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1 Critical Graph Embedding

1.1 Introduction

This paper is motivated by the following informal question: when is there only one way to draw a
graph?

We first must translate this question into a well-posed problem. We confine ourselves to a
discussion of planar graphs. Which planar graphs have the property that all their embeddings are
topologically isomorphic?

We begin by presenting an inductive argument that critical circular-planar graphs have a unique
embedding given an ordering of the boundary nodes. We perform a double induction on the number
of interior vertices and the number of adjacent boundary-to-boundary edges. We then proceed
through another induction, this time arguing that the interior faces of critical circular-planar graphs
are embedding-invariant regardless of the ordering of the boundary nodes. This second induction
is a double induction on the number of interior vertices and the number of interior faces. For the
purposes of brevity, when we use the word “graph” we mean a graph that is critical circular-planar
unless otherwise indicated.

1.2 Results

Definition. An embedding of a graph G in a surface S is a one-to-one map f : G — S such that
vertices map to points in S and edges map to simple disjoint curves in S that connect their boundary
points. A face is a surface, bounded by edges in f(E) and the circular boundary of the graph, that
is topologically equivalent to a disc.!

Theorem 1. A critical circular-planar graph with ordered boundary vertices is uniquely em-
bedded in the plane.

For the following proof, an ordering of the boundary vertices is assumed when the word “graph”
is used.

Interior Vertex Base Case. Our base case is a graph with no interior vertices.

Claim: A graph with no interior vertices is embedding-invariant.

Proof. Given an embedding, the faces of a graph with no interior vertices will fall into three
types: those bounded by an adjacent boundary-to-boundary (8 — 8) edge and the circular boundary
of the graph; those bounded by at least one non-adjacent 8 — 0 edge and the circular boundary of the
graph; and those bounded by d — @ edges only. The first of these three types is embedding-invariant
since the boundary vertices are guaranteed to be adjacent in any embedding by our ordering of the
boundary vertices. The ordering also ensures preservation of faces of the second type. The Jordan

1This definition is taken from Jeff Eaton and Owen Biesel’s paper, ” Circular-planar self-dual graphs.”



curve theorem gives us embedding-invariance of the third type of face. Thus we find that a critical
circular-planar graph with no interior vertices equipped with an ordering of the boundary vertices
has only one embedding.

Interior Vertex Inductive Hypothesis. We now assume there is a unique embedding for a
graph with n interior vertices.

Given a graph with n + 1 interior vertices, we can induct on the number of adjacent d — 9 edges.

Adjacent Boundary-to-Boundary Base Case. Our base case is a graph with no adjacent
0 — 0 edges.

Claim: A graph with n + 1 interior vertices and no adjacent 0 — 0 edges is embedding-invariant.

Proof. By Lemma 8.6 [1], there is at least one boundary spike on a graph with no adjacent § — 9
edges, and we can contract this boundary spike to form an n-interior-vertex graph. Contracting the
spike shortens an edge of the the faces it borders. Note that this n-interior-vertex graph is both
critical and electrically equivalent to the n + l-interior-vertex graph, so we can apply the inductive
hypothesis: By construction, the n-interior-vertex graph has identical faces to that of the (n + 1)-
interior-vertex graph, so we conclude that the (n + 1)-interior-vertex graph is embedding-invariant.

Adjacent Boundary-to-Boundary Inductive Hypothesis. Now assume that there is a
unique embedding for a graph with n + 1 interior vertices and m adjacent 0 — 0 edges.

Claim: A graph with n+1 interior vertices and m+1 adjacent 0—0 edges is embedding-invariant.

Proof. Given a graph with m + 1 adjacent 0 — 0 edges, we can reduce to a graph with m adjacent
0 — 0 edges by deleting a 0 — 0 edge. This operation deletes an embedding-invariant face, as shown
previously, so we can conclude that a graph with m + 1 adjacent 0 — 0 edges is embedding-invariant.

This concludes the proof.

Now we wish to show a slightly stronger result.

Definition. Given a circular-planar graph, an interior face is one that is bounded by edges of
the graph only (not the circular boundary).

Theorem 2. Given a critical circular-planar graph G, the interior faces of G are embedding-
invariant regardless of the ordering of the boundary vertices.

Again we use double induction.

Interior Vertex Base Case. Our base case is again a graph with no interior vertices.

Claim: The interior faces of a graph with no interior vertices are embedding-invariant.

Proof. We are concerned with polygons bounded by boundary-to-boundary edges. The Jordan
curve theorem guarantees that these polygons will exist in any embedding; it remains to show that
if the polygons are empty in one embedding, that they are empty in all other embeddings (and
thus are embedding-invariant). This follows immediately from the fact that all of the vertices in the
polygons lie on a circular boundary.

Interior Vertex Inductive Hypothesis. We now assume that the faces of an n-interior-vertex
graph are embedding-invariant.

Given a graph with n + 1 interior vertices, we can induct on the number of faces:

An n + 1-interior-vertex graph with one face trivially has the desired property. We now assume
that for a graph with m faces and n+1 interior vertices, the m faces are embedding-invariant. There
are two ways to reduce the n + l-interior-vertex m + 1-face graph: reduce the number of interior
vertices or reduce the number of faces. The first case (reducing the number of interior vertices)
proceeds easily by deleting a boundary spike, if such a spike exists in the graph. If no such spike
exists, we are forced into the second form of reduction. By deleting adjacent boundary-to-boundary
connections, eventually either we will produce a boundary spike or we will reduce the number of
faces in the graph by one. What we want to now show is that when reduce the number of faces in
the graph, we do so in such a way as to secure the embedding-invariance of the face we lose. Note
that deleting a boundary-to-boundary edge always merges two faces, either two interior faces, or an



interior face and a face adjacent to the so-called north pole when we consider the graph on a sphere.
So we can proceed by contradiction: Assume that deleting a boundary-to-boundary edge merges
different faces in different embeddings. Then there were two different ways to embed the reduced
graph, contradicting our induction hypothesis.

2 Whitney’s Theorem

Although the section above was devoted to the study of critical circular-planar graphs, the question
posed at the beginning is a more general one. Whitney proved a theorem on the embedding-
invariance of 3-connected graphs. We attempt here to present an exposition of this theorem. A
promising problem for future research is to formulate a converse to Whitney’s theorem for circular-
planar graphs, since critical circular-planar graphs are by no means the only circular-planar graphs
with unique embeddings.

2.1 Definitions

Cycle. The cycle C,, is a graph with vertices {v1,v2,...,v,} and n edges v;v;41 for 1 < i < n, where
VUn+41 = V1.

Non-separating. The cycle C is non-separating if G — V(C) is connected. (G — V(C') consists of G minus all
vertices in C' and those edges incident to these vertices.

Chord. An edge which joins two vertices of a cycle but is not itself an edge of the cycle.
Induced Cycle. A chord-less cycle.

C-Bridge. A C-bridge in G is a subgraph of G, which is (i) An edge not in C' but with both ends in C,
or, (ii) A connected component of G — V(C) together with all edges which have one end in
this component and the other end in C. The first type of C-bridge is equivalent to a chord.

Overlap. Let C be a cycle in a graph G. Two C-bridges B; and B, overlap if at least one of the following
is satisfied: (i) B; and Bj have three vertices of attachment in common, (ii) C contains distinct
vertices a, b, ¢, d (in this cyclic order) such that a and ¢ are vertices of attachment of B; and
b and d are vertices of attachment of By. This second case is referred to as a skew-overlap.

3-connected. G is 3-connected if |G| > 4 and for any set of vertices S, S C V(G), |S| < 2, G—S is connected.

2.2 Proof of Whitney’s Theorem

Lemma. C' is induced and nonseparating if and only if there is at most one C-bridge in G.

Proof. We prove the forward direction by contrapositive. Suppose there are two C-bridges in G.
Then either one is a chord, in which case C is not induced, or both are type (ii), in which case it is
separating. (To see why this is true, recall that C-bridges are connected components, so if there are
two of them, when the cycle is deleted, the graph is separated since it has more than one connected
component.) The remaining direction goes as follows: If there is at most one C-bridge in G, then C
is nonseparating since there is at most one connected component of G — V(C).

Proposition. The face boundaries in a 3-connected planar graph are precisely its nonseparating
induced cycles.

Proof. Let G be a 3-connected plane graph, and let C' be a nonseparating induced cycle in
G. Since C is a cycle, by the Jordan curve theorem, it divides the plane into a bounded and an



unbounded region. Non-separating guarantees that G — V' (C) must either lie in the bounded or the
unbounded region aside from chords. Because it is induced, C' bounds exactly one face — either the
bounded or the unbounded face.

The converse is proved by contradiction. Let C be a facial cycle of G and suppose that it is not
an induced nonseparating cycle. Then by our lemma, there are at least two C-bridges, call them
H,; and H,. They lie by definition in the exterior of the cycle. We want to show that they do not
overlap.

Suppose they do. Then we can obtain a homeomorph of a K5 or a K3 3 by adding to C'|J H1 |J Ha
a vertex in int(C) and joining it to all vertices of C. As a consequence of Euler’s formula, neither
K5 nor K3 3 are planar-embeddable, which draws a contradiction.

Now we claim that some pair of consecutive vertices of attachment of H; on C separates G,
which is a contradiction to 3-connectedness.

H; and H, do not overlap implies that (i) they have fewer than three vertices in common, and
(ii) there do not exist four vertices a,b,c,d in cyclic order such that a,c are vertices of attachment
of Hi and b, d are vertices of attachment of H,. There are then three cases:

(1) Hy and H» have two vertices of attachment in common. Removing these two vertices will
produce the desired disconnection. (2) H; and H, have one vertex of attachment in common.
Removing it and another one (arbitrarily) will produce the desired disconnection. (3) They have no
vertices of attachment in common. Remove all vertices of attachment of H; from C'.

This concludes the proof.

Whitney’s theorem follows directly from this proposition.

Theorem (Whitney, 1932). Any two planar embeddings of a 3-connected graph are equiva-
lent.[4]
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