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1. Introduction

I have looked at variations of the “threehands” graph (Fig 1) and tried to figure
out how we can look for response matricies that correspond to all-positive Kirchoff
matrix. So far, I was unable to make this into an exact science, so some arguments
deal with each graph messily and individually. However, I have found that:

(1) The graph with no inversions has only one positive conductance correspond-
ing to a response matrix. (This is old news)

(2) The graph with one inversion can have three different positive Kirchoff
matrix that correspond to the same response matrix.

(3) The graph with two inversions can have also have three.
(4) That same graph is labeled “recoverable” by Nick Addington’s program.

So, either the program is buggy (which is unlikely. I may verify it by
hand, but I tend to trust the program), or this is a counterexample to Nick
Addington’s method.

(5) However, Nick Addington’s method is still meaningful for that graph. While
I don’t yet understand the way it works for the graph, it is unlikely that
it is a coincidence that the graph Addington’s method labels “recoverable”
can’t have all of its Kirchoff matrices positive. All of my methods of proving
that are very ugly.

Date: August 10th, 2006.
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Figure 1. “Threehands” Graphs. Note the subtle differences in
the numberins of the vertices.

This turned out to be a lie. Both the graph with one or two inversions can
have three real positive Kirchoff matrices correspond to the same response
matrix.

2. Parametrizing Response Matrices

First of all, let us figure out the conditions for a matrix Λ to be a response matrix
that corresponds to any (signed, or even complex) Kirchoff matrix. This is possible
because the graphs we deal with are composed from four-stars that are connected
in a very simple way (as “multiplexers”). In fact, we could say that we are dealing
with this kind of graphs exactly because it is easy to parametrize their response
matrices.

Four every four-star (or even an n-star), the response matrices are parametrized
easily. As in my other paper, consider the four-star with boudary vertices 1, 2, 3, 4
and an interior vertex 5. If a response matrix satisfies the equation λijλkl = λikλkl

for all i, j, k, l, we simply use the following formulas to get the conductances in the
Kirchoff matrix:

(1) γi = −λii +
λijλik

λjk
=

∑
i 6=j

λij +
λijλik

λjk
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If the response matrix does not satisfy λijλkl = λikλkl, we say that no Kirchoff
matrix corresponds to it.

Now, as Jeff Russel discusses in [5], if all of the λ’s are positive, this corresponds
to our usual notion of response matrices as Schur complements of response matrices.
However, we do not want to limit ourself to these cases. Instead, we allow λ’s to
have any complex or infinite values (as long as the equations (1) make sense, but
this is always the case for our multiplexers) and then use the equations (1) as
axioms.

So, from now on,

Definition 2.1. For a graph G with n vertices and b boundary vertices,
• By a response matrix, we mean any b× b matrix Λ with possibly complex

or infinite entries that is symmetric and has row sums 0.
• By a parametrization of response matrices we mean some correspondence

that assigns a finite (possibly empty) set of Kirchoff matrices (any n × n
matrices with row sums 0) to every response matrix.

• We say that G is recoverable if for every response matrix, there is at most
one Kirchoff matrix that corresponds to it.

We will never use the exact nature of this correspondence (Schur complements,
etc.) in what follows. We will only use equations (1), some rules for parametriza-
tions of larger graphs in relation to their parts, and the fact that:

Theorem 2.2. For real, positive response matrices Λ for a graph G made of n-
stars, their notion of parametrization induced by (1) in the sense of definition 2.1
and our usual notion of parametrization from the Schur complement is the same.

Proof. Omitted. It should be clear; what is lacking for now is a precise definition of
how to build parametrizations of larger matrices from smaller ones in full generality.
For the way we are going to do it here, see below. �

2.1. ... abstractly. In our case, we consider the four-stars as “multiplexers” and
the graph as a series of multiplexers. The properties of the multiplexers are designed
to ease the process of building a large graph for which we know how to parametrize
the response matrices from small ones. If we try to parametrize the response matrix
of a mutliplexer, we find that we can consider some of the entries in this matrix
(the “outputs”) separately from the rest. More precisely,

Definition 2.3. A graph M = (V ;E) together with a set B ⊂ V of boudary edges
and a set O ⊂ B ×B is a mutiplexer (or an n-multiplexer if n = |O|) if:

(1) The set B×B is partitioned into disjoint subsets as B×B = DtOtI, where
D is the diagonal {v×v | v ∈ V }, O are the outputs of the multiplexer, and
I are the interior responses of the mutliplexer. We consider all of these as
addresses of entries in the response matrix.

(2) The response matrices of M are parametrized as follows: there are fixed
relations between the entries addressed by I. That is, there is a fixed set
A(I) ⊂ R|I| of “allowed” vectors of values we can assign to these entries.

For every allowed choice of values for entries in I, we can pick any output
entry o ∈ O. There should be a single Kirchoff matrix corresponding to a
choice of any complex number or ∞ for the entry of Λ addressed by o.
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Figure 2. Multiplexers we use.

That is, a choice of a value for o imposes a value on all the other entries
of O. Any complex value for o is valid, and the graph is recoverable - no
more that one (complex) Kirchoff matrix is ever associated to a response
matrix.

(3) All the other response matrices do not correspond to any Kirchoff matrices.

We usually want to consider a mutliplexer as a black box with a number of
outputs. The outputs have some relations between them. While these relations
are dependent on the interior responses, we are only concerned about the relations
themselves, and largely try to ignore the interior responses.

The three mutlipexers we use are shown in Fig. 2. Their properties are summa-
rized below:

Explain what outputs are.
(1) For the first multiplexer, b = C

a , where C = λ13λ24 = λ13λ23. Note that
we can obtain a multiplexer with any desired real value of C > 0 by setting
λ13 = λ24 = λ13 = λ24 =

√
C.

(2) For the second multiplexer, b = Ca, where C = λ14
λ12

. Note that the proper-
ties of this graph as a multiplexer do not depend on λ24 at all as changing
λ24 only affects the conductance of the one edge between vertices 2 and
4. So, from now on, we will ignore λ24, and simply assume that it is large
enough for the conductance between 2 and 4 to remain positive whenever
necessary.

(3) For the third multiplexer, b = C1a and c = C2a, where C1 = λ13

λ14
and

C2 = λ13
λ12

.
(4) If all the interior responses are positive, then if a is real and positive, so

are b and c, and furthermore all the conductances we get in the multiplexer
are real and positive.

These properties, as well as the fact that these things are actually multiplexers,
should be in the prevous paper.

<partial conductances> <ignore int. resp., equations between the outputs>

Now, all the graphs G we are considering satisfy the following properties:

Definition 2.4. A graph G is “good” if every pair of distinct boundary vertices
(i, j) for G satisfies exactly one of the following:
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(1) There are no connections between i and j. That is, λi,j = 0.
(2) There is a single multiplexer M such that every connection between i and

j involves only the vertices and edges of M . (i, j) is an interior response of
M .

(3) Every connection between the vertices i and j involves the vertices and
edges of only one multiplexer. For every such multiplixer, the pair (i, j) is
one of its “outputs”.

In such a graph, we can consider partial responses between two boundary vertices
along specific multiplexers. These satisfy the property that the sum of all the partial
responses between i and j is λi,j . WayMoreExplanationHere

Now, suppose we have our graph G and we want to find the exact conditions
that a matrix Λ has to satisfy for it to correspond to at least one (possible complex)
Kirchoff matrix. We find:

(1) All of its entries of the first type have to be 0.
(2) Every entry (i, j) of the second type corresponds to a single mutliplexer

M . Let IM be the set of the interior responses of that mutliplexer and OM

be the set of all the outputs of that multiplexer. Since every connection
between i and j involves only the vertices and edges of M , the value of λi,j

is the same as the partial response between i and j along M . Since this is
true for all the entries of Im, we know that the whole set of allowed values
for Im is the same as if the multiplexer was not a part of a larger graph.

It is clear that if we pick non-allowed values for entries in IM for any M ,
we will not have any corresponding Kirchoff matrices no matter what the
other entries are.

(3) For every fixed value of the interior responses in the graph, we obtain
relations between the outputs of every single multiplexer.

For entries (i, j) of the third type, however, it is no longer true that
partial responses are the same as actual responses. Instead, λi,j is the sum
of the partial responses between i and j over all the mutliplexers.

So, we can fix all the λi,j ’s of the third sort to arbitrary values. If a set of
partial responses does not satisfy either the relations between the outputs of
any mutliplexer or the condition that the sum of partial responses between
i and j should be λi,j , it clearly does not correspond to a Kirchoff matrix.
If it does, then by properties of the multiplexers, we can find a unique set
of conductances for every multiplexer. So, we have a unique conductance
for every edge of the graph.

In other words, we have:

Lemma 2.5. For a “good” graph, fix a response matrix Λ that has 0’s for all the
responses of the first type, allowed values for interior responses of every multiplexer
that is a part of the graph, and arbitrary values for responses of the third type.

Then, we for every pair of vertices (i, j) of the third type, we consider partial
responses along each multiplexer M , λM

i,j as a variable (and λM
i,j = 0 if there is no

connection between i and j that involves M). There are as many Kirchoff matrices
that correspond to Λ as there are solutions to the following equations:

(1) For fixed (i, j) of the third type,
∑

M a multiplexer λM
i,j = λi,j.

(2) For a fixed multiplexer M , all of the partial responses for its outputs satisfy
the appropriate relations
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(a) explain
.

All the other response matricies have no corresponding Kirchoff matrices.

Note that, for the multiplexers we use, if all of the partial responses in the lemma
are real and positive, the corresponding Kirchoff matrix will also be all-positive

2.2. ...concretely. In all the “threehands” graphs, pick a single partial conduc-
tance in the graph, call it a, and call the three partial conductances between the
edges (5,6) l1, l2, and l3. If we apply lemma 2.5, we find that the two conditions in
the lemma simplify and are equivalent to the following two:

(1) All the partial conductances, including l1(a) , l2(a), and l3(a), are specific
linear functionals of a. The coefficients of the linear fractionals depend on
which of the three graphs we are looking at, and on all the responses except
for one, λ0 = λ5,6. They are obtained from continued fractions.

(2) l1(a) + l2(a) + l3(a) = λ0. This equation is at most a cubic.
I prefer to pick a = l3(a), which allows us to write the equation as:

(2) a + l1(a) + l2(a) = λ0

The exact partial response that I picked to be a is shown in Fig. 1.
We allow a to vary and consider λ as a function of a: λ(a) = a+ l1(a)+ l2(a). It

should be clear from the discussion of the previous section that the response matrix
Λ(a) that has λ0 replaced with λ(a) and the restriction that the appropriate partial
response is a corresponds to a unique Kirchoff matrix.

Furthermore, if we now assume that the response matrices are both real and pos-
itive, the functions l1(a) and l2(a) are either strictly increasing or strictly decreasing
(proof in the other paper). Due to our choice of a,

(1) In the graph with no inversions, both l1 and l2 are strictly increasing.
(2) In both of the graphs with inversions, both l1 and l2 are strictly decreasing.

Need More Stuff Here

3. Finding the Possibilities for the Number of Real Roots

We know that l1(a) and l2(a) are both linear fractionals of a. So, both l1 and
l2 are continuous as functions from projectve space R ∪∞ to itself, and there is a
single value a1 such that l1(a1) = ∞ and a single value a2 such that l2(a2) = ∞.
(WLOG, we assume that a1 < a2.) The function λ(a) is continuous and real-valued
everywhere except for three points: a1, a2, and a3 = ∞.

The domain of a’s is then naturally divided into three regions: the leftmost region
I (−∞, a1), the middle region II (a1, a2) and the rightmost region III (a2,∞).

There may actually be fewer regions in singular cases (if a1, a2, a3 = ∞ aren’t
all distinct), but we will ignore these in this paper.

3.1. Graph with no inversion. For the graph with no inversions, λ(a) goes
strictly increasingly form −∞ to ∞ in every one of the regions. So, for every
value of λ0, there will be one value of a in every region corresponding to it.

<Missing proof that only one of these values corresponds to an all-positive ma-
trix>
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Figure 3. Sample plot of λ(a) for graphs with inversions.

3.2. Graphs with one or two inversions. A sample plot of λ(a) as a function
of a for a graph with inversions is shown on Fig. 3. It has to have the following
features:

(1) In region I, the functions comes from −∞, approaches a maximum, and
then goes to −∞.

(2) In region II, the function comes from +∞ and goes to −∞. Depending
on the parameters, it may be strictly decreasing, or it may asume a single
maximum and a single minimum (there’s a “wrinkle”).

(3) In region II, the function comes from +∞ and goes to −∞.
Now, let us attempt to solve the equation λ(a) = λ0 for various λ0.

• If λ0 is large, there will be one solution of a in region II, and two solutions
in region III. There cannot be more than two solutions in region III because
the equation λ(a) = λ0 is a cubic. For a single value of λ0, the two solutions
in region III are the same (at the minimum).

• As λ0 decreases further, there is a real solution in region II and two complex
solutions.

• If the function is not strictly decreasing in region II, there is a range of
values of λ0 for which there are three real solutions for a, all in region II.

• As λ0 decreases further, there is again a real solution in region II and two
complex solutions.

• Finally, for smaller values of λ0,there is a single real solution in region II,
and two solutions in region I

So, we can suspect a likely possibility of three real, positive conductances corre-
sponding to the same response matrices in case there is this “wrinkle”.

Note that this rough method does not distinguish between the graph with a
single inversion and the graph with two inversions.

4. Region of All-Positiveness

Recall that for an all-positive response matrix of one of our graphs to correspond
to an all-positive Kirchoff matrix, it is necessary and sufficient for all the partial
conductances in the graph to be positive.
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<not quite true - non-important partial conduc-
tances>

I haven’t yet proved the following conjecture:

Conjecture 4.1. If we fix all the responses in a reponse matrix except for λ(a),
the set P ⊂ R of values of a that correspond to all-positive real Kirchoff matrices
is an open interval.

Since the set where a single linear fractional is positive consists of at most two
rays, it is clear that P can be at most a union of two open intervals. However, if
the conjecture is proven true, it will be clear that P has to lie completely inside
one of the regions I, II, or III of the graph.

However, it turns out that we do not really need to know anything about all of
P to do useful things, for two reasons:

Lemma 4.2. If the set P contains a single point p, it also contains a small closed
interval around p.

Proof. P is defined by some finite number of strict inequalities. If a strict inequality
is true for p ∈ P , it must also be true on a neighborhood of p.

For our convenience, we would like to deal with closed intervals. Of course, every
neighborhood must contain a closed interval for us to use. �

Lemma 4.3. In all the three graphs we are dealing with, we can express l1(a) =
C1

l′1(a) and l2(a) = C2
l′2(a) , where l′1and l′2 are some partial conductances. We can

create response matrices that change both C1 and C2 to any positive values without
changing the set P in any way.

Proof. The partial l1 and l2 are of the appropriate form because the mutliplexer
between them and the responses l′1 and l′2 is the multiplexet on Fig. 2a).

Example
(Why we can create the mutliplexer with the right value of C1. Note that all of

these responses are all positive)
The set P is defined by the fact that all partial responses in the graph are

positive. Now, l1(a) > 0 if and only if l′1(a) > 0, for any positive value of C1.
Clearly P is not dependent on C1 and, by the same argument, on C2 (as long as
both are positive). �

So, we always have a closed interval I ⊂ P and we want to make the behavior
of λ(a) = a + l1(a) + l2(a) to suit our fancy. I can’t contain any discontinuities
of λ. We know that the signs of the derivatives of l1 and l2 are imposed on us.
Furthermore, the derivative of a is +1 everywhere. However, we can now modify
the magnitude of the derivatives of l1 and l2 however we want.

From now on, let us only deal with graphs whose l1 and l2 are decreasing func-
tions. The function dλ

da varies continuously with C1 and C2 of I. Now, if we set
both C1 and C2 to be sufficiently small, we will have, for a ∈ I:

dλ

da
= 1− C1 ·

d

da

(
1

l′1(a)

)
− C2 ·

d

da

(
1

l′2(a)

)
> 1− ε

On the other hand, if we set both C1 and C2 to be large, dλ
da will be large and

negative.
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By the Intermediate Value Theorem, for every point a0 ∈ I, there are such values
of C1 and C2 such that dλ

da

∣∣
a0

= 0. Then, for a value of λ0 sufficiently close to λ(a0),
there will be two values a1, a2 ∈ I s.t. λ(a1) = λ(a2) = λ0.

(Pictures)
(Lemma. Why this matters. What to do with the two-minimae’s case)
In fact, the following holds true:
(Which partial responses have to be positive)(Interval. Small interval is suffi-

cient)(Does not generalize)

Lemma 4.4. For our graphs, if there is an all-positive Kirchoff matrix whose
response matrix corresponds to a point in one of the regions (either I, II, or II) of
the function λ(a), then there is a response matrix that corresponds to the maximum
number of Kirchoff matrices possible for that region, and they are all positive.

Proof. The above proves this for regions I and III. The proof for region II is forth-
coming - so far I got there by tweaking C1 and C2 enough manually. �

So, for the graphs with one or two inversions, if we find a single Kirchoff matrix
that corresponds to a point in region II, we will be able to produce a response matrix
that corresponds to three real, positive Kirchoff matrices. Furthermore, neither of
these graphs is “recoverable” in the sense that all of its response matrices correspond
to at most one real, positive Kirchoff matrix. Indeed, if we find a single Kirchoff
matrix in either region I or II, the lemma will allow us to find a response matrix
that corressponds to two real, positive Kirchoff matrices. Since there exist real,
positive non-singular Kirchoff matrices for both graphs, they must lie in at
least one of the regions I, II, or III.

5. Graph with Three Real Positive Conductances

By the previous section, all we need to find three real, positive Kirchoff matri-
ces corresponding to the same response matrix for either one of the graphs with
inversions, is to find a response matrix whose a lies in the second region of λ(a).
For the graph with one inversion, this is possible. We vary C1 and C2 to crete
three values a1, a2, a3 such that they all correspond to all-positive matrices and
λ(a1) = λ(a2) = λ(a3). Then, we change some of the entries of the response matrix
to
√

C1 and
√

C2 to obtain the new response matrix. We can recover the Kirchoff
matrices from that however we want. My method was to use Nick Addington’s
program to parametrize the Kirchoff matrices by one conductance related to a. I
then plugged in a1, a2, and a3 to obtain the three response matrices (see Fig. 4).

6. Graph with Only Two

For the graph with one inversion, it turns out that it is impossible to obtain a
response matrix that corresponds to an a in the second region of λ(a). I suspect
that a proof similar to Nick Addington’s method can be used to show this. The
proof that I have, however, is ugly.

Proof. <Oops, it seems I forgot it. Watch this space.> �

In fact, in the porcess of remembering the proof, I found a counterexample (see
Fig. 5). I’ll try to put the detailed description of how that “remembering” process
went here.
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Appendix A. The Output of Nick Addington’s Program

This is what Nick Addington’s program outputs for the graph with two inver-
sions. It takes about 40 minutes and 2G of RAM on William Stein’s “SAGE”
computer for the first line to come up, the rest is quick.

R^18 21: recovered 10,10 from 9 10 11 x 3 6 10
R^17 19: recovered 9,8 from 9 10 x 8 10
R^17 19: recovered 8,8 from 8 9 x 8 10
R^17 19: recovered 8,7 from 8 10 x 7 8
R^17 19: recovered 9,9 from 3 8 9 x 7 9 10
R^17 19: recovered 7,7 from 7 9 10 x 7 9 10
R^17 19: recovered 4,3 from 2 4 7 10 x 1 3 7 8
R^17 17: recovered 1,1 from 1 4 x 1 3
R^17 17: recovered 2,2 from 1 2 x 1 2
R^17 17: recovered 2,3 from 1 2 x 2 3
R^17 17: recovered 2,4 from 1 2 x 3 4
R^17 17: recovered 3,3 from 2 3 x 3 4
R^17 17: recovered 4,4 from 3 4 x 3 4
R^18 18: recovered 3,3 from 2 3 x 3 7
R^18 18: recovered 2,2 from 2 3 x 2 3
R^18 18: recovered 7,7 from 2 7 x 2 7
R^18 18: recovered 7,9 from 2 7 x 7 9
R^18 18: recovered 9,9 from 7 9 x 2 9
R^20 20: recovered 5,5 from 5 8 x 5 7
R^20 20: recovered 6,5 from 5 6 x 5 7
R^20 20: recovered 6,6 from 6 7 x 5 6
R^20 20: recovered 7,7 from 6 7 x 6 7
R^20 20: recovered 8,8 from 7 8 x 7 8
R^21 21: recovered 4,4 from 2 4 x 4 11
R^21 21: recovered 2,2 from 2 4 x 2 4
R^21 21: recovered 11,11 from 2 11 x 2 11
R^21 21: recovered 11,13 from 2 11 x 11 13
R^21 21: recovered 13,13 from 11 13 x 2 13
R^22 22: recovered 12,13 from 11 12 x 13 14
R^22 22: recovered 13,13 from 12 13 x 13 14
R^22 22: recovered 11,11 from 11 13 x 11 13
R^22 22: recovered 12,11 from 11 12 x 11 13
R^22 22: recovered 12,12 from 12 13 x 11 12
R^22 22: recovered 14,14 from 12 14 x 12 14
R^23 23: recovered 5,5 from 5 12 x 5 11
R^23 23: recovered 6,5 from 5 6 x 5 11
R^23 23: recovered 6,6 from 6 11 x 5 6
R^23 23: recovered 11,11 from 6 11 x 6 11
R^23 23: recovered 12,12 from 11 12 x 11 12
R^24 24: recovered 16,15 from 4 16 x 3 15
R^24 24: recovered 3,3 from 3 16 x 3 15
R^24 24: recovered 4,4 from 3 4 x 3 4
R^24 24: recovered 15,15 from 4 15 x 4 15
R^24 24: recovered 16,16 from 15 16 x 15 16
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11210
�����������349

7885
���������349 0 0 16766

�����������441
16766
�����������441

60458
�����������1775

60458
�����������1775

0 21808
�����������489

15980
�����������489 0 23718

�����������349
11210
�����������349 -

2385860389235
���������������������������2062950168

560097185
�������������������2109356

2086859071
���������������������2955516

91295
�����������12088 0 0 0 0

0 0 0 0 16683
�����������349

7885
���������349

560097185
�������������������2109356 -

10922843883
�����������������������1054678

30219823
�����������������3022

125115
�������������6044 0 0 0 0

0 11600
�����������489

8500
���������489 0 0 0 2086859071

���������������������2955516
30219823
�����������������3022 -

15979197455
�����������������������1477758

398905
�������������6044 0 0 0 0

0 0 0 0 0 0 91295
�����������12088

125115
�������������6044

398905
�������������6044 -

1139335
���������������12088 0 0 0 0

0 6930
���������167 0 14256

�����������167
10504
�����������147

16766
�����������441 0 0 0 0 -

21729425
�����������������73647

4323973
���������������73647 0 0

0 1470
���������167 0 3024

���������167
10504
�����������147

16766
�����������441 0 0 0 0 4323973

���������������73647 -
14368253
�����������������73647 0 0

0 0 28672
�����������913

31696
�����������913

54739
�����������1775

60458
�����������1775 0 0 0 0 0 0 -

873831118
�������������������1620575

661503057
�������������������1620575

0 0 67072
�����������913

74146
�����������913

54739
�����������1775

60458
�����������1775 0 0 0 0 0 0 661503057

�������������������1620575 -
1017339868
���������������������1620575

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-214 0 0 0 0 0 0 0 0 0 0 0 0 0 214 0 0 0 0 0 0 0
0 -314 0 0 0 0 0 0 0 0 0 0 0 0 58 116 0 0 140 0 0 0
0 0 -504 0 0 0 0 0 0 0 0 0 0 0 163 85 0 0 0 0 256 0
0 0 0 -792 0 0 0 0 0 0 0 0 0 0 221 0 0 0 288 0 283 0
0 0 0 0 -580 0 0 0 0 0 0 0 0 0 0 0 0 201 0 312 0 67
0 0 0 0 0 -335 0 0 0 0 0 0 0 0 0 0 0 95 0 166 0 74
0 0 0 0 0 0 -1385 0 0 0 0 0 0 0 0 188 961 236 0 0 0 0
0 0 0 0 0 0 0 -10970 8170 0 0 0 0 0 0 0 2634 166 0 0 0 0
0 0 0 0 0 0 0 8170 -16668 0 0 0 0 0 0 100 8398 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -95 0 0 0 0 0 0 95 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -400 0 0 0 0 0 0 0 198 202 0 0
0 0 0 0 0 0 0 0 0 0 0 -244 0 0 0 0 0 0 42 202 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -929 0 0 0 0 0 0 0 112 817
0 0 0 0 0 0 0 0 0 0 0 0 0 -1079 0 0 0 0 0 0 262 817
214 58 163 221 0 0 0 0 0 0 0 0 0 0 -656 0 0 0 0 0 0 0
0 116 85 0 0 0 188 0 100 0 0 0 0 0 0 -489 0 0 0 0 0 0
0 0 0 0 0 0 961 2634 8398 95 0 0 0 0 0 0 -12088 0 0 0 0 0
0 0 0 0 201 95 236 166 0 0 0 0 0 0 0 0 0 -698 0 0 0 0
0 140 0 288 0 0 0 0 0 0 198 42 0 0 0 0 0 0 -668 0 0 0
0 0 0 0 312 166 0 0 0 0 202 202 0 0 0 0 0 0 0 -882 0 0
0 0 256 283 0 0 0 0 0 0 0 0 112 262 0 0 0 0 0 0 -913 0
0 0 0 0 67 74 0 0 0 0 0 0 817 817 0 0 0 0 0 0 0 -1775

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-174.846 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 174.846 0. 0. 0. 0. 0. 0. 0.
0. -283.299 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 107.911 72.4748 0. 0. 102.913 0. 0. 0.
0. 0. -478.798 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 303.268 53.1065 0. 0. 0. 0. 122.423 0.
0. 0. 0. -758.221 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 411.179 0. 0. 0. 211.707 0. 135.335 0.
0. 0. 0. 0. -570.465 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 141.988 0. 351.581 0. 76.8969
0. 0. 0. 0. 0. -339.099 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 67.1087 0. 187.059 0. 84.931
0. 0. 0. 0. 0. 0. -2275.47 0. 0. 0. 0. 0. 0. 0. 0. 1347.66 385.97 541.842 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. -10712.7 9273.65 0. 0. 0. 0. 0. 0. 0. 1057.9 381.126 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 9273.65 -13363.4 0. 0. 0. 0. 0. 0. 716.841 3372.92 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. -96.1345 0. 0. 0. 0. 0. 0. 96.1345 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -432.594 0. 0. 0. 0. 0. 0. 0. 248.144 184.45 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -237.086 0. 0. 0. 0. 0. 0. 52.6366 184.45 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -788.995 0. 0. 0. 0. 0. 0. 0. 461.08 327.914
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1406.51 0. 0. 0. 0. 0. 0. 1078.6 327.914
174.846 107.911 303.268 411.179 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -997.204 0. 0. 0. 0. 0. 0. 0.
0. 72.4748 53.1065 0. 0. 0. 1347.66 0. 716.841 0. 0. 0. 0. 0. 0. -2190.08 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 385.97 1057.9 3372.92 96.1345 0. 0. 0. 0. 0. 0. -4912.93 0. 0. 0. 0. 0.
0. 0. 0. 0. 141.988 67.1087 541.842 381.126 0. 0. 0. 0. 0. 0. 0. 0. 0. -1132.06 0. 0. 0. 0.
0. 102.913 0. 211.707 0. 0. 0. 0. 0. 0. 248.144 52.6366 0. 0. 0. 0. 0. 0. -615.401 0. 0. 0.
0. 0. 0. 0. 351.581 187.059 0. 0. 0. 0. 184.45 184.45 0. 0. 0. 0. 0. 0. 0. -907.539 0. 0.
0. 0. 122.423 135.335 0. 0. 0. 0. 0. 0. 0. 0. 461.08 1078.6 0. 0. 0. 0. 0. 0. -1797.44 0.
0. 0. 0. 0. 76.8969 84.931 0. 0. 0. 0. 0. 0. 327.914 327.914 0. 0. 0. 0. 0. 0. 0. -817.656

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-180.148 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 180.148 0. 0. 0. 0. 0. 0. 0.
0. -291.37 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 94.7897 83.9175 0. 0. 112.663 0. 0. 0.
0. 0. -485.423 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 266.392 61.4913 0. 0. 0. 0. 157.54 0.
0. 0. 0. -767.102 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 361.181 0. 0. 0. 231.764 0. 174.156 0.
0. 0. 0. 0. -577.502 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 174.878 0. 334.612 0. 68.012
0. 0. 0. 0. 0. -335.802 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 82.6536 0. 178.031 0. 75.1177
0. 0. 0. 0. 0. 0. -1559.87 0. 0. 0. 0. 0. 0. 0. 0. 415.734 848.076 296.061 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. -10919.5 8386.73 0. 0. 0. 0. 0. 0. 0. 2324.49 208.246 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 8386.73 -16019. 0. 0. 0. 0. 0. 0. 221.135 7411.18 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. -95.1003 0. 0. 0. 0. 0. 0. 95.1003 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -420.269 0. 0. 0. 0. 0. 0. 0. 229.183 191.086 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -239.701 0. 0. 0. 0. 0. 0. 48.6145 191.086 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -894.604 0. 0. 0. 0. 0. 0. 0. 197.761 696.843
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1159.46 0. 0. 0. 0. 0. 0. 462.619 696.843
180.148 94.7897 266.392 361.181 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -902.51 0. 0. 0. 0. 0. 0. 0.
0. 83.9175 61.4913 0. 0. 0. 415.734 0. 221.135 0. 0. 0. 0. 0. 0. -782.277 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 848.076 2324.49 7411.18 95.1003 0. 0. 0. 0. 0. 0. -10678.8 0. 0. 0. 0. 0.
0. 0. 0. 0. 174.878 82.6536 296.061 208.246 0. 0. 0. 0. 0. 0. 0. 0. 0. -761.839 0. 0. 0. 0.
0. 112.663 0. 231.764 0. 0. 0. 0. 0. 0. 229.183 48.6145 0. 0. 0. 0. 0. 0. -622.225 0. 0. 0.
0. 0. 0. 0. 334.612 178.031 0. 0. 0. 0. 191.086 191.086 0. 0. 0. 0. 0. 0. 0. -894.815 0. 0.
0. 0. 157.54 174.156 0. 0. 0. 0. 0. 0. 0. 0. 197.761 462.619 0. 0. 0. 0. 0. 0. -992.076 0.
0. 0. 0. 0. 68.012 75.1177 0. 0. 0. 0. 0. 0. 696.843 696.843 0. 0. 0. 0. 0. 0. 0. -1536.82

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

These picture are actually only 22x22, not 24x24. (I entered K22 instead of K24
somewhere). Fix that.

Figure 4. Three real positive Kirchoff matrices for the graph with
one inversion that correspond to the same response matrix

R^25 25: recovered 5,5 from 5 16 x 5 15
R^25 25: recovered 6,6 from 5 6 x 5 6
R^25 25: recovered 15,15 from 6 15 x 6 15
R^25 25: recovered 16,16 from 15 16 x 15 16
Graph is recoverable.
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12 ILYA GRIGORIEV

L �

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-12000 4000 4000 4000 0 0 0 0 0 0 0 0 0 0 0 0

4000 -4070 - 20 �!!!!5 - 40 �!!!!!!10 20 50 0 0 10 �!!!!5 0 10 �!!!!5 0 20 �!!!!!!10 0 20 �!!!!!!10 0 0 0

4000 20 -4110 - 20 �!!!!5 50 0 0 10 �!!!!5 0 10 �!!!!5 0 0 0 0 0 20 20

4000 50 50 -4140 - 40 �!!!!!!10 0 0 0 0 0 0 20 �!!!!!!10 0 20 �!!!!!!10 0 20 20

0 0 0 0 -
2942
���������5 - 40 �!!!!2 - 20 �!!!!!!39 1942

���������5 10 �!!!!!!39 10 �!!!!!!39 0 0 20 �!!!!2 20 �!!!!2 0 0 100 100

0 0 0 0 1942
���������5 -

2942
���������5 - 40 �!!!!2 - 20 �!!!!!!39 10 �!!!!!!39 10 �!!!!!!39 0 0 20 �!!!!2 20 �!!!!2 0 0 100 100

0 10 �!!!!5 10 �!!!!5 0 10 �!!!!!!39 10 �!!!!!!39 -4350 - 20 �!!!!5 - 20 �!!!!!!39 200 150 4000 0 0 0 0 0 0

0 0 0 0 10 �!!!!!!39 10 �!!!!!!39 200 -404200 - 20 �!!!!!!39 400000 4000 0 0 0 0 0 0

0 10 �!!!!5 10 �!!!!5 0 0 0 150 400000 -404150 - 20 �!!!!5 4000 0 0 0 0 0 0
0 0 0 0 0 0 4000 4000 4000 -12000 0 0 0 0 0 0

0 20 �!!!!!!10 0 20 �!!!!!!10 20 �!!!!2 20 �!!!!2 0 0 0 0 -4350 - 40 �!!!!2 - 40 �!!!!!!10 150 200 4000 0 0

0 0 0 0 20 �!!!!2 20 �!!!!2 0 0 0 0 150 -404150 - 40 �!!!!2 400000 4000 0 0

0 20 �!!!!!!10 0 20 �!!!!!!10 0 0 0 0 0 0 200 400000 -404200 - 40 �!!!!!!10 4000 0 0
0 0 0 0 0 0 0 0 0 0 4000 4000 4000 -12000 0 0
0 0 20 20 100 100 0 0 0 0 0 0 0 0 -280 40
0 0 20 20 100 100 0 0 0 0 0 0 0 0 40 -280

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

K1 �

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-2.17921´ 106 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 2.17921´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. -4303.83 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4022.15 69.9559 0. 0. 211.726 0. 0. 0. 0.
0. 0. -4217.34 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4022.15 69.9559 0. 0. 0. 0. 0. 125.234 0.
0. 0. 0. -4359.11 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4022.15 0. 0. 0. 211.726 0. 0. 125.234 0.
0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 211.926 0. 0. 93.0493 0. 853.293
0. 0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 211.926 0. 0. 93.0493 0. 853.293
0. 0. 0. 0. 0. 0. -4759.25 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 123.978 4331.12 304.157 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. -404525. 399890. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4331.12 304.157 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 399890. -404345. 0. 0. 0. 0. 0. 0. 0. 0. 123.978 4331.12 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. -156965. 0. 0. 0. 0. 0. 0. 0. 0. 156965. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -4776.92 0. 0. 0. 0. 0. 0. 0. 0. 0. 314.209 4318.42 144.286 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -404357. 399894. 0. 0. 0. 0. 0. 0. 0. 0. 4318.42 144.286 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 399894. -404526. 0. 0. 0. 0. 0. 0. 0. 314.209 4318.42 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -162742. 0. 0. 0. 0. 0. 0. 0. 162742. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 0. 58.7717 261.228
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 58.7717 261.228

2.17921´ 106 4022.15 4022.15 4022.15 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -2.19128´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. 69.9559 69.9559 0. 0. 0. 123.978 0. 123.978 0. 0. 0. 0. 0. 0. 0. 0. -387.868 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 4331.12 4331.12 4331.12 156965. 0. 0. 0. 0. 0. 0. 0. 0. -169958. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 211.926 211.926 304.157 304.157 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1032.17 0. 0. 0. 0. 0.
0. 211.726 0. 211.726 0. 0. 0. 0. 0. 0. 314.209 0. 314.209 0. 0. 0. 0. 0. 0. 0. -1051.87 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4318.42 4318.42 4318.42 162742. 0. 0. 0. 0. 0. 0. 0. -175698. 0. 0. 0.
0. 0. 0. 0. 93.0493 93.0493 0. 0. 0. 0. 144.286 144.286 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -474.671 0. 0.
0. 0. 125.234 125.234 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 58.7717 58.7717 0. 0. 0. 0. 0. 0. 0. -368.012 0.
0. 0. 0. 0. 853.293 853.293 0. 0. 0. 0. 0. 0. 0. 0. 261.228 261.228 0. 0. 0. 0. 0. 0. 0. 0. -2229.04

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

K2 �

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

-1.40441´ 106 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.40441´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. -4299.72 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4034.47 61.7397 0. 0. 203.509 0. 0. 0. 0.
0. 0. -4213.23 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4034.47 61.7397 0. 0. 0. 0. 0. 117.018 0.
0. 0. 0. -4355. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4034.47 0. 0. 0. 203.509 0. 0. 117.018 0.
0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196.617 0. 0. 86.2689 0. 875.382
0. 0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 196.617 0. 0. 86.2689 0. 875.382
0. 0. 0. 0. 0. 0. -4778.38 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 162.242 4273.72 342.42 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. -404525. 399909. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4273.72 342.42 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 399909. -404345. 0. 0. 0. 0. 0. 0. 0. 0. 162.242 4273.72 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. -187362. 0. 0. 0. 0. 0. 0. 0. 0. 187362. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -4786.93 0. 0. 0. 0. 0. 0. 0. 0. 0. 334.234 4288.39 164.311 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -404357. 399904. 0. 0. 0. 0. 0. 0. 0. 0. 4288.39 164.311 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 399904. -404526. 0. 0. 0. 0. 0. 0. 0. 334.234 4288.39 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -178444. 0. 0. 0. 0. 0. 0. 0. 178444. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 0. 60.7743 259.226
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 60.7743 259.226

1.40441´ 106 4034.47 4034.47 4034.47 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.41652´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. 61.7397 61.7397 0. 0. 0. 162.242 0. 162.242 0. 0. 0. 0. 0. 0. 0. 0. -447.963 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 4273.72 4273.72 4273.72 187362. 0. 0. 0. 0. 0. 0. 0. 0. -200183. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 196.617 196.617 342.42 342.42 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1078.08 0. 0. 0. 0. 0.
0. 203.509 0. 203.509 0. 0. 0. 0. 0. 0. 334.234 0. 334.234 0. 0. 0. 0. 0. 0. 0. -1075.49 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4288.39 4288.39 4288.39 178444. 0. 0. 0. 0. 0. 0. 0. -191309. 0. 0. 0.
0. 0. 0. 0. 86.2689 86.2689 0. 0. 0. 0. 164.311 164.311 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -501.16 0. 0.
0. 0. 117.018 117.018 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 60.7743 60.7743 0. 0. 0. 0. 0. 0. 0. -355.585 0.
0. 0. 0. 0. 875.382 875.382 0. 0. 0. 0. 0. 0. 0. 0. 259.226 259.226 0. 0. 0. 0. 0. 0. 0. 0. -2269.22

y
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-1.05317´ 106 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.05317´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. -4295.85 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4046.1 53.9869 0. 0. 195.757 0. 0. 0. 0.
0. 0. -4209.35 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4046.1 53.9869 0. 0. 0. 0. 0. 109.265 0.
0. 0. 0. -4351.12 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4046.1 0. 0. 0. 195.757 0. 0. 109.265 0.
0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 174.29 0. 0. 80.9969 0. 902.982
0. 0. 0. 0. 0. -1158.27 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 174.29 0. 0. 80.9969 0. 902.982
0. 0. 0. 0. 0. 0. -4827.55 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 260.576 4126.22 440.755 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. -404525. 399958. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4126.22 440.755 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 399958. -404345. 0. 0. 0. 0. 0. 0. 0. 0. 260.576 4126.22 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. -392294. 0. 0. 0. 0. 0. 0. 0. 0. 392294. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -4798.56 0. 0. 0. 0. 0. 0. 0. 0. 0. 357.486 4253.51 187.564 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -404357. 399915. 0. 0. 0. 0. 0. 0. 0. 0. 4253.51 187.564 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 399915. -404526. 0. 0. 0. 0. 0. 0. 0. 357.486 4253.51 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -201344. 0. 0. 0. 0. 0. 0. 0. 201344. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 0. 63.0995 256.9
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -320. 0. 0. 0. 0. 0. 0. 0. 63.0995 256.9

1.05317´ 106 4046.1 4046.1 4046.1 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.06531´ 106 0. 0. 0. 0. 0. 0. 0. 0.
0. 53.9869 53.9869 0. 0. 0. 260.576 0. 260.576 0. 0. 0. 0. 0. 0. 0. 0. -629.126 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 4126.22 4126.22 4126.22 392294. 0. 0. 0. 0. 0. 0. 0. 0. -404673. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 174.29 174.29 440.755 440.755 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1230.09 0. 0. 0. 0. 0.
0. 195.757 0. 195.757 0. 0. 0. 0. 0. 0. 357.486 0. 357.486 0. 0. 0. 0. 0. 0. 0. -1106.49 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4253.51 4253.51 4253.51 201344. 0. 0. 0. 0. 0. 0. 0. -214104. 0. 0. 0.
0. 0. 0. 0. 80.9969 80.9969 0. 0. 0. 0. 187.564 187.564 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -537.121 0. 0.
0. 0. 109.265 109.265 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 63.0995 63.0995 0. 0. 0. 0. 0. 0. 0. -344.73 0.
0. 0. 0. 0. 902.982 902.982 0. 0. 0. 0. 0. 0. 0. 0. 256.9 256.9 0. 0. 0. 0. 0. 0. 0. 0. -2319.76
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Figure 5. Three real positive Kirchoff matrices that correspond
to the same response matrix in the graph with two inversions.
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