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Abstract

This paper looks at the map from 7 to A in its bilinear form and
utilizes it to determine injectivity of the differential of two cubic networks.
A definition of special functions is offered and it is proved that if special
functions exist for a given network, then that network is locally one-to-
one. An algorithm for the construction of special functions on any cubic
network is also provided. The unit cube and the 2-cube are both studied
in detail and it is concluded that they are both locally one-to-one.
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1 Introduction

In [1], Curtis and Morrow proved the existence of special functions on circular
planar resistor networks and used them as part of a recovery algorithm for well-



connected critical graphs. Special functions were also used by Giansiracusa in
[2] to partially recover non-critical circular planar networks. This paper takes
a different approach, constructing special functions for highly non-planar cubic
networks and using them to prove injectivity on the map of the differential. The
motivation behind this approach is that an injective differential map corresponds
to a graph that is locally one-to-one. If it turns out that a cubic network is locally
one-to-one, then it will be worthwhile to look for global one-to-oneness and to
try to prove recoverability.

1.1 Introduction to Cubic Networks

We consider a cubic network (also termed a three-dimensional square lattice) as
in Figure 1. Each point of intersection between two or more line segments, or
at the end of a line segment, is called a node. The set of nodes is denoted (.
The interior of Qq, called intQy consists of those nodes which are the vertices
of the cube. Each interior node p has six neighboring nodes. The boundary of
Qo, called 99y, is Qy — intfly. Each boundary node p has only one neighboring
node, which is an interior node. An edge pq is a line segment which connects a
pair of neighboring nodes p and q. The set of edges is denoted ;. An edge pg
where p is a boundary node and gq is its neighboring interior node will be aclled
a boundary spike. A cubic network of this type consists of a network T’ = (G, )
where G = (Q, ;) and ~ is a postive real-valued conductivity function on ;.
Further information on the properties of cubic networks can be found in [3] and

[4].

/]

Figure 1: A 2 x 2 x 2 cubic network

1.2 The Response Matrix of a Cubic Network

The following conventions will be used to describe cubic networks:

e The boundary nodes on the right-hand face are called East nodes, or
simply E.

e The bounary nodes on the bottom face are called South nodes, or S.



The boundary nodes on the left-hand face are called West nodes, or W.

The boundary nodes on the top face are called North nodes, or N.

e The boundary nodes on the face coming out of the zy-plane in the positive
z direction, are called Front nodes, or F.

The bounadry nodes on the face leaving the zy-plane in the negative z
direction, are called Back nodes, or B.

Given this labeling system, the response matrix of a cubic network has the
block form shown below:

E S w N
E | AE}E) | AE;S) | AME; W) | A(E;N)
A= 5 [TA(S;E) | A(S;S) | AS;W) | A(S;N)
W [A(W;E) | AW;8) | A(W; W) | A(W;N)
N [A(N;E) | A(N;8) | A(N; W) | A(N; N)

In the case of the unit cube, E stands for the four indices corresponding
to the nodes on the E face, S stands for the four indices corresponding to the
nodes on the S face, etc. Thus, the block A(W; N) at position (W, N) is a 4 x
4 matrix which gives current on the W face due to boundary values imposed on
the N face. A similar block structure will be used for vectors of voltages and
vectors of currents. For example, un stands for a vector of four values which are
boundary voltages on the IV face. The block form of A, leads to the following
theorem, which will be used in §3.1 to construct special functions.

Theorem 1.1 Let A and B be two sets of boundary nodes corresponding to
opposite faces on an n z n x n network T, i.e., let (A, B) be equal to (N,S),
(E,W), or (F,B). Then the submatriz A(A; B) of A, is non-singular.

Proof: Each face A,B on I has (n + 1)? boundary nodes. Let k = (n+ 1)2.
Since there is a k-connection from A to B, detA(A;B) # 0. So A(A;B) is
non-singular. O

2 The Differential as a Bilinear Form

Consider an electical network I' = (G, ~y), where G is a graph with a boundary
and = is a conductivity function defined on the edges of G. For each conductivity
function  on G, let A, be the response matrix. Let T : (RT)N — R™ , where N
is the number of edges in G and n is the number of boundary nodes, be the map
which sends v to A,. §4.6 of [1] computes the differential of T' and shows that
since a matrix can be identified with a bilinear form, the dT" can be thought of
as a map that takes vectors to the space of bilinear forms. That is,

dT(K)(z,y) = > Kp(f(0) = £(@)(9(p) — 9(0)), (1)

p~q



where f and g are solutions to the Dirichlet problem with boundary condi-
tions z and y and satisfy the equations

I
f= [ —C-1BT :|$
and
I
9= |: —C BT :| Y
and K is some direction. Here, f depends linearly on = and g depends linearly

on y. The bilinear form of the differential makes injectivity easy to detect. It is
clear that dT is injective if and only if

> Kpy(£(p) — £(2))(9®) — 9(g) =0 (2)

p~q
VY f,g implies that

Kpg = 0. 3)

We will use these equations to prove injectivity of the differential after we
construct some special functions.

3 Special Functions

LetI’ = (G,~) be an electrical notwork and let u be a y-harmonic function on
I'. Special functions are sets of y-harmonic functions f and g that are obtained
by imposing conditions on u, some of which are boundary values and some of
which are boundary currents. In [2], Giansiracusa constructs special functions
for circular planar networks which satisfy the condition that for each edge with
endpoints (p, q),

(f(p) — f(@)(g9(p) —g(q) =0 if pg # e
(f(p) = f(@)(g9(p) —9(q)) #0if pg=ce,

where e is either a boundary spike or a boundary edge. Using these functions
he showed that if }° _ Kp,AfAg =0, then K, = 0 on the boundary spikes
and edges of a critical circular planar network. After deleting boundary edges
and contracting boundary spikes, he found new sets of special functions for the
network, and was able to repeat the procedure until all of the edges of the
network were accounted for.

In the case of the cubic network, we want to find functions that will account
for all edges pq without any contraction or deletion. Thus, we will use a slightly
more general definition for special functions.



Definition 3.1 Let I' = (G, ~) be a three-dimensional square lattice network.
Special functions are any functions f and g which are «y-harmonic and satisfy
the condition that for only one edge with endpoints (p,q) = (po, o)

(f(p) = (f(@)(g(p) —9(q)) #0 (4)
and that for all other edges with endponts (p,q) # (po, qo)
(f(p) = f(@)(9(p) — 9(a)) = 0. ()

Note: Tt might happen that for some pair of functions f; and ¢1 (f(p) —
F(@)(g(p) — g(q)) # 0 for more than one edge pg of G. If all but one of these
edges have already been isolated by other sets fo special functions f and g,
then f; and g; are still special functions. In other words, we can use several
sets of special functions in conjuction with each other to isolate and determine
injectivity on all the edges of a graph.

3.1 Building Special Functions on Cubic Networks

We construct special functions using the method set forth for rectangular graphs
in §4.2 of [1]. The general algorithm for n x n x n network is as follows:

1. First, select three faces on the cube. Two faces, call them A and B, must
be opposite, that is, there must exist a k-connection from the bounadry
nodes of one to the boundary nodes of another, where k = (n + 1)?. The
third face, call it C, is selected arbitarily.

2. Put some non-zero voltage on a single boundary node on C, call that node
Ci.

3. Put zero current flow on A.

4. Put zero voltage on all the remaining boundary nodes, excluding B and
Ci.

5. Use harmonic continuation to determine current flow.

Lemma 3.1 If a particular pattern is obtained by following the preceding al-
gorithm, then there is a vy-harmonic function f which produces that current
pattern.

Proof: Let the value of the current at all nodes on the network be 1 = Ay,
where y is the function that gives the boundary values imposed on the network.
If the above algorithm is followed, then the current on the A face is Y4 =
A(4;C)yc. Since Theorem 1.1 implies that A(A; B) is non-singular, there is a
unique solution zg = [x1, T3, ..., T] to the k x k linear system A(4; B)zg+14 =
0. O

In other words, we can choose boundary voltages on one face to produce
zero current on the opposite face, so current patterns obtained by way of the



algorithm are legitimate flows and they must be produced by real y-harmonic
functions.

We still need another function g to make a pair of special functions. We
construct g by repeating the algorithm until it produces a current pattern that
overlaps the first current pattern f on a single edge pq of the network. Therefore,
f and g satisfy (4) on this single edge and (5) on all other edges and they are
special functions.

Theorem 3.1 If there exist special functions f and g such that (f(p)—f(q))(9(p)—
9(q)) # 0 on some edge with endpoints (p,q) = (po,qo), then that edge is locally
one-to-one.

Proof: Let 35, Kpq(f(p) — f(2))(9(p) — 9(q)) = 0. Since (f(po)—f(q0))(9(po)—
9(g0)) # 0, it must be that Kp,q, = 0. Therefore, the derivative of the map

from v to A is injective when K = K, 4, = 0 and poqo is locally one-to-one. O

It is clear that if a network is locally one-to-one, there will be a set of
special functions for every edge pg. With these sets of special functions one can
determine injectivity of the differential at every conductance - in every direction
K.

4 The Unit Cube

We begin by building special functions for the unit cube. We hope that by
beginning with the simplest example of a three-dimensional square lattice, we
will find patterns that can be extended to larger cubic networks. The special
function, call it f, was constructed by selecting the N, E, and W faces. Non-
zero voltage was placed on a boundary spike in N and zero voltage everywhere
else except E. Zero current flow was imposed on W. The resulting current
pattern is shown on the cube on the left in Figure 2. Notice that non-zero
voltage was imposed on a spike near the W face and the zero current flow. If
the non-zero voltage is placed instead on a spike closer to the E face, then the
resultant current flow is the much simpler pattern shown on the cube on the
right in Figure 2. It turns out that this is a trend which holds for larger cubic
networks: As we place non-zero voltage nearer to the face with zero current flow,
the pattern of the consequent current becomes larger and increasingly complex.
Now we need another y-harmonic function g to make a set of special functions
for an edge in the unit cube. Instead of constructing another function by way
of the algorithm in §3.1, we observe that any rotation of f is also a special
function, due to the symmetry of the cube. For example, the current pattern
on righthand cube in Figure 3 can be achieved on any pair of corner boundary
spikes, simply by altering the boundary data. Figure 4 shows how changing the
boundary data produces the same current pattern in a different location.
Since any rotation of f is also a special function, it becomes a simple task
to look for a rotation that, when superimposed on f, only ovverlaps on a single
edge pq. We find two suitable rotations of f on the unit cube and call them
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Figure 2: Two different current patterns caused by special functions on the unit
cube. The pattern on the left is more complicated because the non-zero voltage
is imposed on a spike nearer to the zero-current flow.

g and h (See Figure 4). It is clear that when pq is a boundary spike (f(p) —
F(@)(g(p) — 9(g)) # 0 and when pq is an edge between interior nodes (g(p) —
9(9))(h(p) — h(g)) # 0. Again due to the symmetry of the cube, all of the
boundary spikes are equivalent in that if one is accounted for by a set of special
functions, then a rotation of those special functions will take care of the other
boundary spikes. The same is true for the edges between interior nodes. Thus,
the two sets of special functions f,g and g,h, together with Theorem 3.1, are
sufficient to prove that the unit cube is locally one-to-one.

Note: Although our examples show a unit cube with three boundary spikes
on each corner, one spike can be removed from each corner without affecting
injectivity of the differential. In fact, the same special functions found for the
cube with three corner spikes work for the cube with only two boundary spikes.

It is of note to say that, when drawn in the plane, the 1 x 1 x 1 cubic
network is equivalent to the annular network consisting of two circles and four
rays (Figure 5). It has been shown that this network is recoverable, however, we
have had trouble demonstrating that the differential is injective. If we attach an
additional boundary spike to each of the boundary nodes, so that it is analogous
to the cube with sixteen boundary nodes, it becomes possible to use the same
special functions f,g, and h to prove that the two circle four ray network is
locally one-to-one.

5 The 2-Cube

Our next step was to look at the 2 x 2 x 2 square lattice. In the case of the
unit cube, there were two types of edges pq, so only two sets of special functions
were necessary to determine injectivity of the differential. The two cube, on the
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Figure 3: Two current patterns on the unit cube. The pattern on the right is
a simple rotation of the pattern on the left is obtained by placing zero current
flow on B instead of W.

other hand, has six types, of edges, which are listed below and labeled as in
Figure 6:

¢ Boundary spikes on the corner of the cube are labeled a and are called
corner spikes.

e Boundary spikes in the middle of an edge on the cube are labeled b and
are called middle spikes.

e Boundary spikes in the very center of a face on the cube are labeled ¢ and
are called center spikes.

e Edges between two interior nodes and adjacent to corner spikes are labeled
d and are called exterior edges.

e FEdges between two interior nodes and adjacent to middle spikes are labeled
e and are called middle edges.

e FEdges between two interior nodes and adjacent to center spikes are labeled
i and are called interior edges.

We find six pairs of special functions to prove that this network is locally one-
to-one, one pair for each type of edge. These pairs consist of various rotations
of four basic types of special functions. The first type (f) is obtained by placing
the non-zero voltage on a corner spike as far away as possible from the face
with zero current flow. The second type (g) is obtained by placing the non-zero
voltage on a middle spike far away from the face with zero current flow. The
current pattern resulting from the third type (h) of special function is a bit
more complex, because the non-zero voltage is placed on a center spike, and is
thus nearer to the zero current flow. The pattern caused by the fourth type (j)
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Figure 4: The figure on the left is a unit cube with the current flows due to
special functions f and g overlapping on a boundary spike. The figure on the
right is a unit cube with the current flows due to special functions g and h
overlapping on an interior edge.

of special function is very complex and spreads over nearly half of the graph. It
is obtained by placing the non-zero voltage at a middle spike on the face with
zero current flow. These four flow types and their associated boundary data are
shown in Figure 7. Rotations of f and h overlap on a, two rotations of h overlap
on ¢, and rotations of g and j overlap on b, thus taking care of all the boundary
spikes. Rotations of A and j overlap on both d and e and two rotations of j
overlap on i. Figures 8 and 9 show different rotations of these current flows
working as special functions on every edge pq of the 2-cube. Since there are
special functions for every edge pg on the 2-cube, Theorem 3.1 tells us that the
network is locally one-to-one.

6 Future Work

The work presented in this paper can be extended in several directions. It seems
natural that, since we have proved the 2-cube to be locally one-to-one, we try
to recover it in its entirety. It is likely that the special functions found here will
aid in its recovery. If the 2-cube does prove to be recoverable, it will likely be
difficult to generalize the method of recovery to larger cubics. We simply do not
have enough information about larger networks. However, it is possible that, in
recovering larger networks, patterns will be found which enlighten us about the
properties of non-planar networks.

Another interesting idea for future research is to look at networks of higher
dimensions. We suspect that the four-dimensional square lattice is locally one-
to-one and found a special function for the network, unfortunately, it was diffi-
cult to visualize and we realized that our method of finding more special func-
tions by rotation would not be very useful. One suggestion for solving the



Figure 5: The 2 circle 4 ray annular network
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Figure 6: The different edges pg on a 2-cube

problem of visualization is to implement a bookkeeping system that would in-
volve labeling of all of the nodes on a graph with coordinates and then keeping
track of the current as it flows between neighboring nodes. Transitioning be-
tween a three-dimensional lattice and a four-dimensional lattice would not be
too difficult: each node would have a fourth coordinate and a new neighbor. Of
course, with objects of higher dimensions, the number of nodes quickly becomes
enormous. It seems that a program might be needed to keep track of all the
nodes. A program could also be written to determine all possible current flows
on a network using the algorithm given in this paper. By looking at all the pos-
sible flow patterns, one could more easily see where two overlap. If we had the
appropriate code, we would be able to construct special functions for networks
of n-dimensions and determine whether or not they are locally one-to-one.
Furthermore, while constructing special functions is useful for understanding
the differential of a network and determining edges to be locally one-to-one, it
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Figure 7: Flows resulting from special functions of type f, g, h, and j

is not necessarily enlightening about the best way to recover a network. There
is still much research to be done on the properties non-planar networks before
we can fully understand the conditions necessary for recoverability.
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Figure 8: Special functions on edges a,b, and ¢

Figure 9: Special functions on edges d,e, and ¢
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