real eigenvalues. ¤

4. Properties of n-gon in n-gon Networks

This section assumes that we have a response matrix which comes from a n-gon
in n-gon network with positive real conductivities in order to prove necessary sign
conditions.

Theorem 4.1. If Λ = (λij) is the response matrix of an n-gon in n-gon network
with conventionally numbered nodes and positive real conductivities, and the ma-
trix Pk with k = n + 1 is formed from the entries in Λ, then for all j ≤ k, the
determinants pj and qj are strictly positive.
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Before proving this theorem, it is important to go back and understand the
original Kirchhoff matrix from which our response matrix is derived in order to
better understand the entries in Pk. The polygon in polygon is a flower, which
means that there are no boundary to boundary edges, nor boundary spikes. Also,
there are no connections between interior nodes. Hence, in the Kirchhoff matrix,
thought of in block form written in the usual way, both A and C are diagonal.
Thus all entries are completely specified by the entries in B, since the entries in A
and C are found by requiring row sums to be zero. Due to the nature of the n-gon
in n-gon network, B in the Kirchhoff matrix looks like the matrix below.



γ1,2n+1 γ1,2n+2 0 0 . . . . . . 0
0 γ2,2n+2 γ2,2n+3 0 . . . . . . 0
0 0 γ3,2n+3 γ3,2n+4 0 . . . 0
...

...
. . .

. . .
...

0 . . . . . . . . . 0 γn−1,3n−1 γn−1,3n

γn,2n+1 0 0 . . . 0 0 γn,3n
γn+1,2n+1 γn+1,2n+2 0 0 . . . . . . 0
0 γn+2,2n+2 γn+2,2n+3 0 0 . . . 0
0 0 γn+3,2n+3 γn+3,2n+4 0 . . . 0
...

...
. . .

. . .
...

0 . . . 0 0 0 γ2n−1,3n−1 γ2n−1,3n

γ2n,2n+1 0 0 . . . 0 0 γ2n,3n




The entries in C are the negative of the column sums of B which for convenience
will be denoted

C =




−σ1 0 . . . 0
0 −σ2 0 . . .
... 0

. . . 0
0 . . . 0 −σn


 .

After taking the Schur complement given by the formula Λ = A − BTC−1B, the
formulas for the entries in Pk can easily be written down. The diagonal terms for
i ≤ n are given by:

(13) λi,n+i =
γi,2n+iγn+i,2n+i

σi
+
γi,2n+imod(n)+1γn+i,2n+imod(n)+1

σ(i+1)mod(n)
= βi,i + βi,i+1.

Thus we define

βi,i =
γi,2n+iγn+i,2n+i

σi
,

and

βi,i+1 =
γi,2n+imod(n)+1γn+i,2n+imod(n)+1

σ(i+1)mod(n)

where these β’s represent single edges in the cables of multiplicity 2. The off
diagonal terms defined for i < n are given by the formulas:

(14)
λi,i+1 =

γi,2n+i+1γi+1,2n+i+1

σi+1

λn+i,n+i+1 =
γn+i,2n+i+1γn+i+1,2n+i+1

σi+1

Substituting equation (13) written in terms of β’s for space economy, into equa-
tion (12), Pk−1 can be rewritten. At this point, we look at equations (13) and (14),
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in order to recognize that :

(15) λi,i+1λn+i,n+i+1 = βi,i+1βi+1,i+1 = bi+1

Equation (15) is the quadrilateral condition involving two single edges in opposite
cables of multiplicity 2 and two connecting edges. By Claim 3.1 redistribution
across the main diagonal preserves the determinants pj and qj , for all j, since for
all i the value of bi is left unchanged. Substituting the result of equation (15) into
the matrix Pk−1 such that all entries are written in terms of the variable β yields

the matrix P̃k−1=


β1,1 + β1,2 β1,2 0 . . . 0
β2,2 β2,2 + β2,3 β2,3 0 . . .

0 β3,3 β3,3 + β3,4 . . . 0

0
...

. . . . . . 0
...

...
. . .

...
0 0 . . . βk−2,k−2 + βk−2,k−1 βk−2,k−1

0 . . . 0 βk−1,k−1 βk−1,k−1 + βk−1,k




.

With P̃k−1 in this form, it is obvious that the diagonal terms are equal to the sum
of the off diagonal terms, except for the first and last rows whose diagonal terms
are strictly greater than the row sums. Clearly every principal 2 × 2 determinant
is greater than zero. The proof that pi and qi > 0, for all i is motivated by the
Gerschgorin Circle Theorem.

β+β
2n−1 2n

β i i+1+ β β β1 2+β j β j+1+

Figure 4. Illustration of Gerschgorin circles for Pk−1.

Theorem 4.2 (Gerschgorin Circle Theorem). [1] Let A be a square complex matrix.
Around every element aii on the diagonal of the matrix, we draw a circle with radius
the sum of the norms of the other elements on the same row

∑
j 6=i |aij |. Such

circles are called Gershgorin disks. Every eigenvalue of A lies in the union of these
Gershgorin disks.

Proof. For proof see [1]. ¤
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Proof. (of Theorem 4.1) Pk is a square real matrix. The eigenvalues are all real by
corollary 3.3 and the diagonal entries are all greater than or equal to the row sums.
By Gerschgorin Circle Theorem, all eigenvalues of Pj−1 for j < k are greater than
or equal to zero. This implies that pj−1 ≥ 0 for all such j. The proof that in fact
all eigenvalues are strictly greater than zero goes by contradiction. Assume there
exists j such that pj = 0, meaning at least one of the eigenvalues of Pj is equal
to zero. The recursion relation says that pj+1 = aj+1pj + bj+1pj−1 = bj+1pj−1,
however, since bj+1 < 0 and both pj−1 and pj+1 ≥ 0, if pj−1 6= 0, then pj+1 will
be negative, which can not happen. Thus both pj−1 and pj+1 = 0. Continuing
this argument replacing within the recursion relation j − 1 and j + 1 for j forces
all pi = 0 for all i < k. This is a contradiction since

p2 =

∣∣∣∣
β1,1 + β1,2 β1,2

β2,2 β2,2 + β2,3

∣∣∣∣ = β1,2β2,2 + β1,1β2,3 + β1,2β2,3 > 0.

Therefore no eigenvalue of any Pj = 0, thus all pj > 0. The proof that all qj > 0
follows the same argument. ¤

Recall equation (11): α2qk−1 + α(bkqk−2 − pk−1) − bkpk−2 = 0. Let a = qk−1,
b = bkqk−2 − pk−1, and c = −bkpk−2 in order to talk about the quadratic formula
in terms of the usual variables:

(16) α =
−b±

√
b2 − 4ac
2a

Theorem 4.1 shows that a > 0. Since for all j, −bj > 0, c > 0 also. Similarly,
b < 0. Therefore, |

√
b2 − 4ac| < |b|. Thus both solutions of the quadratic formula

are real and positive when the discriminant is greater than or equal to zero. Since
we made the assumption that our response matrix comes from a Kirchhoff matrix
with positive real conductivities as entries and the edge α came from the F −K
transformation on theF4 centered at interior node 2n+1, one of the roots α of (11)
is

γ1,2n+1γn+1,2n+1

σ1
. It will be proven in section 5 that the discriminant must always

be greater than or equal to zero. In conclusion, whenever a response matrix comes
from an n-gon in n-gon network, there will always be two positive (not necessarily
different) real solutions for α. Since α is used in solving for the conductivities of
the original network, there are two Kirchhoff matrices corresponding to two n-gon
in n-gon networks for each valid response matrix.

Remark 4.3. The proof of Theorem 4.1 utilized specific quadrilateral conditions in
our cabled graph. However, any quadrilateral condition would suffice. This choice
was arbitrary. The proof only relied on Claim 3.1 which allows redistribution across
the main diagonal of the tri-diagonal matrix. This allows us to generalize our results
to conclude that anytime one uses the quadrilateral conditions in a cycle of K4’s
to get a continued fraction as detailed above, the resulting equation will always be
a quadratic equation that yields two real positive solutions .

5. Conditions for a Unique Solution

The goal of this section is to understand the conditions required on the conduc-
tivities in the original Kirchhoff matrix of an n-gon in n-gon network for there to
be one unique solution. Our initial approach to the problem assumes that, given
an n-gon in n-gon network with positive real conductivities, the quadratic equa-
tion (11) has a unique solution (single root of multiplicity 2). Thus, knowing that
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α =
γ1,2n+1γn+1,2n+1

σ1
and assuming α is the only solution yields α2 = −bn+1pn−1

qn
.

Squaring the first equation and setting both forms of α2 equal results in the equa-
tion:

(17)
pn−1

qn
=

γ1,2n+1γn+1,2n+1

γn,2n+1γ2n,2n+1

Study of equation (17) gives us the intuition to rewrite the recursive formulas for
the determinants of Pk−1. This allows us to prove directly the conditions necessary
for unique recoverability of the n-gon in n-gon networks. The results that follow

are based on special properties of the tri-diagonal matrix P̃k−1, the modified matrix
associated with Pk−1 in Section 4.

Claim 5.1. The recursive determinantal relations, for det(P̃k−1) = pk−1 may be
rewritten as:

pk = β1,1qk +
k∏

i=1

βi,i+1(18)

qk = βk,k+1qk−1 +
k∏

i=2

βi,i(19)

Proof. The proof goes by induction. Assume for all 1 ≤ k < k + 1, pk = β1,1qk +∏k
i=1 βi,i+1. The base case is simple, because p1 = β1,1q1+ β1,2 = β1,1+ β1,2 is the

first entry in the matrix P̃k. Since pk+1 = ak+1pk + bk+1pk−1 by definition,

pk+1 = (βk+1,k+1 + βk+1,k+2)pk − βk,k+1βk+1,k+1pk−1.

Then by the inductive hypothesis,

pk+1 = (βk+1,k+1 + βk+1,k+2)(β1,1qk +

k∏

i=1

βi,i+1)

−βk,k+1βk+1,k+1(β1,1qk−1 +

k−1∏

i=1

βi,i+1),

which in turn equals

β1,1[(βk+1,k+1βk+1,k+2)qk − βk,k+1βk+1,k+1qk−1] +

k+1∏

i=1

βi,i+1.

Since ak+1 = βk+1,k+1 + βk+1,k+2 and bk+1 = −βk,k+1βk+1,k+1,

pk+1 = β1,1qk+1 +

k+1∏

i=1

βi,i+1

and this completes the proof of the first relation. Assume for all 2 ≤ k < k + 1,

qk = βk,k+1qk−1 +
∏k

i=2 βi,i. The base case is simple, because q2 = β2,3q1 + β2,2 =
β2,3 + β2,2. Since qk+1 = ak+1qk + bk+1qk−1 by definition,

qk+1 = (βk+1,k+1 + βk+1,k+2)qk − βk,k+1βk+1,k+1qk−1.

= βk+1,k+2qk + βk+1,k+1qk − βk,k+1βk+1,k+1qk−1.
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By the inductive hypothesis,

(βk+1,k+1)qk = (βk+1,k+1βk,k+1)qk−1 + βk+1,k+1

k∏

i=2

βi,i.

Substitution yields

qk+1 = (βk+1,k+2)qk +

k+1∏

i=2

βi,i,

which concludes the proof. ¤

Theorem 5.2. The discriminant
√
b2 − 4ac for a n-gon in n-gon network is always

real.

Proof. Recall that

a = qk−1

b = bkqk−1 − pk−1

c = −bkpk−2 and
bk = −β1,1βk−1,k.

Applying equations (1) and (2) in order to write everything in terms of qk−2 we
find that

a = βk−1,kqk−2 +
∏k−1

i=2 βi,i
b = −2(β1,1βk−1,k)qk−2 −

∏k−1
i=1 βi,i −

∏k−1
i=1 βi,i+1

c = (β1,1)
2βk−1,kqk−2 + (β1,1)

2
∏k−1

i=1 βi,i+1.

Thus

b2 − 4ac = 4(β1,1βk−1,k)
2(qk−2)

2 + 4β1,1βk−1,k(
∏k−1

i=1 βi,i
+
∏k−1

i=1 βi,i+1)qk−2 + (
∏k−1

i=1 βi,i +
∏k−1

i=1 βi,i+1)
2

−4(β1,1βk−1,k)
2(qk−2)

2 − 4β1,1βk−1,k

∏k−1
i=1 βi,i+1

−4β1,1βk−1,k

∏k−1
i=1 βi,i − 4

∏k−1
i=1 βi,i

∏k−1
i=1 βi,i+1

= (
∏k−1

i=1 βi,i −
∏k−1

i=1 βi,i+1)
2 ≥ 0.

Therefore the square root is always real. ¤

Corollary 5.3. A n-gon in n-gon network has a unique solution if and only if∏k−1
i=1 βi,i =

∏k−1
i=1 βi,i+1 if and only if

∏n
i=1 πi =

∏n
i=1 ωi where βi,i =

πiπn+i

σi
and

βi,i+1 =
ωiωn+i

σ(i mod n)+1
. (Refer to Figure 5.)

Consequently, if we denote the conductivities of an n-gon in n-gon network as
in figure 5, then the condition for the network to have a unique solution is that the
product of π’s equals to the product of ω’s. This surprisingly simple and elegant
result was not expected in earlier studies.

Conjecture 5.4. We believe that the type of symmetry involved in this geometric
mean of products of conductivities is related to the method of monodromy used in
recovering the 2 solutions to this type of looped network. There is room for further
exploration on this interpretation.
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Figure 5. Illustration of the geometry of the βi,j ’s.

6. Characterization of the Response Matrices

Aided by the culmination of the extensive work that has been done on theF−K
transformation by Jeff Russell and Tracy Lovejoy, we were able to find and prove
valid the characterization of the response matrices of n-gon in n-gon networks.
We assume that we are given a Kirchhoff matrix and list the algebraic properties
necessary for such a matrix to be a valid response matrix of an n-gon in n-gon
network.

Theorem 6.1. Any matrix Λ, which has the properties of a Kirchhoff matrix, is
the response matrix for an n-gon in n-gon network if and only if:

I. For n ≥ 3, |Λ| = 2n.
II. For i < j,

λij 6= 0 ⇐⇒ j = i+ 1, n+ i− 1, n+ i, n+ i+ 1 or i = 1 and j = 2n.
III. If matrix Pk is constructed as in equation (12), then

qk−1 > 0 and,
−λ1,nλn+1,2nqk−2 − pk−1 < 0 and,
λ1,nλn+1,2npk−2 > 0 and,
(−λ1,nλn+1,2nqk−2 − pk−1)

2 − 4λ1,nλn+1,2npk−2qk−1 ≥ 0
IV. For i ≤ n,

λi,(i mod n)+1λn+i,n+(i mod n)+1 = λ(i mod n)+1,n+iλi,n+(i mod n)+1

Proof. Certainly any matrix which does not satisfy properties I and II under any
possible rearrangement of rows cannot be a response matrix for an n-gon in n-gon
network. When property III is satisfied, there will be two real and positive solutions
to equation (11). This is equivalent to verifying that all the quadrilateral conditions
involving the cables of multiplicity 2 and the parallel edges connecting them are
satisfied because it is how we found the two solutions in the first place - by using
quadrilateral conditions. However, this only enforces one of the three quadrilateral
conditions which are present in a K4 transformed from a F4. Thus property IV
completes the set of quadrilateral conditions. And by Jeff Russell’s theorem that
K4 satisfies all the quadrilateral relations iff it came from a F4, we’ve proven that
each K4 in the network came from a F4. Therefore, the original network must
have been an n-gon in n-gon network because it is a cycle of F4’s. Hence this
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list of properties completely characterizes the response matrices of n-gon in n-gon
networks. ¤

7. The Counting Principle

The following definitions are for graphs that consist entirely of either Fn’s iden-
tified at certain boundary nodes or are Y −∆ equivalent toF’s identified at certain
boundary nodes with some boundary to boundary edges which can only come from
Y −∆ transformations.
Let’s denote a graph G and its associated F−K transformed graph GF.

1 2

3 4

δ

γ

λ

α

ε

β

Figure 6. K4-subset

Definition 7.1. Given a graph G, a K4-subset of G
F is a K4 that is a subset of a

Kn which is F−K transformed from some Fn in G for n ≥ 4.

Definition 7.2. A K4-cycle, being a subset of G
F, is a sequence C1C2C3...CnC1

[5] of n K4-subsets such that nodes 1 and 2 of Ci are identified with nodes 3 and 4
of Ci+1, respectively, and it satisfies the following properties:

(1) The conductivity of each cable of multiplicity 2, which necessarily exist in
the K4-cycle due to the identification of nodes, can be determined either
from an entry in the response matrix or through quadrilateral conditions
or Y −∆ relations in GF.

(2) No edge in a cable of multiplicity 2 can be determined by quadrilateral
conditions other than those in C1, C2, C3, ..., and Cn.

Remark 7.3. When property (1) fails, the graph is ∞ to 1.

Remark 7.4. When the properties in the definition of a K4-cycle are satisfied, the
single edges in the cables of multiplicity 2 can only be found by using the quadratic
resulting from the continued fraction discovered in the polygon in polygon networks
detailed earlier.

Definition 7.5. A K4-cycle is quadratic when the conductivities of either edges α
and β or edges ε and δ in each K4-subset can be uniquely determined from relations
in GF, allowing for an at most 2 to 1 solvable K4-cycle.
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Remark 7.6. To solve a quadratic K4-cycle is to solve the quadratic equation
resulted from the continued fraction found in polygon in polygon networks as ex-
plained earlier. Note that all such quadratic equations will definitely produce two
positive, real, but not necessarily distinct solutions, as proven earlier.

Lemma 7.7. Two quadratic K4-cycles whose intersection contains one or more
K4-subsets including their corresponding cables of multiplicity 2 are quadratically
equivalent in the sense that the solutions of the quadratic equation obtained through
constructing the continued fraction around one cycle completely determines the con-
ductivities on the other cycle.

Proof. Let α denote one of the edges in a cable of multiplicity 2 contained in the
intersection of the two quadratic K4-cycles. Solving for α as detailed in section 1
determines the conductivities of each single edge in every cable of multiplicity 2 in
both quadratic K4-cycles. ¤

Lemma 7.8. Lemma 7.7 defines an equivalence relation R on the set of all qua-
dratic K4-cycles in the graph GF.

Proof. Given quadratic K4-cycles p, q and r in a graph, with a relation R defined
as in lemma 7.7, certainly pRp, thus it is reflexive. Whenever pRq, qRp, thus the
relation is symmetric. If pRq and qRr, then since the information in p determines
all information in q, which in turn determines the information in r, pRr, hence the
relation is also transitive. Therefore this is an equivalence relation. ¤

Theorem 7.9 (The Counting Principle). If after F−K transformation on graph
G, the graph GF consists entirely of quadratic K4-cycles and edges of either uniquely
determined conductivities or conductivities entirely dependent on the solutions of
some K4-cycle, and n is the number of equivalence classes of quadratic K4-cycles,
then the graph is at most 2n to 1.

Proof. The equivalence relation in lemma 7.8 partitions the set of all quadratic K4-
cycles. Since each equivalence class yields at most two unique sets of conductivities
completely independent of any other class, and it is assumed that there are n
equivalence classes, and any edge outside of the equivalence classes can be either
uniquely determined or is entirely dependent on the solutions of some K4-cycle, the
entire graph is at most 2n to 1. ¤

8. Applications of the Counting Principle

First of all, we will define a way of denotingK4-cycles for convenience. Implicit in
the geometry of K4-subsets is a sequence of numbers corresponding to the vertices
of the quadrilateral. The sequence has four numbers, and their order corresponds to
the edges which make up the quadrilateral. Thus, if a sequence 1234 corresponds
to the quadrilateral of a K4-subset, the geometry of the sequence says that the
edges connecting vertex 1 to vertex 2, 2 to 3, 3 to 4 and 4 to 1 is the complete list
of edges of interest in the K4-subset quadrilateral. A K4-cycle in this manner can
be written as a sequence of such sequences, such that within every quadrilateral
sequence, the first pair and last pair of numbers correspond to cables of multiplicity
2 in the graph, and the last two numbers are repeated as the first pair of numbers
in the next K4-subset sequence.
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In the figures below, the tic marks on the edges are used to denote multiple
edges: one tic mark denotes a cable of multiplicity 2, two a cable of multiplicity 3,
etc.

Example 8.1 (The Fn Cycle). Since the polygon in polygon graph can be visual-
ized as a cycle of F4’s, what happens when we generalize the idea to include F5’s,
F6’s, or even Fn? The following exposition will explore this idea.
Let’s denote the boundary nodes of a Fn to be 1, 2, 3, ..., n.

Definition 8.2. A graph is a Fn cycle if it is a loop C1C2C3...CkC1 of k sub-
graphs of Fn such that nodes 1, ...,

n
2 of Ci are identified with nodes

n
2 + 1, ..., n

of C(i+1)modk when n is even, and that nodes 1, ..., n−1
2 of Ci are identified with

nodes n−1
2 +1, ..., n− 1 of C(i+1)modk and all node n’s are identified when n is odd,

respectively.
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Figure 7. F5 Cycle and its F−K transformed graph.
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Figure 8. F6 Cycle and its F−K transformed graph.

Figure 7 is a F5 cycle. Let α denote one of the edges in cable 14 of multiplicity
2 and β denote one of the edges in cable 27 of multiplicity 2. Then through certain
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quadrilateral conditions we can find the conductivity of β as a function of α:

(20) β = λ27 −
λ26(λ37 −

λ34(λ17 −
αβ

λ24
)

λ14 − α
)

λ36 −
λ13λ46

λ14 − α

.

Simplifying equation (20) yields:

β(λ24λ36λ14 − λ24λ13λ46 − λ24λ36α+ λ36λ34α) =

λ24(λ27λ36λ14 − λ27λ36α− λ27λ13λ46 − λ36λ37λ14 + λ36λ37α+ λ36λ34λ17).

Expanding the cable of multiplicity 2 as λ36 = ω1 + ω2, and writing the cable
λ14 = α+ δ, utilizing quadrilateral conditions the coefficient of β can be simplified
as:

λ24δω2 + ω1λ34α+ ω2λ34α > 0.

This indicates that β is uniquely determined by α, whose conductivity can be
determined by solving the quadratic K4-cycle 1452-5236-3641. By symmetry, all
the rest of the cables of multiplicity 2 are uniquely determined by α. Therefore,
there is only one quadratic K4-cycle in the graph and the conductivities of the rest
of the edges all depend entirely on the conductivities obtained by solving the cycle.
The F5 cycle is at most 2 to 1.
Figure 8 is aF6 cycle. TheF−K transformed graph contains several quadratic

K4-cycles. However, consider the quadratic K4-cycle C=4785-8569-6974. Since all
the quadratic K4-cycles in the graph intersect at some K4-subset with each other,
by lemma 7.7, every other quadraticK4-cycle in the graph is in the same equivalence
class as C. Therefore, by theorem 7.9, the F6 cycle is at most 2 to 1.

Remark 8.3. The F6 cycle graph drawn here can easily be generalized to having
n F6’s connected in a cycle, and it would still have the same 2 to 1 property.

Proposition 8.4. All Fn cycles are at most 2 to 1. (Will be proven later)

Example 8.5 (The Threepede Cycle). This is an example of a 2 to 1 graph that,
after Y −∆ transformations, becomes a graph consisting only of Fn’s identified at
boundary nodes and additional boundary to boundary connections.

1

2

3

4

5

6
7

8

9

Figure 9. The Threepede Cycle, its Y − ∆ equivalent, and its
F−K transformed graph.
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Figure 9 is a threepede cycle. It can also be recognized as aF6 cycle with certain
boundary to boundary connections, whose conductivities can be easily recovered
after we have recovered the embeddedF6 cycle. Therefore, following the arguments
given for the F6 cycle, the threepede cycle is at most 2 to 1.

Remark 8.6. This graph can easily be generalized to having n threepedes con-
nected in a cycle, and it would still have the same 2 to 1 property.

Example 8.7 (The Race Track[4]). Figure 10 is the race track graph. In order
to determine α, we solve the quadratic K4-cycle 1245-4567-67910-91012. All edges
in the K4-subsets 3874 and 3892 are determined by the solutions of the quadratic
K4-cycle through quadrilateral conditions. Therefore, the race track graph is at
most 2 to 1.

2 9

4 7

3 8

1 10

5 6

α

K
K

K

K

K

K

Figure 10. The Race Track graph and its F−K transformed graph.

Remark 8.8. The graph can be easily generalized to having “longer race track”
by adding more F4’s to top and bottom, and the graph will still be at most 2 to 1
by the same argument.

Example 8.9 (The (n,k)-torus). Figure 11, the (3,3)-torus, is an example of an at
most 64 to 1 network.

Figure 11. The (3,3)-torus, three triangle in triangle graphs con-
nected in a cycle.

The triangle in triangle network can be visualized as lying on a cylinder, thus
this graph can be visualized as lying on a torus.
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Figure 12. Three triangle in triangle graphs connected in a cycle
as visualized on a torus.

Figure 13. Topological equivalent of three triangle in triangle
graphs connected in torus and its F−K transform.

When visualized this way, the counting principle can be applied. There are
6 disjoint equivalence classes of quadratic K4-cycles corresponding to the three
cycles around each cylinder and three cycles around the torus. Thus this graph
is 26 to 1, or 64 to 1. This can be generalized to n triangle in triangle networks
connected in a cycle. There will still be three equivalence classes of quadratic K4-
loops corresponding to cycles around the torus, but now with n equivalence classes
corresponding to the cycles around each of the n cylinders. Hence this is a 2n+3 to
1 network. This can be further generalized to k n-gon in n-gon networks connected
in a cycle. There are now n equivalence classes corresponding to n quadratic K4-
cycles around the torus, and k equivalence classes corresponding to k quadratic
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K4-cycles around each cylinder. Thus this yields a network that is at most 2
k+n to

1.

Example 8.10 (The Spider). Figure 14, the spider, is an example of a 4 to 1
network which contains cycles that are not actually K4-cycles.

1

2 3

4

56

1

2 3

4

56

7

8

7 8

K

Figure 14. Six F4’s connected to a F6 before and after F−K transformation.

There are several subsets of quadrilaterals which appear to be K4-cycles, begin-
ning and ending at the cables of multiplicity 2 that connect the nodes of the F−K
transformed F6, which loop through the cable of multiplicity 6 connecting nodes
7 and 8. However, these are not K4-cycles as they do not satisfy property (2) of
definition 7.2. Quadrilateral conditions using the single edges on the interior of
the K6 can be used to find the single edges in each cable of multiplicity 2 around
the outside. Thus each of the six edges connecting nodes 7 and 8 can be solved
uniquely. Thus the only two distinct equivalence classes of quadratic K4-cycles
correspond to two cycles which utilize the long cables of multiplicity 2 connecting
nodes 7 and 8 to nodes 1 through 6. The two quadratic K4-cycles are: 8127-7238-
8347-7458-8567-7618 and 7128-8237-7348-8457-7568-8617. These K4-cycles are not
equivalent because the only other quadrilaterals involving the cables of multiplicity
2 of interest are quadrilaterals such that all sides are cables of multiplicity 2, thus
no information can be gained through quadrilateral conditions. Hence this network
is at most 4 to 1.

9. Conclusion

Although we were able to determine when an n-gon in n-gon network has a
unique solution in terms of conductivities on our original Kirchhoff matrix, we
have not found a simple relationship directly from entries in the response matrix
other than to demand the discriminant be zero. There is more work to be done
in the characterization of unique solutions from the response matrix as well as



20 JENNIFER FRENCH AND SHEN PAN

the formulation of a geometric understanding of the conductivity pseudo-symmetry
which produces unique solutions to the inverse problem.

Conjecture 9.1. In a graph composed entirely of Fn’s with boundary nodes
identified, the only way to get a 2n to 1 graph is through the existence of cycles.

There is also more work to be done in understanding the highly non-linear re-
lationship between the two Kirchhoff matrices that have the same response in an
n-gon in n-gon network.
Although all graphs we have considered involve multiple solutions in powers of

2, a problem of interest is to find a 3 to 1 graph, which we are certain can not
possibly have a cycle of F’s, which would yield a quadratic.
It is important to note that none of the graphs we studied were circular planar.

The theory of k-connections in [3] is based on a circular ordering and the information
this provides. Another interesting problem is to try to find a connections between
n to 1 graphs and permutations of k-connections in the graph, and perhaps truly
understand conditions on determinants of existent k-connections in the non-planar
case.

10. MATLAB Code

The following program randomly generates a Kirchhoff matrix for an n-gon in
n-gon network, where n is specified by the user.

n = input(’Please enter n for a randomly generated n-gon in n-gon network:’);

K = zeros(3*n,3*n);

for i = 1:n

K(i,2*n+i) = rand;

K(i,2*n+mod(i,n)+1) = rand;

K(n+i,2*n+i) = rand;

K(n+i,2*n+mod(i,n)+1) = rand;

end

K = K + K’;

for i = 1:length(K(1,:))

K(i,i)=-sum(K(i,:));

end

n = length(K(1,:))/3;

L = getL(K, 2*n);

K

L

Given a Kirchhoff matrix, the following program calculates the response matrix.

function L = getL(K,n)

A = K(1:n,1:n);

C = K((n+1):end,(n+1):end);

B = K(1:n,(n+1):end);

L = A - B*(inv(C))*B’;

Given a response matrix Λ, the following program checks to see if Λ is a valid response
for an n-gon in n-gon network. If it is valid, the program returns the two (not necessarily
distinct) matricesB1 andB2 that contain all information within the two Kirchhoff matrices
corresponding to Λ.

function K = ngon(L)

isResponse = true;

if mod(length(L(1,:)),2) ~= 0
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isResponse = false;

end

n = length(L(1,:))/2;

Pk = zeros(n+1, n+1);

for i = 1:n

Pk(i, i) = L(i, n+i);

if i ~= n

Pk(i, i+1) = L(i, i+1);

Pk(i+1, i) = L(n+i, n+i+1);

end

end

Pk(n, n+1) = L(n, 1);

Pk(n+1, n) = L(n+1, 2*n);

k = n + 1;

bk = -Pk(k-1, k)*Pk(k, k-1);

a = det(Pk(2:k-1, 2:k-1));

b = bk*det(Pk(2:k-2, 2:k-2)) - det(Pk(1:k-1, 1:k-1));

c = -bk*det(Pk(1:k-2, 1:k-2));

discriminant = sqrt(b*b - 4*a*c);

if a <= 0 | b >= 0 | c <=0 | (b*b - 4*a*c) < 0

isResponse = false;

end

for i = 1:n

if abs(1 - Pk(i,i+1)*Pk(i+1,i)/(L(i,n+mod(i,n)+1)*L(mod(i,n)+1,n+i)))

> 0.0000000001

isResponse = false;

end

end

if isResponse == true

disp(sprintf(’The response matrix given is the response matrix of an

%d-gon in %d-gon network.’,n,n))

alpha1 = (-b + discriminant)/(2*a);

alpha2 = (-b - discriminant)/(2*a);

B1 = ngon_getB(L,Pk,alpha1);

B2 = ngon_getB(L,Pk,alpha2);

B1

B2

K = [B1,B2];

else

disp(sprintf(’The response matrix given is NOT the response matrix of

an %d-gon in %d-gon network.’,n,n))

K = 0;

end

Given α as in Section 2, the following program calculates the matrix B of the Kirchhoff
matrix.

function result = ngon_getB(L,Pk,alpha)

n = length(L(1,:))/2;

B = zeros(2*n, n);

for i = 1:n

otheredge = L(i,n+i)-alpha;

back = [i-1,n+i-1];

forward = [i+1,n+i+1];
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if i == 1

back = [n,2*n];

elseif i == n

forward = [1,n+1];

end

B(i,i) = alpha + L(i,back(1)) + L(i,back(2))

+ alpha*L(i,back(2))/L(n+i,back(2));

B(i,mod(i,n)+1) = otheredge + L(i,forward(1)) + L(i,forward(2))

+ otheredge*L(i,forward(2))/L(n+i,forward(2));

B(n+i,i) = alpha + L(n+i,back(1)) + L(n+i,back(2))

+ alpha*L(n+i,back(1))/L(i,back(1));

B(n+i,mod(i,n)+1) = otheredge + L(n+i,forward(1)) + L(n+i,forward(2))

+ otheredge*L(n+i,forward(1))/L(i,forward(1));

alpha = Pk(i,i+1)*Pk(i+1,i)/otheredge;

end

result = B;
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