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1. INTRODUCTION

I have looked at variations of the “threehands” graph (F ig and tried to figure
out how we can look for response matricies that correspond to all-positive Kirchoff
matrix. So far, I was unable to make this into an exact science, so some arguments
deal with each graph messily and individually. However, I have found that:

(1) The graph with no inversions has only one positive conductance correspond-
ing to a response matrix. (This is old news)

(2) The graph with one inversion can have three different positive Kirchoff
matrix that correspond to the same response matrix.

(3) The graph with two inversions can have also have three.

(4) That same graph is labeled “recoverable” by Nick Addington’s program.
So, either the program is buggy (which is unlikely. I may verify it by
hand, but I tend to trust the program), or this is a counterexample to Nick
Addington’s method.

()

Date: August 10th, 2006.
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(b) With One Inversion

(©)

11 a 12 ©

(c) With Two Inversions

FIGURE 1. “Threehands” Graphs. Note the subtle differences in
the numberins of the vertices.

This turned out to be a lie. Both the graph with one or two inversions can
have three real positive Kirchoff matrices correspond to the same response
matrix.

2. PARAMETRIZING RESPONSE MATRICES

First of all, let us figure out the conditions for a matrix A to be a response matrix
that corresponds to any (signed, or even complex) Kirchoff matrix. This is possible
because the graphs we deal with are composed from four-stars that are connected
in a very simple way (as “multiplexers”). In fact, we could say that we are dealing
with this kind of graphs exactly because it is easy to parametrize their response
matrices.

Four every four-star (or even an n-star), the response matrices are parametrized
easily. As in my other paper, consider the four-star with boudary vertices 1, 2, 3, 4
and an interior vertex 5. If a response matrix satisfies the equation Ajj Ak = Aix A
for all 4, j, k, [, we simply use the following formulas to get the conductances in the
Kirchoff matrix:

Aighi Aighi
(1) yi= =g+ SR = E Aij + =2 i
Aik g Aj
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If the response matrix does not satisfy A Ar; = AixAr;, we say that no Kirchoff
matrix corresponds to it.

Now, as Jeff Russel discusses in [5], if all of the A’s are positive, this corresponds
to our usual notion of response matrices as Schur complements of response matrices.
However, we do not want to limit ourself to these cases. Instead, we allow A’s to
have any complex or infinite values (as long as the equations make sense, but
this is always the case for our multiplexers) and then use the equations as
axioms.

So, from now on,

Definition 2.1. For a graph G with n vertices and b boundary vertices,

e By a response matriz, we mean any b X b matrix A with possibly complex
or infinite entries that is symmetric and has row sums 0.

e By a parametrization of response matrices we mean some correspondence
that assigns a finite (possibly empty) set of Kirchoff matrices (any n x n
matrices with row sums 0) to every response matrix.

o We say that G is recoverable if for every response matrix, there is at most
one Kirchoff matrix that corresponds to it.

We will never use the exact nature of this correspondence (Schur complements,
etc.) in what follows. We will only use equations , some rules for parametriza-
tions of larger graphs in relation to their parts, and the fact that:

Theorem 2.2. For real, positive response matrices A for a graph G made of n-
stars, their notion of parametrization induced by in the sense of deﬁm’tion
and our usual notion of parametrization from the Schur complement is the same.

Proof. Omitted. It should be clear; what is lacking for now is a precise definition of
how to build parametrizations of larger matrices from smaller ones in full generality.
For the way we are going to do it here, see below. O

2.1. ... abstractly. In our case, we consider the four-stars as “multiplexers” and
the graph as a series of multiplexers. The properties of the multiplexers are designed
to ease the process of building a large graph for which we know how to parametrize
the response matrices from small ones. If we try to parametrize the response matrix
of a mutliplexer, we find that we can consider some of the entries in this matrix
(the “outputs”) separately from the rest. More precisely,

Definition 2.3. A graph M = (V; E) together with a set B C V of boudary edges
and a set O C B x B is a mutiplexer (or an n-multiplexer if n = |O|) if:

(1) The set Bx B is partitioned into disjoint subsets as Bx B = DUOUI, where
D is the diagonal {v xv | v € V'}, O are the outputs of the multiplexer, and
I are the interior responses of the mutliplexer. We consider all of these as
addresses of entries in the response matrix.

(2) The response matrices of M are parametrized as follows: there are fixed
relations between the entries addressed by I. That is, there is a fixed set
A(I) c RUI of “allowed” vectors of values we can assign to these entries.

For every allowed choice of values for entries in I, we can pick any output
entry o € O. There should be a single Kirchoff matrix corresponding to a
choice of any complex number or oo for the entry of A addressed by o.
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FIGURE 2. Multiplexers we use.

That is, a choice of a value for o imposes a value on all the other entries
of O. Any complex value for o is valid, and the graph is recoverable - no
more that one (complex) Kirchoff matrix is ever associated to a response
matrix.

All the other response matrices do not correspond to any Kirchoff matrices.

We usually want to consider a mutliplexer as a black box with a number of

outputs.

The outputs have some relations between them. While these relations

are dependent on the interior responses, we are only concerned about the relations
themselves, and largely try to ignore the interior responses.

The three mutlipexers we use are shown in Fig.[2] Their properties are summa-
rized below:

(1)

(2)

3)
(4)

For the first multiplexer, b = %, where C' = Ai3A24 = A13X23. Note that
we can obtain a multiplexer with any desired real value of C' > 0 by setting
A3 =Xoa = Mg = Xy = V.

For the second multiplexer, b = Ca, where C = . Note that the proper-
ties of this graph as a multiplexer do not depend on Ao4 at all as changing
Aoy only affects the conductance of the one edge between vertices 2 and
4. So, from now on, we will ignore g4, and simply assume that it is large
enough for the conductance between 2 and 4 to remain positive whenever
necessary.

For the third multiplexer, b = Cia and ¢ = Csa, where (] = )\—12 and

Cy = ilS
If all the interior responses are positive, then if a is real and positive, so
are b and ¢, and furthermore all the conductances we get in the multiplexer

are real and positive.

These properties, as well as the fact that these things are actually multiplexers,
should be in the prevous paper.

Now, all the graphs G we are considering satisfy the following properties:

Definition 2.4. A graph G is “good” if every pair of distinct boundary vertices
(i,7) for G satisfies exactly one of the following:



THREE 3-TO-1 GRAPHS WITH POSITIVE CONDUCTIVITIES 5

(1) There are no connections between ¢ and j. That is, A; ; = 0.

(2) There is a single multiplexer M such that every connection between i and
Jj involves only the vertices and edges of M. (i,j) is an interior response of
M.

(3) Every connection between the vertices ¢ and j involves the vertices and
edges of only one multiplexer. For every such multiplixer, the pair (4, j) is
one of its “outputs”.

In such a graph, we can consider partial responses between two boundary vertices
along specific multiplexers. These satisfy the property that the sum of all the partial
responses between i and j is A; ;.

Now, suppose we have our graph G and we want to find the exact conditions
that a matrix A has to satisfy for it to correspond to at least one (possible complex)
Kirchoff matrix. We find:

(1) All of its entries of the first type have to be 0.

(2) Every entry (4,j) of the second type corresponds to a single mutliplexer
M. Let Ins be the set of the interior responses of that mutliplexer and Oy,
be the set of all the outputs of that multiplexer. Since every connection
between 7 and j involves only the vertices and edges of M, the value of A; ;
is the same as the partial response between ¢ and j along M. Since this is
true for all the entries of I,,,, we know that the whole set of allowed values
for I,,, is the same as if the multiplexer was not a part of a larger graph.

It is clear that if we pick non-allowed values for entries in I, for any M,
we will not have any corresponding Kirchoff matrices no matter what the
other entries are.

(3) For every fixed value of the interior responses in the graph, we obtain
relations between the outputs of every single multiplexer.

For entries (i,j) of the third type, however, it is no longer true that
partial responses are the same as actual responses. Instead, ); ; is the sum
of the partial responses between ¢ and j over all the mutliplexers.

So, we can fix all the A; ;’s of the third sort to arbitrary values. If a set of
partial responses does not satisfy either the relations between the outputs of
any mutliplexer or the condition that the sum of partial responses between
¢ and j should be J; j, it clearly does not correspond to a Kirchoff matrix.
If it does, then by properties of the multiplexers, we can find a unique set
of conductances for every multiplexer. So, we have a unique conductance
for every edge of the graph.

In other words, we have:

Lemma 2.5. For a “good” graph, fix a response matrixz A that has 0’s for all the
responses of the first type, allowed values for interior responses of every multiplexer
that is a part of the graph, and arbitrary values for responses of the third type.

Then, we for every pair of vertices (i,j) of the third type, we consider partial
responses along each multiplexer M, )\% as a variable (and )\% = 0 if there is no
connection between i and j that involves M ). There are as many Kirchoff matrices
that correspond to A as there are solutions to the following equations:

(1) For fized (i,j) of the third type, 3"y o muttipiexer A =i

(2) For a fized multiplexer M, all of the partial responses for its outputs satisfy

the appropriate relations
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All the other response matricies have no corresponding Kirchoff matrices.

Note that, for the multiplexers we use, if all of the partial responses in the lemma
are real and positive, the corresponding Kirchoff matrix will also be all-positive

2.2. ...concretely. In all the “threehands” graphs, pick a single partial conduc-
tance in the graph, call it a, and call the three partial conductances between the
edges (5,6) Iy, l2, and I3. If we apply lemma we find that the two conditions in
the lemma simplify and are equivalent to the following two:

(1) All the partial conductances, including /1 (a) , l2(a), and l3(a), are specific
linear functionals of a. The coefficients of the linear fractionals depend on
which of the three graphs we are looking at, and on all the responses except
for one, A\g = A5,6. They are obtained from continued fractions.

(2) li(a) +la(a) + l3(a) = Ao. This equation is at most a cubic.

I prefer to pick a = l3(a), which allows us to write the equation as:
(2) a-+1l; (a) + 15 (a) =X

The exact partial response that I picked to be a is shown in Fig.

We allow a to vary and consider X as a function of a: A(a) = a+1i(a) +12(a). It
should be clear from the discussion of the previous section that the response matrix
A(a) that has )\ replaced with A(a) and the restriction that the appropriate partial
response is a corresponds to a unique Kirchoff matrix.

Furthermore, if we now assume that the response matrices are both real and pos-
itive, the functions I (a) and Iz (a) are either strictly increasing or strictly decreasing
(proof in the other paper). Due to our choice of a,

(1) In the graph with no inversions, both /; and l5 are strictly increasing.
(2) In both of the graphs with inversions, both I; and Iy are strictly decreasing.

3. FINDING THE POSSIBILITIES FOR THE NUMBER OF REAL ROOTS

We know that I1(a) and lz(a) are both linear fractionals of a. So, both /; and
lo are continuous as functions from projectve space R U oo to itself, and there is a
single value a; such that [1(a;) = oo and a single value as such that l3(az) = co.
(WLOG, we assume that a1 < as.) The function A(a) is continuous and real-valued
everywhere except for three points: aq, as, and az = co.

The domain of a’s is then naturally divided into three regions: the leftmost region
I (—o0,aq), the middle region II (a1, as) and the rightmost region IIT (as, 00).

There may actually be fewer regions in singular cases (if a1, aq,a3 = oo aren’t
all distinct), but we will ignore these in this paper.

3.1. Graph with no inversion. For the graph with no inversions, A(a) goes
strictly increasingly form —oo to oo in every one of the regions. So, for every
value of \g, there will be one value of a in every region corresponding to it.

<Missing proof that only one of these values corresponds to an all-positive ma-
trix>
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FIGURE 3. Sample plot of A(a) for graphs with inversions.

3.2. Graphs with one or two inversions. A sample plot of A(a) as a function
of a for a graph with inversions is shown on Fig. It has to have the following
features:

(1) In region I, the functions comes from —oo, approaches a maximum, and
then goes to —oc.

(2) In region II, the function comes from +oco and goes to —oo. Depending
on the parameters, it may be strictly decreasing, or it may asume a single
maximum and a single minimum (there’s a “wrinkle”).

(3) In region II, the function comes from +o0o and goes to —oc.

Now, let us attempt to solve the equation A(a) = Ag for various .

e If )\ is large, there will be one solution of ¢ in region II, and two solutions
in region III. There cannot be more than two solutions in region III because
the equation A(a) = Ag is a cubic. For a single value of \g, the two solutions
in region IIT are the same (at the minimum).

e As )\g decreases further, there is a real solution in region II and two complex
solutions.

e If the function is not strictly decreasing in region II, there is a range of
values of A\ for which there are three real solutions for a, all in region II.

e As )y decreases further, there is again a real solution in region II and two
complex solutions.

e Finally, for smaller values of \g,there is a single real solution in region II,
and two solutions in region I

So, we can suspect a likely possibility of three real, positive conductances corre-
sponding to the same response matrices in case there is this “wrinkle”.

Note that this rough method does not distinguish between the graph with a
single inversion and the graph with two inversions.

4. REGION OF ALL-POSITIVENESS

Recall that for an all-positive response matrix of one of our graphs to correspond
to an all-positive Kirchoff matrix, it is necessary and sufficient for all the partial
conductances in the graph to be positive.
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I haven’t yet proved the following conjecture:

Conjecture 4.1. If we fiz all the responses in a reponse matriz except for A(a),
the set P C R of values of a that correspond to all-positive real Kirchoff matrices
is an open interval.

Since the set where a single linear fractional is positive consists of at most two
rays, it is clear that P can be at most a union of two open intervals. However, if
the conjecture is proven true, it will be clear that P has to lie completely inside
one of the regions I, II, or III of the graph.

However, it turns out that we do not really need to know anything about all of
P to do useful things, for two reasons:

Lemma 4.2. If the set P contains a single point p, it also contains a small closed
interval around p.

Proof. P is defined by some finite number of strict inequalities. If a strict inequality
is true for p € P, it must also be true on a neighborhood of p.

For our convenience, we would like to deal with closed intervals. Of course, every
neighborhood must contain a closed interval for us to use. O

Lemma 4.3. In all the three graphs we are dealing with, we can express li(a) =
l,l(’g—z) and la(a) = l,j—z), where ljand Iy are some partial conductances. We can
create response matrices that change both Cy and Cy to any positive values without
changing the set P in any way.

Proof. The partial I; and Iy are of the appropriate form because the mutliplexer
between them and the responses I} and [ is the multiplexet on Fig. )

(Why we can create the mutliplexer with the right value of C;. Note that all of
these responses are all positive)

The set P is defined by the fact that all partial responses in the graph are
positive. Now, l;(a) > 0 if and only if /{(a) > 0, for any positive value of Cj.
Clearly P is not dependent on Cy and, by the same argument, on Cy (as long as
both are positive). O

So, we always have a closed interval I C P and we want to make the behavior
of A(a) = a +11(a) + lz2(a) to suit our fancy. I can’t contain any discontinuities
of A\. We know that the signs of the derivatives of [; and I, are imposed on us.
Furthermore, the derivative of a is +1 everywhere. However, we can now modify
the magnitude of the derivatives of I; and ls however we want.

From now on, let us only deal with graphs whose /1 and [y are decreasing func-

dx

tions. The function T varies continuously with C7 and C5 of I. Now, if we set

both C; and C5 to be sufficiently small, we will have, for a € I:

d\ d 1 d 1
2102 — ), 2 —— 1—
da Y da (ma)) > da (lg<a>>> ‘

On the other hand, if we set both C; and Cj to be large, % will be large and
negative.
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By the Intermediate Value Theorem, for every point ag € I, there are such values
of Cy and (5 such that ‘é—i‘ |a0 = 0. Then, for a value of )\ sufficiently close to A(ap),

there will be two values ay, ag € I s.t. A(a1) = A(az) = Ao.

In fact, the following holds true:

Lemma 4.4. For our graphs, if there is an all-positive Kirchoff matriz whose
response matriz corresponds to a point in one of the regions (either I, II, or II) of
the function \(a), then there is a response matriz that corresponds to the mazimum
number of Kirchoff matrices possible for that region, and they are all positive.

Proof. The above proves this for regions I and III. The proof for region II is forth-
coming - so far I got there by tweaking C; and Cy enough manually. ]

So, for the graphs with one or two inversions, if we find a single Kirchoff matrix
that corresponds to a point in region II, we will be able to produce a response matrix
that corresponds to three real, positive Kirchoff matrices. Furthermore, neither of
these graphs is “recoverable” in the sense that all of its response matrices correspond
to at most one real, positive Kirchoff matrix. Indeed, if we find a single Kirchoff
matrix in either region I or II, the lemma will allow us to find a response matrix
that corressponds to two real, positive Kirchoff matrices. Since there exist real,

positive Kirchoff matrices for both graphs, they must lie in at
least one of the regions I, II, or III.

5. GRAPH WITH THREE REAL POSITIVE CONDUCTANCES

By the previous section, all we need to find three real, positive Kirchoff matri-
ces corresponding to the same response matrix for either one of the graphs with
inversions, is to find a response matrix whose a lies in the second region of A(a).
For the graph with one inversion, this is possible. We vary C; and C3 to crete
three values aq, as, ag such that they all correspond to all-positive matrices and
Aa1) = AMaz) = A(az). Then, we change some of the entries of the response matrix
to v/C; and +/C5 to obtain the new response matrix. We can recover the Kirchoff
matrices from that however we want. My method was to use Nick Addington’s
program to parametrize the Kirchoff matrices by one conductance related to a. 1
then plugged in a1, ag, and ag to obtain the three response matrices (see Fig. E[)

6. GRAPH WITH ONLY TwoO

In fact, in the porcess of remembering the proof, I found a counterexample (see
Fig. . T’ll try to put the detailed description of how that “remembering” process
went here.
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APPENDIX A. THE OuTPUT OF NICK ADDINGTON’S PROGRAM

This is what Nick Addington’s program outputs for the graph with two inver-
sions. It takes about 40 minutes and 2G of RAM on William Stein’s “SAGE”
computer for the first line to come up, the rest is quick.

R™18_21: recovered 10,10 from 9 10 11 x 3 6 10

R™17_19: recovered 9,8 from 9 10 x 8 10
R™17_19: recovered 8,8 from 8 9 x 8 10
R™17_19: recovered 8,7 from 8 10 x 7 8
R717_19: recovered 9,9 from 3 8 9 x 7 9 10
R™17_19: recovered 7,7 from 7 9 10 x 7 9 10
R~17_19: recovered 4,3 from 2 4 7 10x 137 8
R™17_17: recovered 1,1 from 1 4 x 1 3
R"17_17: recovered 2,2 from 1 2 x 1 2
R"17_17: recovered 2,3 from 1 2 x 2 3
R™17_17: recovered 2,4 from 1 2 x 3 4
R™17_17: recovered 3,3 from 2 3 x 3 4
R™17_17: recovered 4,4 from 3 4 x 3 4
R~18.18: recovered 3,3 from 2 3 x 3 7
R"18_18: recovered 2,2 from 2 3 x 2 3
R"18_18: recovered 7,7 from 2 7 x 2 7
R~18_18: recovered 7,9 from 2 7 x 7 9
R™18.18: recovered 9,9 from 7 9 x 2 9
R~20_20: recovered 5,5 from 5 8 x 5 7
R~20_20: recovered 6,5 from 5 6 x 5 7
R"20_20: recovered 6,6 from 6 7 x 5 6
R~20_20: recovered 7,7 from 6 7 x 6 7
R720_20: recovered 8,8 from 7 8 x 7 8
R™21_21: recovered 4,4 from 2 4 x 4 11
R"21_21: recovered 2,2 from 2 4 x 2 4
R"21.21: recovered 11,11 from 2 11 x 2 11
R"21_21: recovered 11,13 from 2 11 x 11 13
R"21.21: recovered 13,13 from 11 13 x 2 13
R™22_22: recovered 12,13 from 11 12 x 13 14
R"22_22: recovered 13,13 from 12 13 x 13 14
R"22_22: recovered 11,11 from 11 13 x 11 13
R"22_22: recovered 12,11 from 11 12 x 11 13
R™22_22: recovered 12,12 from 12 13 x 11 12
R™22_22: recovered 14,14 from 12 14 x 12 14

R"23_23: recovered 5,5 from 5 12 x 5 11
R"23_23: recovered 6,5 from 5 6 x 5 11
R"23_23: recovered 6,6 from 6 11 x 5 6
R"23_23: recovered 11,11 from 6 11 x 6 11
R"23_23: recovered 12,12 from 11 12 x 11 12
R™24_24: recovered 16,15 from 4 16 x 3 15
R"24_24: recovered 3,3 from 3 16 x 3 15
R"24 24: recovered 4,4 from 3 4 x 3 4
R"24_24: recovered 15,15 from 4 15 x 4 15
R™24 24: recovered 16,16 from 15 16 x 15 16
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FIGURE 4. Three real positive Kirchoff matrices for the graph with
one inversion that correspond to the same response matrix
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FIGURE 5. Three real positive Kirchoff matrices that correspond
to the same response matrix in the graph with two inversions.
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