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Abstract. We consider the recoverabilityof the Riemannian metric of a graph
given information about the geodesic distance between boundary vertices on

the graph. In the continuous case, when the metric is placed under certain
restrictions, this information is enough to uniquely determine the metric up

to an isometry which is the identity on the boundary [1]. In this paper we
explore the discrete case and attempt to identify when the metric is uniquely

determined on a discrete graph.

1. Introduction

The motivation for studying metric graphs comes from a paper by Leonid Pestov
and Gunther Uhlmann titled Two dimensional compact simple Riemannian manifolds
are boundary distance rigid. The geodesic distance between any two points, x and
y, on a Riemannian manifold (M, g) with boundary ∂M is denoted by Pestov and
Uhlmann as dg(x, y). The path which determines this distance is assumed to be
unique on the manifold. The authors question whether the metric of a Riemannian
manifold can be determined knowing only dg(x, y) ∀ x, y ⊂ ∂M . A Riemannian
manifold is simple if it is simply-connected, any geodesic has no conjugate points,
and the boundary is strictly convex. The following theorem is proved by Pestov
and Uhlmann:

Theorem 1.1. Let (M, gi), i = 1, 2 be two dimensional simple compact Riemannian
manifolds with boundary. Assume

dg1(x, y) = dg2(x, y) ∀(x, y) ∈ ∂M × ∂M .

Then there exists a diffeomorphism ψ : M →M,ψ |∂M= Id, so that

g2 = ψ∗g1

Here we consider the application of these results to discrete metric graphs.

Definition 1.2. A discrete metric graph is a graph, G(V,E, d) with vertices, V ,
boundary vertices ∂V ⊂ V , edges, E ⊂ V ×V , a distance function, d : V ×V → R≥0,
and an edge function c : E → R+.

We denote ek,l, k, l ∈ V , k ∈ N (l), where N (l) is the set of neighboring vertices
to l, as the value of the function c on the single edge between neighboring vertices
k and l.

Definition 1.3. Let i, j ∈ V . A path, P , from i to j is a set of edge values
(ek0,l0 , ek1,l1 , . . . ekn,ln ) with k0 = i, ln = j, and la = ka+1 ∀ 0 ≤ a < n.
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Figure 2. The 2 × 2 lattice

Definition 1.4. Given a set of paths Pi,j from i to j in V , the geodesic distance
di,j between the vertices is defined as the minimum sum of the edge values in each
path.

The distance function d on metric graphs is defined as the geodesic distance
between vertices.

Definition 1.5. The discrete metric of a graph, G, is the column vector of edge
distances, ek,l, k, l ∈ V in the graph, where k ∈ N (l).

We attempt to recover the graph’s metric given geodesic distances between all
vertices, v ∈ ∂V of a metric graph. Just as in the continuous case, this is not always
enough information to determine the metric of the graph. This paper will inves-
tigate the additional necessary tools for metric recoverability and the obstructions
to unique recoverability.

2. Recoverable Metric Graphs

Consider the simple case of the four star graph, composed of four edges, four
boundary vertices, and one interior vertex shown in figure 1. The information we
have is:

d1,2 = e1,5 + e5,2

d2,3 = e2,5 + e5,3

d3,4 = e3,5 + e5,4

d1,4 = e1,5 + e5,4

d1,3 = e1,5 + e5,3

d2,4 = e2,5 + e5,4

Given the geodesic distances, we can use this system of equations to solve for
each edge distance. The metric for this graph is recoverable.

For more complicated graphs, metric recoverability becomes more difficult be-
cause there are multiple paths available between boundary vertices. Consider the
2 × 2 square lattice in figure 2.

(1) d1,2 = min((e1,9 + e9,10 + e10,2), (e1,9 + e9,12 + e12,11 + e11,10 + e10,2))
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Figure 4. The n-star

The system of equations from the geodesic distances of this graph is not linear as in
the first example and it is easy to see that more information is needed to determine
the metric. If d1,2 = e1,9 + e9,12 + e12,11 + e11,10 + e10,2 then it is possible that no
geodesic lies on the edge between vertices 9 and 10. In this case, it is impossible
to recover the distance of this edge. Another problem that will be of relevance
later is the possibility that these two paths have the same geodesic distance–in
such a case we are unable to determine which path is taken by the geodesic and
therefore we can’t translate the information we have. Similar problems in the
continuous case led Pestov and Uhlman to impose restrictions on the metrics taken
into consideration, considering only simple Riemannian manifolds. We attempt to
alter these restrictions and apply them to the discrete case in order to define the
problem of discrete metric recoverability.

3. Simple Discrete Metric Graphs

3.1. Restrictions on Metric. We limit the possible paths between boundary ver-
tices by placing restrictions on the discrete metrics we consider. The metric of a
discrete graph is simple if:

1. Each edge e ∈ E lies on some geodesic.
2. The path corresponding to the geodesic distance is unique.
Taking into consideration only metrics which satisfy these conditions, we proceed

to investigate metric recoverability.

3.2. Restrictions on Graph Structure: Parameterizing metric response
matrices. It is also important that the graph provides enough information to re-
cover the metric. This is not an issue in the continuous case, but in the discrete case
it is possible that there is not enough independent information provided from the
boundary information to recover the metric. For example, the graph in figure 3
has four boundary vertices and thus

(
4
2

)
= 6 pieces of information from boundary to

boundary geodesic distances. But the graph is composed of eight edges, so even if
the metric satisfies the above restrictions, it is impossible to determine the distances
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Figure 5. Parameterization for the n-star
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Figure 6. Parameter Positions for the response of the 2 × 2 lattice

of each edge given only this information. Also, even if a graph provides the right
amount of information, some of the information may be redundant. For example,
in the case of the four-star described above, all of the edges can be determined by
only knowing four of the six boundary to boundary distances. In fact, all entries
in the response matrix for any n-star can be determined by the indicated entries in
figure 5. For this reason, we require that the metric graph have at least as many
parameters as edges.

The remainder of this paper considers simple metric graphs with at least as many
parameters as edges.

4. The 2 × 2 lattice is toast

Restricting the metric with the above conditions makes the metric recoverability
of the 2 × 2 lattice very simple. First we notice that there is enough independent
information to recover the metric. A parameterization for the 2×2 lattice is shown
in figure 6; there are 12 parameters in the response matrix and 12 entries to recover.
Next we make use of the fact that the metric is simple.

Definition 4.1. A boundary antenna is a pair of boundary spikes that share a
common vertex. [2]

The 2 × 2 lattice contains four boundary antennas.

Theorem 4.2. The edge distances of any boundary antenna are uniquely recover-
able.
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Proof. Refer to the boundary antenna in figure 7. We know that the geodesic
distance d1,2 is the sum of e1,n and en,2; these edges must lie on the geodesic
because there are no other edges connected to vertices 1 and 2, and the shortest
distance from n to n is zero. Since there are no negative distances, any path besides
the path which uses only these edges will be larger than e1,n + en,2. We assume
that there are some other boundary vertices on the graph because if not, then we
would only have

(
2
2

)
= 1 piece of information and two edges to recover. Create a

boundary vertex m anywhere on the graph. We know the geodesic distances d1,m

and d2,m. The first edge travelled by the geodesic d1,m must be the edge e1,n and
similarly, the first edge travelled by the geodesic d2,m must be the edge e2,n. By the
uniqueness of geodesics, there is only one shortest distance from point n to point
m. Therefore,

d1,m − e1,n = d2,m − e2,n.

Since we also know that d1,2 = e1,n + en,2, we have a system of linear equations
which allows us to solve for e1,n and e2,n:

e1,n = d1,m+d1,2−d2,m

2

e2,n = d2,m+d1,2−d1,m

2

�

Theorem 4.3. The shortest distance between neighboring vertices is the edge ad-
joining those vertices, i.e. dkl = ekl ∀ k, l ∈ V and k ∈ N (l).

Proof. Consider the vertices 9 and 10 on the 2 × 2 lattice in figure 2. We know by
restrictions on the metric that e9,10 lies on some geodesic of the graph. Let m,n ∈
V and assume e9,10 lies on the shortest path between these vertices. Therefore
dm,n = x + e9,10 where x is the sum of all edges besides e9,10 which make up the
geodesic. Now, assume that the shortest distance between these vertices is not the
edge e9,10. Then there exists some path between vertex 9 and vertex 10 such that
d9,10 < e9,10 and so x+d9,10 < x+ e9,10. But x+d9,10 also connects the vertices m
and n, contradicting the fact that dm,n is the geodesic distance between m and n.
Therefore, the shortest distance between neighboring vertices is the edge adjoining
those vertices. �

Now that the 2 × 2 lattice is a simple metric graph, we know more information
about which paths are taken by the geodesics. We can immediately determine
the edge distances e1,9, e2,10, e3,10, e4,11, e5,11, e6,12, e7,12, e8,9 because these are all
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Figure 8. The 2 × 3 Lattice
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Figure 9. Parameter Positions for the response of the 2 × 3 lattice

boundary antenna edges. We know that d1,2 = e1,9 + e9,10 + e10,2 because e9,10 <
e10,11 + e11,12 + e12,9. From this we can determine e9,10 and similarly, e10,11, e11,12

and e12,9. Note that there are still some geodesics which have ambiguous paths.
We do not know from our restrictions which path is taken by d2,6 for example. But
from the known geodesic paths, we can recover the metric of the 2 × 2 lattice.

When the metric is uniquely determined everywhere on the graph as with the
four star and the 2× 2 lattice, the analogue to a diffeomorphism in the continuous
case is the identity matrix:

Let G,G′ be two simple discrete metric graphs with boundary. If the metric is
uniquely recoverable on G and di,j = di′,j′∀i, j ⊂ ∂V, ∀i′, j′ ⊂ ∂V ′, then

(2) e = Ie′

where e, e′ are the metrics of G,G′ respectively. We label the matrix which is
analagous to the diffeomorphism in the continuous case ψ.

5. Graphs Which are Not Uniquely Recoverable

5.1. The 2 × 3 lattice. Consider the slightly more difficult example of the 2 × 3
lattice shown in figure 8. We see that the graph structure satisfies the restrictions.
The parameters for the 2× 3 lattice are shown in figure 9; there are 17 parameters
and 17 edges in the graph. So we can assume that the metric is simple and pro-
ceed to recover the metric. By theorem 4.2 we can determine the edge distances
e1,11, e3,13, e4,13, e5,14, e6,14, e8,16, e9,16, and e10,11, and by theorem 4.3 we can de-
termine e13,14 and e16,11. We do not know, however, which path is taken by the
geodesics through vertices 1 and 3 or through vertices 6 and 8 and so we don’t have
enough information to isolate the middle edges. However, we can determine which
path is taken by these geodesics based on the information provided. First, since
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e1,11 and e13,3 must lie on the geodesic from vertex 1 to 3, we can subtract these
known edge lengths and deal only with the distance from vertex 11 to vertex 13,
d11,13. We do the same for the geodesic from 6 to 8 to get the distance d14,16.
Now, since we also know e13,14 and e11,16, subtract these edges from both of these
new distances. If d14,16 = d11,13− e13,14 − e16,11, then both the geodesics from 1 to
3 and from 6 to 8 take paths which include the edges e14,15 and e15,16 (see figure
6). If d11,13 = d14,16− e14,13− e11,16, then both of these geodesics take paths which
include the edges e11,12 and e12,13 (see figure 11). If neither of these equalities
holds, then the paths taken are as shown in figure 12. This gives three equivalence
classes of paths taken by the boundary to boundary geodesic distances in the 2× 3
lattice. If the paths are as shown in figure 10, then instead of the identity matrix,
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Figure 13. The 3 × 3 Lattice

ψ looks something like this:

(3)




e1,11

e3,13

e4,13

e5,14

e6,14

e7,15

e8,16

e9,16

e10,11

e13,14

e14,15

e15,16

e11,16

e2,12

e11,12

e12,13

e12,15




=




1 0 . . .
0 .
. .
. .
. 1

a1 a2 a3 a4

b1 b2 b3 b4
c1 c2 c3 c4
d1 d2 d3 d4







e′1,11

e′3,13

e′4,13

e′5,14

e′6,14

e′7,15

e′8,16

e′9,16

e′10,11

e′13,14

e′14,15

e′15,16

e′11,16

e′2,12

e′11,12

e′12,13

e′12,15




where the columns preserve certain linear relations;
3(a1) + b1 + c1 + d1 = 3
3(a2) + b2 + c2 + d2 = 1
3(a3) + b3 + c3 + d3 = 1
3(a4) + b4 + c4 + d4 = 1

If the paths are as shown in figure 11, then the matrix will be similar; the sub-
matrix of the four rows which differ from the identity matrix will shift to corre-
spond to edges e7,15, e15,16, e6,14 and e12,15. If the paths are as shown in figure 12,
the above matrix can be used with a2, a3, a4, b1, b3, b4, c1, c2, c4, d1, d2, d3 = 0 and
a1, b2, c3, d4 = 1(The identity matrix).

5.2. The 3× 3 lattice. The 3× 3 lattice is shown in figure 13. Again, we can im-
mediately determine the edge lengths e1,13, e3,15, e4,15, e6,17, e7,17, e9,19, e10,19, e12,13.
Just as with the 2 × 3 lattice, we can also determine which paths are taken by the
geodesic distances d2,11, d2,5, d5,8, and d8,11. Consider the geodesic with distance
d2,11–the path from vertex 2 cannot leave vertex 14 along the edge e14,15. If it
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did, then no boundary to boundary geodesic would go through the middle edges.
Therefore it must take edge e14,21 or e14,13. Since we know that d1,2 is the sum of
the edges e1,13, e13,14, e14,2 and d11,12 is the sum of the edges e11,20, e20,13, e13,12, we
can determine e2,14 + e14,13 and e13,20 + e20,11 from the known edges. Therefore, if
d2,11 = e2,14 + e14,13+ e13,20+ e20,11 then the path travels along these edges. If not,
then the path takes the edges e14,21 and e21,20 instead of e14,13 and e13,20. This
gives us a number of different possibilities up to symmetry for the paths of these
four geodesics, and in each case, other geodesic paths are necessarily determined.
We cannot, however, necessarily determine which paths are taken by the geodesics
that determine the distances d1,3, d4,6, d7,9, d10,12. So even though we know some of
the summation relations between edge lengths of the 3 × 3 lattice, we can’t create
an exact matrix ψ.

6. Further investigation

Although the matrix relations between metrics approximate the discoveries in
the continuous case, the generality of these relations is somewhat disappointing.
We have limitations on the column sums of the matrix, but rarely can we de-
termine the complete matrix unless it happens to be the identity matrix. We
have considered making more restrictions on simple graphs. Pestov and Uhlmann
noted that metric determination is impossible if there is a point x0 ∈ M so that
dg(x0, ∂M ) > supx,y∈∂Mdg(x, y) because in this case dg is independent of a change
of g in a neighborhood of x0 [1]. This scenario is not possible for discrete simple
metric graphs, but it is possible for di,j, i, j ∈ ∂M to be independent of a change in
the metric in the interior of the graph. It might be impossible to come up with a
complete analogue to the continuous case. Pestov and Uhlmann define a scattering
relation on Riemannian manifolds and use this to define the Dirichlet to Neumann
map for metrics. The scattering relation takes any boundary point and any di-
rection and determines a unique resulting boundary point by following the unique
geodesic in that direction. There is no scattering relation in the discrete case. The
boundary vertices in the lattice examples have only one possible starting direction.
We considered looking at graphs without spikes to allow for more direction possi-
bilities, but unless the graph is well-connected, there are never enough directions
to allow for a unique boundary to boundary geodesic in each direction. Graphs
without spikes lead to another issue with discrete metric graphs because in these
cases geodesics may lie on boundary to boundary edges. If a geodesic went along
the boundary in the continuous case, the surface would fail to be strictly convex.
This is why all of the examples in this paper dealt with graphs with all boundary
spikes. But the introduction of other graphs leads to more possibilities for the for-
ward problem. We might also require that we know the direction from boundary
vertices taken by the geodesics. There is room for adjustment to the problem as
it is posed here, but in any case we hope to make more concrete discoveries about
discrete metric determination.
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