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Abstract. In studying most matrices, examining the eigenvalue problem
yields a great wealth of information. Likewise, in the inverse problem for

electrical networks, the eigenvalues and eigenvectors contain data which char-
acterizes the entire system. Using this idea, it is possible to make sense of

concepts that appear in the continuous counterpart.

1. Introduction

The paper revolves around the comcept of solving inverse problems with eigen-
values and eigenvectors. As in any calculations involving matrices, examining the
eigenvalue problem brings forth elegant and strightforward results, which reveals
valuable information from another perpective.

In order to understand the process of recovering stars with the eigenvalue prob-
lem, it is first necessary to understand some of the properties of the response and
Kirchoff Matrices.

1.1. Properties of Symmetric Matrices. Observe that both the response and
the Kirchhoff matrices are symmetric. Consequently, the two matrices have impor-
tant properties illustrated in the following theorem:

Theorem 1.1. Suppose we have a symmetric matrix M. Then M has the properties
such that:
1. All eigenvalues are real.
2. Eigenvectors corresponding to different eigenvalues are orthogonal.
3. The eigenvectors span a linearly-independent complete set, or form a basis.

1.2. Other Theorems. In order to proceed with the eigenvalue method in the
simplest manner, it is necessary to state the following theorems.

Theorem 1.2. Given an orthonormal matrix N, the inverse matrix N−1 = NT .

Proof. Let N be represented in the form of vectors, or

N = [n1, n2, · · · , nk].

Then the tranpose of N can be written as
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NT =




nT
1

nT
2
...
nT

1


 .

Multiplying the two yields

NTN =




nT
1

nT
2
...
nT

1


 [n1, n2, · · · , nk].

Since nT
i nj =

{
1, if i = j

0, if i 6= j
, we can conclude that NTN = I.

�

In order to use Theorem(1.2), an orthogonal set must be given. Thus the follow-
ing theorem ensures that orthogonality condition is satisfied.

Theorem 1.3. Given a symmetric matrix M, it is possible to produce the eigen-
vectors in such a way as to obtain an orthonormal basis.

Proof. For eigenvectors corresponding to different eigenvalues, Theorem(1.1) en-
sures that we obtain an orthogonal set. From statement three of Theorem (1.1),
the multiplicity number of each eigenvalue equals the number of linearly indepen-
dent eigenvectors. Thus applying the Gram Schmidt Orthogonalization process to
the set, we obtain an orthogonal basis which can then be normalized.

�

2. The Three Boundary Node Network

With the theorems in the previous section, it is now possible to represent the
response matrix in a form utilizing the eigenvalues and eigenvectors. Further, we
will examine when the response matrix is valid.

2.1. A Representation of the Response Matrix. In recovering the response
matrix, we will make use the following eigenvalue problem:

(1) Λv = µv

where Λ is the response matrix, µ is an eigenvalue, and v is a normalized eigenvec-
tor. Since Λ has the property such that the row sum is zero, we immediately observe
that one of the solution to (1) is µ = µ1 = 0 with the corresponding eigenvector
v = v1 = 1√

3
(1, 1, 1). Now, let us assign the other eigenvalues and eigenvectors as

µ = µ2 with v2 = (a1, a2, a3) and µ3 with (b1, b2, b3) such that the two vectors are
normalized.

Let P and D be a matrices such that P = [v1, v2, v3] while D be a diagonal matrix
with entries µ1, µ2, µ3 in the respective order. Thus, the eigenvalue problem can be
reformulated in the matrix form
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(2) ΛP = PD

Notice that P is an orthonormal matrix, possessing the property such that P−1 =
P T . Utilizing the orthonormality, we see that the response matrix can be written
as

(3) Λ = PDP T

or

Λ =




1√
3

a1 b1
1√
3

a2 b2
1√
3

a3 b3






0 0 0
0 µ2 0
0 0 µ3







1√
3

1√
3

1√
3

a1 a2 a3

b1 b2 b3




Computing the matrix multiplication term by term, we reach the following formula

(4) Λ =




a2
1µ2 + b21µ3 a1a2µ2 + b1b2µ3 a1a2µ2 + b1b3µ3

a1a2µ2 + b1b2µ3 a2
2µ2 + b22µ3 a2a3µ2 + b2b3µ3

a1a2µ2 + b1b3µ3 a2a3µ2 + b2b3µ3 a2
2µ2 + b22µ3


 .

2.2. The Validity of the Response Matrix. In order to confirm that (4) is
indeed a valid representation, it is necessary to provide conditions to ensure the
properties held by a response matrix. Thus, we will now present two ways to reach
the conditional statements. The first approach will utilize the response matrix of
form (4) to obtain three conditions with eight parameters. In contrast, the second
method will use a slightly modified version of (4) to simply the three conditions
using three parameters.

2.2.1. The Three Conditions with Eight Parameters. Observing that one of the
eigenvalue is µ = 0, it can be readily be seen that the row sums of (4) are zero.
Thus let us proceed to check the sign of the diasgonal entries.
Since the eigenvalues are non-negative numbers, it follows that the diagonal terms
are also positive. To ensure that the off-diagonals are negative, we find the following
relations:

(5) a1a2µ2 + b1b2µ3 ≤ 0

a1a3µ2 + b1b3µ3 ≤ 0
a2a3µ2 + b2b3µ3 ≤ 0

To simply the three relations , let us first examine a property of the eigenvectors.
Recalling Theorem(1.3), we see that the vectors form an orthogonal set. Note that
one of the eigenvector is v = v1 = 1√

3
(1, 1, 1), which directly implies that the sum

of the components of each eigenvector is equal to zero.

(6) a1 + a2 + a3 = 0
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b1 + b2 + b3 = 0

Since the eigenvectors form an orthonormal set, we see that

a2
1 + a2

2 + a2
3 = 1

Completing the square and using (6) yields

(a1 + a2 + a3)2 − 2(a1a2 + a2a3 + a3a1) = −2(a1a2 + a2a3 + a3a1) = 1

Applying the same procedure to v3 and multiplying each of the equation with its
respective eigenvalue, we arrive at

µ2(a1a2 + a2a3 + a3a1) =
−1
2
µ2

µ3(b1b2 + b2b3 + b3b1) =
−1
2
µ3

Adding the two equations, we obtain the following formula:

(7) X + Y + Z =
−1
2

(µ2 + µ3)

where X = a1a2µ2 + b1b2µ3, Y = a2a3µ2 + b2b3µ3, Z = a1a3µ2 + b1b3µ3.
Recall that the row sums of the response matrix are zeroes. Thus, we see that

(8) Z +X = −(a2
1µ2 + b21µ3)

X + Y = −(a2
2µ2 + b22µ3)

Y + Z = −(a2
3µ2 + b23µ3)

We see that X, Y, and Z must be negative for the response matrix to be valid. Now,
taking the difference of (7) with (8), we arrive at a condition to ensure a valid Λ.

(9) µ2(a2
i −

1
2
) + µ3(b2i −

1
2
) ≤ 0

where i = 1, 2, 3.

2.2.2. Reduction to Three Parameters. Since the eigenvectors of the response ma-
trix form an orthogonal set and have component sum equal to zero, it is natural to
search for the existence of a condition using fewer variables in checking the validity
of Λ. Before we proceed, we must first modifiy the eigenvectors to gain a represen-
tation in which the vectors are described by three parameters.
We see that setting the last components, or a3 and b3 as one will give us no loss of
generality. By the property of component sums equaling to zeroes and setting a1

as x > 0, we see that a2 is −(1 + x). Similarily, b2 can be written as −(1 + b1).
From the orthogonality property, we arrive at an equation relating the eigenvectors,
where b1 = − 2+x

(1+2x) . Thus the eigenvectors, in the orthonormal form, are
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(10) a = ν1




x
−(1 + x)

1


 , b = ν2




b1
−(1 + b1)

1




where ν1 = 1
2(x2+x+1) and ν2 = (2+x)2

6(x2+x+1) are normalization constants.
Using the eigenvectors (10) and following the same steps as in section 2.2.1, we see
the following relations:

(11) −1
2
)(µ2 + µ3) +

µ2a
2
i

ν1
+
µ3b

2
i

ν2
≤ 0

for i = 1, 2, 3.

Using the single parameter x to represent the values of the eigenvectors, it is possible
to derive the following sets of equations.

(12)
1

2(x2 + x+ 1
[(−1)µ2(x+ 1) + (−1)

µ3

3
(2x2 − x− 1)] ≤ 0

1
2(x2 + x+ 1

[µ2(x) −
µ3

3
(2x2 + 5x+ 2)] ≤ 0

1
2(x2 + x+ 1

[(−1)µ2(x2 + x) +
µ3

3
(x2 + x− 2)] ≤ 0

2.2.3. Symmetric Network. From the representation in equation (12), it is possible
to observe an interesting property. Taking a look at a symmetric network, or graphs
with µ2 = µ3, we see that the substitution µ2 with µ3 for each of the expression in
(12) yields

(13)
−1
3
µ3 ≤ 0

−1
3
µ3 ≤ 0

−1
3
µ3 ≤ 0

which is satisfied for all cases involving valid eigenvalues. Thus for a three
boundary node network with symmetric conductivities, the eigenvector and eigen-
value pair can be constructed with equation (10) to ensure a valid response matrix
for all cases.
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2.2.4. The Single Condition. Examining equation (12), observe that the factor
1

2(x2+x+1) can be cancelled out since x ≥ 0. Thus we will examine the simplified
version of (12).

(14) [(−1)µ2(x+ 1) + (−1)
µ3

3
(2x2 − x− 1)] ≤ 0

[µ2(x) −
µ3

3
(2x2 + 5x+ 2)] ≤ 0

[(−1)µ2(x2 + x) +
µ3

3
(x2 + x− 2)] ≤ 0

Now let us find a relation to relate the two eigenvalues µ2 and µ3 by shifting
one of the terms in each of the the inequalities to the other side. With simple
manipulations to obtain a relation with µ2 being represented by the parameters
x > 0 and µ3, we find that

(15) µ2 ≥ µ3

3
[
−2x2 + x+ 1

x+ 1
]

(16) µ2 ≤
µ3

3
[
(2x+ 1)(x+ 2)

x
]

(17) µ2 ≥ µ3

3
[
(x− 1)(x+ 2)

(x)(x+ 1)
]

.

Observe that (16) gives the upper bound for µ2 while the inequalities (15) and
(17) give the lower bounds. For later purposes, we will introduce the following
notation: A = µ3

3
[−2x2+x+1

x+1
], B = µ3

3
[ (2x+1)(x+2)

x
], and C = µ3

3
[ (x−1)(x+2)

(x)(x+1)
]. Now,

let us compare (15) and (17).

Suppose A ≥ C. Then, by some algebra, we find that (2x3 + 3x2 + 3x − 2) ≤ 0.
Similarily, if we consider A ≤ C, we obtain (2x3 + 3x2 + 3x− 2) ≥ 0.

Examination of the polynomial (2x3 + 3x2 + 3x− 2) yields that there exists only
one real root, which by numerical calculation is given by x = xc = .42944454 · · · .
Thus, the Critical Point for the system occurs at x = xc.

Summing up the results, we arrive at the following condition that will ensure a
valid response matrix.

(18) Λ valid <=>

{
µ3
3 [ (x−1)(x+2)

(x)(x+1) ] ≤ µ2 ≤ µ3
3 [ (2x+1)(x+2)

x ], if x ≤ xc

µ3
3

[−2x2+x+1
x+1

] ≤ µ2 ≤ µ3
3

[ (2x+1)(x+2)
x

], if x ≥ xc
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Figure 1. Three Node Star Graph

2.3. Recovering the Conductivities for Y-Graph. With the response matrix
in the form of (4), it is possible to find the conductivities of the Y-Graph using only
the values contained in the eigenvalues and eigenvectors.
To recover the conductivities of the network, the following relations found in [1]
can be used

(19) α = −λ1,1 + λ1,2(λ2,3)−1λ3,1

β = −λ2,2 + λ2,3(λ3,1)−1λ1,2

δ = −λ3,3 + λ3,1(λ1,2)−1λ2,3−

Through explicit calculations, (19) reduces to the following which gives a symmetric
representation in terms of eigenvalues and eigenvectors.

(20) α = − µ2µ3

a2a3µ2 + b2b3µ3
[[a2

1(b2b3) + (a2a3)b21] − [a1b1(a2b3 + a3b2)]]

β = − µ2µ3

a1a3µ2 + b1b3µ3
[[a2

2(b1b3) + (a1a3)b22] − [a2b2(a1b3 + a3b1)]]

δ = − µ2µ3

a1a2µ2 + b1b2µ3
[[a2

3(b1b2) + (a1a2)b23] − [a3b3(a1b2 + a2b1)]]

3. The General N Boundary Node Network

In the previous sections, we introduced the readers to the case with three bound-
ary nodes. Now, let us generalize the results to a N boundary node system.
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3.1. The Response Matrix. Following the steps in section 2.1, we see that the
Response Matrix can be represented as Λ = PDP−1. To see how Λ is constructed
by the entries of µ and v̂, we will introduce the following notation:

v̂1 =




0
0
...
0


 , v̂2 =




v2,1

v2,2

...
v2,N


 , · · · , v̂N =




vN,1

vN,2

...
vN,N


 ,

with corresponding eigenvalues µ1, µ2,· · · , and µN . Then the entries of the Re-
sponse Matrix can be written as follows:

(21) λi,j =





∑N
k=2 µk v

2
k,i, if i = j

∑N
k=2 µk vk,i vk,j, if i = j.

3.2. Vaildity of the Response Matrix. To ensure that the NxN matrix is a valid
response, let us take a look at the row sums. Since each of the vector component
sum is zero, or

∑N
k=1 vi,k = 0, the row sums of the matrix equal to zero, which can

be shown by explicit computation.

The second condition requires that the diagonal entries are non-negative and the
off-diagonal values to be non-positive. Since the first case of (21) involves only the
combinations of the eigenvalues and the squares of the eigenvector components, the
diagonal terms are indeed non-negative for all choices of v’s and µ’s.

Note the normal property
∑N

k=1 v
2
i,k = 1. By completing the squares and mul-

tiplying the corresponding µ for each i = 2, 3 · · · , N , we obtain the following in-
equalities:

(22)
−1
2

(
N∑

k=2

µk) +
N∑

k=2

µkv
2
k,i ≤ 0

for i = 1, 2, · · · , N .

4. The Green’s Function

Like in the continuous case, an analogue to the Green’s function can be under-
stood for the discrete problems. In Karen Perry’s paper [3], the Green’s function
is presented in the following manner:

(23) G = C−1
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where K =
[
A B
BT C

]
.

Now let us proceed with finding a spectral, or the eigenvalue/eigenvector represen-
tation for the Green’s function given in (23).

4.1. The Kirchhoff Matrix and the M-Interior/N-Boundary Node Net-
work. Since the Green’s function is associated with the interior nodes of the net-
work, it is natural to work with the Kirchhoff matrix instead of the response matrix.
However, given that the eigenvalues and the eigenvectors given are those associated
with the Kirchhoff matrix, the same arguement given in section 3 can be given.
Thus let us introduce the following eigenvalues and the eigenvectors.

(24) ŵi =
[
~Ui

~Ii

]
with φi

where ~Ui is a Nx1 vector that correspond to the potentials on the boundary
nodes and ~Ii a Mx1 vector incorporating the voltages at the interior nodes. Here,
we note that wi is a normalized.

Using the pair given in (24), we see that the Kirchhoff matrix is represented as

(25) K =




∑N+M
i=2 φi

~Ui
~Ui

T ∑N+M
i=2 φi

~Ui
~Ii

T

∑N+M
i=2 φi

~Ii ~Ui
T ∑N+M

i=2 φi
~Ii~Ii

T




4.2. The First Spectral Representation of the Green’s Function. With the
Kirchhoff matrix in the form of (25), we can now procceed to show the first spectral
analogue of the Green’s function for a M-interior node network. By (25), we see
that

(26) C =
N+M∑

i=2

φi
~Ii~Ii

T

Thus the Green’s function is given by

(27) G = [
N+M∑

i=2

φi
~Ii~Ii

T
]−1

.
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4.3. The Second Spectral Representation of the Green’s Function. To find
the second representation of the Green’s Function, we will use the property such
that the boundary voltages are zeroes. Thus, the only relevent information is con-
tained in the interior nodes.

Let ~zi and ψi for i = 1, 2, · · · ,M be the eigenvector, eigenvalue pair for matrix
C. Then C can be written as

(28) C =
M∑

i=2

ψi~zi~zi
T

Thus, we see that the Green’s function is represented as

(29) G = [
M∑

i=2

ψi~zi~zi
T ]−1

5. Conclusion

In examining the roles of the eigenvector/eigenvalue pairs in the response matrix
in, it is possible to understand exactly how powerful and useful the eigenvalue
problem is. Since the cases studied can be applied to any network with the specified
number of nodes, it can be concluded that the eigenvalues and the eigenvectors
contain the entire information about a network.

6. Future Work

For future studies, he following two problems may yield interesting results:

1.To find a single condition for the generalized N node network to satisfy the char-
acterization of the response matrix.
2.To find the relationship between the eigenvalues and eigenvectors of (27) and (29).
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