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Abstract

An exploration into the discrete analog of the Laplacian and the hot spot conjecture
for graphs.
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1 An Introduction to the Hotspot Conjecture

1.1 Preliminaries

The spatially discrete heat equation with continuous time is,

ut = −Ku (1)

Using separation of variables we can reduce the spatial part of the heat equation to the
simple eigenvalue problem:

Kφi = λiφi (2)

Where we let, 0 = λ1 ≤ · · · ≤ λi ≤ · · · ≤ λn be the eigenvalues of K, and {φ1, · · · , φi}
be the corresponding eigenvectors. If K is a symmetric, n×n matrix, then the eigenvectors
are orthogonal (Therefore φi · φj = 0 for all i 6= j) and span Rn. With that in mind we can
see than any vector u(t) can be written as such:

u(t) =
n∑

i=1

βi(t) φi
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We can simplify this equation by substituting this form of u into the initial heat equation.

ut(t) = −Ku(t)
n∑

i=1

dβi(t)
dt

φi = −K

n∑

i=1

βi(t) φi

= −
n∑

i=1

λi βi(t) φi

=⇒ βi(t) = αi e−λit and u(t) can now be written: u(t) =
n∑

i=1

αi e−λit φi

The equation can be rewritten as:

u(t) = α1 + α2φ2 e−λ2t + R(t)

Where R(t) is a remainder function that approaches zero faster than the second term.

1.2 The Conjecture

The hot spot conjecture was first introduced in 1974 by Jeff Rauch.

Conjecture 1.1. The Hotspot Conjecture: Any second eigenfunction for the Laplacian with
Neumann boundary conditions in a bounded Euclidean domain attains its maximum at the
boundary.

An equivalent way of stating the conjecture is...

Conjecture 1.2. The Hotspot Conjecture (rephrased): The hot spots or maximal tempera-
ture values of bounded Euclidean domain move to the boundary as t goes to ∞.

This conjecture has been shown to be generally false in the continuous case. However
for 2-d simply-connected domains it holds.

2 A Discrete Example of the Hotspot Conjecture

2.1 The 5× 5 Grid

The first example of the hotspot conjecture on graphs will be the 5 × 5 square grid. The
eigenfunction is the set of numbers in the second eigenvector of the Laplacian. The second
eigenvalue of the 5×5 grid has multiplicity 2 thus there are two independent eigenfunctions
corresponding to this eigenvalue. Figure 1 displays the two ’temperature curves’. The
machinery for forming these graphs will be explained later.
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Figure 1: The Two Second Eigenfunctions of the 5× 5 Grid

3 The Rectangular Grid

3.1 Forming Notation - The Rectangular Grid Laplacian

We start creating our Kirchhoff matrix for a m × n rectangular grid where m < n by
numbering the nodes left to right starting at the top of the gird and moving down similar
to the way one would read. It’s important to note that the edge nodes are not all contained
in a upper left hand submatrix. The edge is not arbitrary but defined geometrically. For a
typical rectangular grid (Figure 2) the edge set is the set of nodes (intersection points) that
have 2 or 3 connections.

Figure 2: A Typical Grid

With this construction we can see that the Kirchhoff matrix has this form:

K =

m× n

m× n




D1

−I

0

−I
D2

−I

. . .

. . .

. . .
−I
D2

−I

0

−I
D1



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where,

D1 =

n

n




2
−1

0

−1
3
−1

. . .

. . .

. . .
−1
3
−1

0

−1
2




D2 =

n

n




3
−1

0

−1
4
−1

. . .

. . .

. . .
−1
4
−1

0

−1
3




The K matrix is composed of identity matrices on the immediate off diagonals, and 2 D1

matrices and m− 2 D2 matrices on the diagonal.

3.2 An Example - The 3× 4 Grid

Using the above notation the Kirchhoff matrix for the 3× 4 grid is,



2
−1
0
0
−1
0
0
0
0
0
0
0

−1
3
−1
0
0
−1
0
0
0
0
0
0

0
−1
3
−1
0
0
−1
0
0
0
0
0

0
0
−1
2
0
0
0
−1
0
0
0
0

−1
0
0
0
3
−1
0
0
−1
0
0
0

0
−1
0
0
−1
4
−1
0
0
−1
0
0

0
0
−1
0
0
−1
4
−1
0
0
−1
0

0
0
0
−1
0
0
−1
3
0
0
0
−1

0
0
0
0
−1
0
0
0
2
−1
0
0

0
0
0
0
0
−1
0
0
−1
3
−1
0

0
0
0
0
0
0
−1
0
0
−1
3
−1

0
0
0
0
0
0
0
−1
0
0
−1
2




The first non-zero eigenvalue and corresponding eigenvector for the Laplacian of the 3×4
grid are λ2 = 0.585786 and
φ2 =

[ −1, −0.414, 0.414, 1, −1, −0.414, 0.414, 1, −1, −0.414, 0.414, 1
]

Figure 3: The Second Eigenfunction of the 3× 4 Grid
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3.3 Proof of the Hotspot Conjecture for Rectangular Graphs

Theorem 3.1. For an m× n rectangular graph with uniform conductivity the second eigen-
function of the Laplacian attains its highest values at the edge nodes. In other words for a
vector Ψ2 that satisfies KΨ2 = λ2Ψ2, Ψ2 attains its maximal values on the edge nodes.

Conjecture 3.1. The following is a eigenvector of the Laplacian:

Φ2 =







φ2(1)
...

φ2(n)







φ2(1)
...

φ2(n)




...


φ2(1)
...

φ2(n)







=

1

2

...

m




~φ2

~φ2

...

~φ2




, where φ2(x) = cos[
π

n
(x− 1

2
)]

Figure 4: The Second Eigenfunction of the 3× 10 Grid

Proof.

KΦ2 = λ2Φ2 ⇐⇒




D1

−I

0

−I
D2

−I

. . .

. . .

. . .
−I
D2

−I

0

−I
D1







~φ2

~φ2

...

~φ2




=




D1
~φ2 − I ~φ2

D2
~φ2 − 2I ~φ2

...

D1
~φ2 − I ~φ2




= λ




~φ2

~φ2

...

~φ2




Looking at the is D1
~φ2 + I ~φ2 = λ ~φ2. This matrix can be written as a system of equations:
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φ2(1)− φ2(2) = λφ2(1)
−φ2(1) + 2φ2(2)− φ2(3) = λφ2(2)
−φ2(2) + 2φ2(3)− φ2(4) = λφ2(3)

...
−φ2(n− 2) + 2φ2(n− 1)− φ2(n) = λφ2(n− 1)

−φ2(n− 1) + φ2(n) = λφ2(n)

If we can show that the following two expressions are equivalent then we have shown
that Φ as defined above is an eigenfunction of K.

−φ2(i) + 2φ2(i + 1)− φ2(i + 2) = λφ2(i + 1)
−φ2(i + 1) + 2φ2(i + 2)− φ2(i + 3) = λφ2(i + 2)

Solving for λ, we get,

λ =
−φ2(i) + 2φ2(i + 1)− φ2(i + 2)

φ2(i + 1)
=
−φ2(i + 1) + 2φ2(i + 2)− φ2(i + 3)

φ2(i + 2)

Cross-multiplying...

[φ2(i)φ2(i + 2)] φ2(i + 2) = [φ2(i + 1) + φ2(i + 3)] φ2(i + 1)

−→
[
cos(

π

n
(i− 1

2
)) + cos(

π

n
(i +

3
2
))

]
cos(

π

n
(i +

3
2
)) =

[
cos(

π

n
(i +

1
2
)) + cos(

π

n
(i +

5
2
))

]
cos(

π

n
(i +

1
2
))

−→
[
2 cos(

π

n
(
2i + 1

2
)) cos(

π

n
(
2
2
))

]
cos(

π

n
(i +

3
2
)) =

[
2 cos(

π

n
(
2i + 3

2
)) cos(

π

n
(
2
2
))

]
cos(

π

n
(i +

1
2
))

−→
[
2 cos(

π

n
(i +

1
2
)) cos(

π

n
(1))

]
cos(

π

n
(i +

3
2
)) =

[
2 cos(

π

n
(i +

3
2
)) cos(

π

n
(1)))

]
cos(

π

n
(i +

1
2
))

We can see now that the equality is true and therefore we have shown that Φ2 (as defined
earlier) is in fact an eigenvector of our Kirchhoff matrix. Out of this calculation we also get
a closed expression for λ.

λ =
cos( π

2n )− cos( 3π
2n )

cos( π
2n )

(3)

Conjecture 3.2. The Φ2 is the second eigenvector of the Laplacian:

If this conjecture can be proved it’s trivial to show that our Φ2 maintains it’s maximum
at the edge nodes and thus Theorem 3.1 is true.

Conjecture 3.3. All the eigenvector has the form:
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Φlk =







φ(1, 1)
...

φ(n, 1)







φ(1, 2)
...

φ(n, 2)




...


φ(1,m)
...

φ(n,m)







where φ(x, y) = cos
(

π(2k − 1)
n

(
x− 1

2

))
cos

(
π(2l − 1)

m

(
y − 1

2

))

4 Counterexample to the Hotspot Conjecture for Graphs

It could be conjectured that the hotspot conjecture works for all connected graphs. Here’s
a counterexample...

Figure 5: Counterexample Graph

The second eigenfunction has the following form:

Figure 6: Counterexample Graph
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The highest and lowest values of this eigenfunction are contained in the centers of the
two square grids.

This result doesn’t tell us much. In fact our definition of boundary is somewhat unspecified.
This seems to erode the very foundation of this paper, for the hotspot conjecture wouldn’t
make much sense if we didn’t have a predetermined definition the boundary. It may be
better to think of this conjecture as only working for graphs that are analogous to simple
geometrical objects in the continuous realm. Another possible solution would be to reverse
the conjecture and state the boundary nodes are those nodes that attain the highest values
of the second eigenfunction. This may be an interesting way of forming a notion of boundary
for graphs.

5 Further Work

1. Prove Conjectures 3.2 and 3.3

2. Look at the Hotspot Conjecture for graphs other than the rectangular grid (Figure 7).

3. Explore the other eigenfunctions of the Kirchhoff Matrix

4. See if the Hotspot Conjecture holds for non-constant ’conductivities’.

5. Form or refine a definition of boundary for graphs that is analogous to continuous
domains.

Figure 7: Another Interesting Graph
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