
FFFFF MULTIPLEXERS!

ANDREW FANOE AND TRACY ZHANG

Abstract. In this paper, we will talk about n-plexers, an object
crucial in the construction of an n to 1 graph. We will talk mostly
about m-plexers on n-stars and try to classify what structures are
possible.

1. Definitions and Basic Methods

Definition 1.1. A type I multiplexer is an ordered pair P = (G, Π),
where G is a recoverable graph with boundary and Π = (ΠU , ΠK) is a
partition of the set of all distinct unordered pairs of boundary vertices
into two sets, called the unknown set and the known set. We call an
element of the unknown set an unknown pair, and an element of the
known set a known pair. We require that P has the following properties.

(1) For any valid response matrix on G, if we only know the re-
sponse matrix entries corresponding to known pairs, we cannot
determine the value of any entry corresponding to an unknown
pair.

(2) For any valid response matrix on G, if we know only the re-
sponse matrix entries corresponding to known pairs and one
unknown pair, we can recover the response matrix for all choices
of the unknown pair.

If |ΠU | = n, we will call this a type I n-plexer.

Definition 1.2. An n-star, denoted Fn, is a graph with boundary with
one interior node and n boundary nodes, with one edge connecting each
boundary node to the interior node and no other connections

Definition 1.3. The complete graph on n vertices is a graph with
boundary with n boundary nodes, no interior nodes, and an edge con-
necting any two boundary nodes. It will be denoted Kn

Definition 1.4. By the quadrilateral [v1, v2, v3, v4], we mean the set
of edges [v1, v2], [v2, v3], [v3, v4], [v1, v4]. We will also sometimes refer to
this in matrix language, referring to a quadrilateral as a 2 × 2 sub-
matrix. It will always be clear from context which of these two we
mean.

In the special case where we are looking for an m-plexer on Fn, we
can view the definition of a multiplexer in a more visual way, which
will sometimes be useful for us.

1

2 ANDREW FANOE AND TRACY ZHANG

First, we note that a choice of a pair of boundary vertices of Fn is
equivalent to the choice of an edge of Kn, which is equivalent to a choice
of an entry of the response matrix. As such, we will make references to
unknown entries of the response matrix and unknown edges. Second,
we note that Fn has one interior node, so that as in Nick Addington’s
paper, the problem of recovering a Kirchhoff matrix on Fn from a
response matrix on Kn is equivalent to recovering the Kirchhoff matrix
from the R matrix of Kn instead, where the R matrix is defined by
R = Λ− A. The benefit of this is discussed in Nick’s paper:

Theorem 1.5. Any 2 × 2 sub-matrix of the R matrix of Kn has zero
determinant.

Proof. The proof is in Nick’s paper. Basically, it can be shown that
the R matrix is rank 1, and therefore has the desired property. ¤

What this means for us is that when are checking to see what entries
are determined in the R matrix by our known pieces of information, we
only need to look at 2 × 2 determinants. This is a very useful simpli-
fication which we use very frequently, so it should be noted that it is
only true if Nick Addington’s algorithm is a complete characterization
of recovering graphs with one interior node. For the duration of this
paper, this result will be assumed.

In the special case where we have an off-diagonal 2 × 2 sub-matrix,
Theorem 1.5 takes the following form:

(1) λijλkl = λikλjl for all pairwise distinct i, j, k, l

This condition is called the quadrilateral condition because it says that
if we form any quadrilateral in Kn, the products of the weights on
opposite sides are equal.

Another special case that is important is called the square root trick.
The square root trick makes use of the symmetry of the R matrix to
recover an entry only from two diagonal entries. We have the following
equation, which follows directly from the above determinant relations
and the symmetry of the R matrix:

(2) λiiλjj = λjiλij = λ2
ij

Taking the square root, we get an expression for λij:

(3) λij =
√

λiiλjj

This equation gives us the following useful theorem.

Theorem 1.6. If we have an n × n R matrix, knowing the diagonal
elements is sufficient to recover the entire matrix.

Proof. This result is directly proved by equation (3) ¤

FFFFF MULTIPLEXERS! 3

We now develop some basic tools for proving properties of multiplex-
ers. We will mainly focus of what sort of structure is forced upon us
by Definition 1.1. Also, it should be noted that we will be using both
matrices and determinants and quadrilaterals on Kn to prove proper-
ties of multiplexers, so the reader should realize that anything stated
for one of these two settings holds true in the other.

Theorem 1.7. When attempting to construct an m-plexer on Fn, the
following conditions must be met:

(1) If we choose an unknown entry in the response matrix, then
any 2 × 2 sub-matrix containing that entry must have another
unknown entry in it. Equivalently, if we have a choose an un-
known edge in Kn, any quadrilateral containing that edge must
have another unknown edge.

(2) If we have a 2 × 2 sub-matrix with three known entries, the
fourth entry is also a known entry.

(3) If we have a type I m-plexer (Fn, Π), then there does not exist
a k-plexer (Fn, Φ), k < m, such that ΦU ⊂ ΠU .

(4) If we have an m-plexer (Fn, Π), then there does not exist a type
I k-plexer (Fn, Φ), k > m, such that ΠU ⊂ ΦU .

Proof. The proofs of (1) and (2) are basic applications of Definition
1.1 and are left to the reader to verify. Also, we only need prove one
of (3) and (4), since the two statements are obviously equivalent. We
choose to prove (3). Suppose we do have ΦU ⊂ ΠU . We show that this
leads to a contradiction. Since k < m, we know there exists a pair [i, j]
such that [i, j] ∈ ΠU , but [i, j] /∈ ΦU . According to condition (2) of
Definition 1.1, if we specify the value of the pair [i, j], we determine the
values of all other elements of ΠU , which in particular specifies all the
values of ΦU . We know this because (Fn, Π) is a type I plexer. But ΦU

is the unknown set of a multiplexer; therefore condition (1) of Definition
1.1 says that we cannot determine any one of the unknown pairs only
from known pairs. This contradiction completes the proof. ¤

Later in the paper, we will give some general constructions for type
I multiplexers. However, it will often be convenient for us to assume
that n ≥ 5 in these constructions. As such, we take a few moments
here to show how these constructions work on F3 and F4.

We first do the case F3. This case turns out to be very easy, since
we have that picking any unknown element forms a type I multiplexer.
This is easy to see from the R matrix:


• × X
× • X
X X ×




We clearly see that our single unknown entry is not recoverable, and
incidentally, that no diagonal entries are recoverable either. We will

4 ANDREW FANOE AND TRACY ZHANG

call this partition Π1⊕2 so that it agrees with later notation. Also, we
know that there are no other type I multiplexers on F3, since any other
partition Π would have ΠU

1⊕2 ⊂ ΠU , which means by Theorem 1.7 that
Π = Π1⊕2.

We now do the case F4. We will see by Theorem 3.5 that we only
need to look at partitions with |ΠU | ≤ 3. We now show the R matrices
of all of the type I multiplexers on F4:




• × X X
× • X X
X X • ×
X X × •







• × × ×
× • X X
× X • X
× X X •







• × × X
× • × X
× × • X
X X X •




We will call the partitions of these Π2⊕2, Π1,3, and Π1⊕3 respectively.
We now give a brief argument that these are the only type I multiplex-
ers on F4. We can assume without loss of generality that λ12 is an
unknown entry. There are three cases we have to check. The first case
is λ13 and λ14 are known, the second case is λ13 is unknown and λ14

is known, and the last case is both λ13 and λ14 are unknown. Clearly,
the last case can only give us Π1,3. We check the case where both λ13

and λ14 are known. Our matrix looks like this:



• × X X
× •
X •
X •




Clearly, we have either λ23 and λ24 are either both known or both
unknown, from Theorem 1.7. Therefore the only way to add exactly
one unknown entry is to add λ34, which gives us Π2⊕2. Also, we see
that if we make both λ23 and λ24 unknown, then we can switch vertex
1 with vertex 2 in order to get Π1,3.

Now the only case remaining is the case where λ13 is unknown and
λ14 is known. Now we have that our matrix looks as follows:




• × × X
× •
× •
X •




Due to our upper bound, we can only add one other unknown element
if we want to get a multiplexer. But because of Theorem 1.7 and from
looking at quadrilaterals in the matrix that we must have one of λ23 or
λ24 as unknown, as well as one of λ23 and λ43 as unknown. The only
way to only add one unknown entry and satisfy these is to make λ23

unknown, which gives us Π1⊕3, as required. Therefore, on F4, we can
only have Π1,3, Π1⊕3, or Π2⊕2.

FFFFF MULTIPLEXERS! 5

Definition 1.8. We say a type I multiplexer is type Ia if it initially
has no diagonal entries recoverable in the R matrix, and that it is type
Ib if it initially has some diagonal entries recoverable in the R matrix.

Using these definitions, we see clearly that (F3, Π1⊕2, (F4, Π1⊕3),
and (F4, Π2⊕2) are type Ia multiplexers, whereas (F4, Π1,3 is a type Ib
multiplexer.

2. Examples of Multiplexers

The goal of this section will be to provide a very large class of type I
multiplexers on n-stars. In fact, we will construct all of the type I mul-
tiplexers, although we will not prove this characterization until later.
We start this section by deriving a large class of type I multiplexers on
Fn.

We describe a partition of the set of all distinct unordered pairs of
boundary vertices of Fn. Let k be an integer. We take the partition
Πk⊕(n−k) to have ΠU

k⊕(n−k) = Kk tKn−k. We then have ΠK
k⊕(n−k) as all

other pairs of boundary vertices, forming a complete bipartite graph
Kk,n−k. This can be phrased formally as ΠU

k⊕(n−k) = {[x, y], where

either x ≤ k and y ≤ k or x > k and y > k}. We have a very
nice representation of this in block matrix form as follows, where an
X corresponds to an unknown block and a X corresponds to a known
block:



× X
X ×




By convention, the diagonals are understood to be always unknown,
regardless of the block they appear in.

Theorem 2.1.
(
Fn, Πk⊕(n−k)

)
is a type Ia multiplexer.

Proof. That Fn is recoverable is obvious. We now show properties (1)
and (2) of Definition 1.1 hold. We know that the entries of ΠK

k⊕(n−k)

have the form a ≤ k and b > k or a > k and b ≤ k. This corresponds
to a rectangle of known information in the top right corner of our R
matrix and in the bottom left corner of our R matrix. For example, if
n = 8, k = 5 our matrix would have the following form, where bullets
mark the diagonal and x marks an unknown entry.

6 ANDREW FANOE AND TRACY ZHANG




• × × × × λ16 λ17 λ18

× • × × × λ26 λ27 λ28

× × • × (×) λ36 (λ37) λ38

× × × • × λ46 λ47 λ48

× × × × • λ56 λ57 λ58

λ16 λ26 λ36 λ46 (λ56) • (×) ×
λ17 λ27 λ37 λ47 λ57 × • ×
λ18 λ28 λ38 λ48 λ58 × × •




We verify condition (1). As previously remarked, since we are dealing
with Fn, we only need to look at determinants of 2× 2 sub-matrices.
In particular, we can only recover an unknown entry if it is in a 2× 2
sub-matrix with exactly three known entries. But if we have three
known entries in one 2 × 2 sub-matrix, we clearly must also have the
fourth known, since our known entries appear in rectangular blocks.
This verifies condition (1). Additionally, the same argument shows
that none of the diagonals can initially be recovered either. condition
(2) is also easy to verify. Assume we specify the value of some unknown
entry, λab, where without loss of generality we assume a ≤ k and b ≤ k.
We use this to recover all entries of the form λij, where i > n− k and
j > n− k. We can do this using the relation λabλij = λajλib where for
any pair i and j so that i > k and j > k, λaj and λib are known entries.
A similar argument shows that specifying λab where a > k and b > k
gives all entries of the form λij where i ≤ k and j ≤ k. This shows
that condition (2) is satisfied, and hence we have that

(
Fn, Πk⊕(n−k)

)
is a type Ia multiplexer. ¤

The diagonal elements of this multiplexer satisfy another useful prop-
erty, which we will now show.

Theorem 2.2. If we have (Fn, Πk⊕(n−k)), then specifying the value of
any diagonal element specifies the entire R matrix.

Proof. We will prove this by showing that specifying the value of any
diagonal element specifies the value of some unknown entry, which by
condition (2) of being a multiplexer gives that the entire matrix is
specified. First let 1 ≤ i ≤ k − 1. Then we can use the relation
λiiλ(i+1)n = λinλ(i+1)i to recover λ(i+1)i, where since i ≤ k−1, i+1 ≤ k
so that λin and λ(i+1)n are both known. Next, we note that if i = k, the
relation λkkλ(k−1)n = λknλ(k−1)k to recover λ(k−1)k. Also, if k + 1 ≤ i ≤
n − 1, we can use the relation λiiλ(i+1)1 = λi1λ(i+1)i to recover λ(i+1)i.
Finally, if i = n, we can use the relation λnnλ(n−1)1 = λ(n−1)nλn1 to
recover λ(n−1)n. Therefore, specifying any diagonal element specifies
the entire matrix. ¤
Corollary 2.3. Fn always contains a multiplexer of size (2k2+n2−2kn−n)

2
,

where 1 ≤ k < n.

FFFFF MULTIPLEXERS! 7

Proof. By Theorem 2.1, (Fn, Πk⊕(n−k)) is a multiplexer, for all 1 ≤ k <

n where |ΠU
k⊕(n−k)| is easily computed as (2k2+n2−2kn−n)

2
¤

For this class of multiplexers, we can consider their size as a function
of k, say f. Clearly f is differentiable, since f is a polynomial, and its
derivative is easily computed as 2k − n, and the second derivative is a
positive constant. Therefore, the graph of f is concave up and attains
minimum at k = n/2, and the maximum occurs at k = 1. Therefore,
we have a lower and upper bound for plexers constructed as in Theorem
2.1. Therefore, we have successfully proved the following theorem.

Theorem 2.4. When constructing multiplexers on Fn using Theorem

2.1, we have that the maximum size possible is (n−1)(n−2)
2

and the min-

imum size possible is d (n2−2n)
4

e
We have the following claim:

Claim 2.5. Every type Ia multiplexer on Fn, n ≥ 5, is of the form(
Fn, Πk⊕(n−k)

)
for some k.

Proof. This will be proven later in the paper in Section 4 ¤
We will now discuss the derivation of some type Ib multiplexers. We

recall that a type Ib multiplexer is a multiplexer with some recoverable
diagonal elements. We begin the derivation by describing a partition
on the set of unordered pairs of boundary vertices. We define the
partition Πk,n−k to have ΠU

k,n−k equal to a complete bipartite graph

Kk,n−k. We then have that ΠK
k,n−k is the set of all other unordered pairs

of boundary vertices, which is equal to Kk tKn−k. More formally, we
have ΠU

k,n−k = {[a, b] such that either a ≤ k and b > k or a > k and
b ≤ k}.

Again, we have a block matrix representation of this as follows, where
by convention the diagonals are unknown:


X ×
× X




We will use this partition to build up another class of multiplexers,
but first we prove a short lemma.

Lemma 2.6. If we take the R matrix of Fn to have every off-diagonal
entry known, then the diagonal entries are recoverable if and only if
n ≥ 3

Proof. If n = 1, 2 the claim is obvious, since for n = 1 there is only
one diagonal entry in the whole matrix, and for n = 2 there is only
one 2 × 2 determinant, and it has both diagonal entries. Now, let
n ≥ 3. Consider the relation λ11λ23 = λ13λ21. Clearly, this determinant

8 ANDREW FANOE AND TRACY ZHANG

recovers λ11. We can then use the relations λ11λii = λ1iλi1 to recover λii

for all other i. Thus, if n ≥ 3, all diagonal elements are recoverable. ¤
We now use this to prove the following theorem.

Theorem 2.7. If n ≥ 5, (Fn, Πk,n−k) is a type Ib multiplexer if k =
1, 2, n− 2, and n− 1, and it is not a multiplexer if 3 ≤ k ≤ n− 3.

Proof. We can assume without loss of generality that k ≤ bn
2
c. We

introduce the following notation regarding our block matrix, which
will be convenient for us:



X ×
× X


 =




I II
III IV




More formally, we see that if we have an entry of the R matrix λij,
then λij ∈ I if i, j ≤ k, and λij ∈ II if i ≤ k, j > k, and so on.

We check that nothing in II or III is recoverable if k = 1, 2 and
that the matrix is recoverable if k ≥ 3. We first show that the only
possibility for recovering an unknown entry is through the square root
trick, for any k. If we don’t use the square root trick, the only way
to recover an entry of II or III is to have a 2 × 2 sub-matrix of R
such that we have exactly one entry in II or III, and the other three
entries in I and IV . We show this cannot happen. Since we have
rectangular blocks, if we have three entries in I the fourth is also in I,
and similarly for IV . Also, if we have two entries in I, or equivalently
in IV , and a third in II or III, then the fourth is also in II or III, so
that we have two entries from II and III. If we only have one entry
in I and an entry in IV , then we have an entry in II and an entry
in III. Therefore, if we do not use the square root trick, we cannot
recover entries from II or III.

Now assume k ≥ 3. We show (Fn, Πk,n−k) is not a multiplexer. Since
3 ≤ k ≤ bn

2
c, we have that I is a k × k and IV is a (n− k)× (n− k)

matrix, where we have k ≥ 3 and n−k ≥ 3. Also, both I and IV have
all off-diagonal entries marked as known. Therefore, by Lemma 2.6, we
know that all of the diagonals of both I and IV are known, which in
turn means that all of the diagonals of our R matrix are known. But
then we have by Theorem 1.6 that the R matrix is recoverable, so that
(Fn, Πk,n−k) is not a type I multiplexer when k ≥ 3.

We now check that we cannot use the square root trick if k = 1, 2.
Since k = 1, 2 and I is a k × k matrix with all off-diagonal entries as
known entries, we have by Lemma 2.6 that the diagonal elements of I
are not recoverable. Also, since n ≥ 5, n − k ≥ 3, so that the same
lemma gives that IV has all diagonal entries recoverable. Therefore, if
we are going to use the square root trick, it must be with both diagonal
entries in IV , which would imply that the other two entries are also

FFFFF MULTIPLEXERS! 9

in IV . Therefore, (Fn, Πk,n−k) satisfies condition (1) of a multiplexer.
Also, we showed it has some diagonal entries recoverable, so that if we
show it is a type I multiplexer, we will have it is a type Ib multiplexer,
as required. Therefore, all that remains is to show (Fn, Πk,n−k) satisfies
condition (2) if k = 1, 2.

First, let k = 1. Then picking any entry λ1j of II specifies the entry
λ11 by the relation λ2

1j = λ11λjj, since we know all the diagonals in
IV . But then we know all the diagonals of the matrix, and hence the
entire matrix, by Theorem 1.6. Similarly, if we have k = 2, picking
an unknown entry of II or III will give the value of either λ11 or λ22,
from which we can immediately determine the other via the relation
λ2

12 = λ11λ22. But then we would know all the diagonals, and hence
the whole matrix, by Theorem 1.6. Therefore, any unknown entry we
reveal specifies the entire matrix, and thus (Fn, Πk,n−k) is a type Ib
multiplexer, as required. ¤

We can use this theorem as a base to produce type Ib multiplexers.
The general idea is to add more unknown entries to the set ΠU

k,n−k in
such a way that we can no longer use the square root trick to recover
any unknown entries, and we can still recover the entire matrix from
all of the unknown entries. We give an intuition for how this works
with an example.

Example. We look at the case of (F6, Π3,3). We have the following
picture corresponding to this partition:




• X X × × ×
X • X × × ×
X X • × × ×
× × × • X X
× × × X • X
× × × X X •




As discussed in Theorem 2.7, this is not a plexer, since we can first
recover the diagonal elements, and then use the square root trick.
Also, we showed that this recovery cannot be accomplished without
the square root trick. Therefore, it is possible to add unknown entries
to the unknown set in such a way that the entire matrix now has no
recoverable unknown entries, simply by blocking the recovery of any
diagonal in either the upper left block or the bottom right block. We
choose the upper left block, and we get the following picture instead:

10 ANDREW FANOE AND TRACY ZHANG




• × X × × ×
× • X × × ×
X X • × × ×
× × × • X X
× × × X • X
× × × X X •




With the addition of this unknown entry, we can no longer recover
any diagonal elements in the top left corner. In fact, if we just look at
the top left block, we see it is a type Ia multiplexer on F3, (F3, Π1⊕2):


• × X
× • X
X X •




We claim that this is a multiplexer, and rather than prove that di-
rectly in this case, we will state and prove the theorem in generality,
and leave this example as an intuition for that generalization.

We define another partition of the set of unordered pairs of boundary
vertices, Πl⊕(k−l),n−k. We will say that ΠU

l⊕(k−l),n−k will be the complete
bipartite graph Kk,n−k, with additional unknown edges forming a Kl t
Kk−l. We then have that ΠK

l⊕(k−l),n−k is all other unordered pairs of

boundary vertices. More formally, we can say ΠU
l⊕(k−l),n−k = {[x, y]

such that one of the following four properties is satisfied: x ≤ l and
y ≤ l, l + 1 ≤ a ≤ k and l + 1 ≤ b ≤ k, x ≤ k and y > k, or x > k
and y ≤ k}. We again have a nice way of viewing this in block matrix
form:




× X
X × ×
× X




Using all of this new notation, we can restate our example by saying
that we used the partition Π1⊕2,3.

Theorem 2.8. If 3 ≤ k ≤ n − 3, n ≥ 6 and 1 ≤ l ≤ k − 1, then we
have

(
Fn, Πl⊕(k−l),n−k

)
is a type Ib multiplexer.

Proof. We assume without loss of generality that k ≤ bn
2
c. We first

check condition (1) of being a multiplexer. Due to the block nature of
the matrix, and the location of the unknown edges, the only way to de-
termine the value of any unknown edge in the upper left corner is using
only known edges from the upper left corner. But we know that this is
impossible, since the upper left corner forms a type Ia plexer. Also, we
know from Theorem 2.7 that the only way to recover an unknown edge
from the top right or bottom left corners is using the square root trick.
But since the top left corner is a type Ia plexer, we cannot recover any

FFFFF MULTIPLEXERS! 11

diagonals in the upper left corner, so that all the diagonals we know
are in one block of all checks on the off-diagonals, so that we cannot
use the square root trick. This shows that (Fn, Πl⊕(k−l),n−k) satisfies
condition (1) of being a multiplexer.

We now show that there are some recoverable diagonal entries. We
know that since 3 ≤ k ≤ bn

2
c, we have that n − k ≥ 3, and that the

bottom right corner is an n−k×n−k matrix with all known edges on
the off-diagonal, so that we can recover all of those entries by Lemma
2.6. In particular, we know all λjj where j > k. Therefore, if we
succeed in showing that (Fn, Πl⊕(k−l),n−k) satisfies condition (2), we
will have that it is a type Ib multiplexer, as required.

We now show that (Fn, Πl⊕(k−l),n−k) satisfies condition (2) of being
a multiplexer. We first show that specifying an unknown edge in the
upper left corner specifies the matrix. Since the upper left corner is
a type Ia plexer, we have by property (2) of a multiplexer that this
entry specifies the entire upper left corner, and in particular, all of the
diagonals. This in turn gives that we know all of the diagonals, which
means we can recover the matrix, by Theorem 1.6. Now say specify the
value of some λij with i ≤ k, j > k. Then we know that we can use the
relation λ2

ij = λiiλjj to recover λii. But since the upper left corner is
actually a KltKk−l, we have by Theorem 2.2 that this diagonal specifies
the values of the entire top left corner, and in particular the values of
all the diagonals. This gives us again that we know all of the diagonals
of the R matrix, and therefore we know the entire matrix by theorem
1.6. Therefore, we have that any unknown entry specifies the value of
the entire R matrix, so that (Fn, Πl⊕(k−l),n−k) satisfies condition (2) of
being a multiplexer, which gives us that (Fn, Πl⊕(k−l),n−k) is a type Ib
multiplexer, as required. ¤

We end this section with the following claim.

Claim 2.9. Every type Ib plexer on Fn, n ≥ 5, is either of the
form (Fn, Πk,n−k), where k = 1, 2, n − 2, or n − 1, or of the form
(Fn, Πl⊕(k−l),n−k) for some 3 ≤ k ≤ n− 3, 1 ≤ l ≤ k − 1.

Proof. This will be proven later in the paper, in Section 4. ¤

3. A Maximum and Minimum Theorem

The goal of this section is stated in the following theorem:

Theorem 3.1. Assume there exists an m-plexer on Fn, n ≥ 5. Then

we necessarily have the two inequalities n− 1 ≤ m ≤ (n−1)(n−2)
2

.

This theorem will be proved in parts throughout the entire section.
We start out by establishing a lower bound.

Theorem 3.2. For n ≥ 5, there is no k-plexer on Fn if k < n− 1.

12 ANDREW FANOE AND TRACY ZHANG

Proof. The motivation for this proof will be part (1) of Theorem 1.7,
which says that if we have a quadrilateral with one unknown edge, it
must contain another unknown edge. We begin by selecting an un-
known edge, which without loss of generality we assume to be [1, 2].
Consider the quadrilaterals QK = [1, 2, k, k + 1] for 3 ≤ k ≤ n − 1.
There are n − 3 of these quadrilaterals whose pairwise intersection is
the edge [1, 2]. Now consider the quadrilateral Q = [1, 3, n, 2]. We show
Q ∩QK = [1, 2] for all 3 ≤ k ≤ n− 1. To do this, we must check that
none of the quadrilaterals QK contain the edges [1, 3], [3, n] or [n, 2].
That is, we must check that none of [1, k + 1], [2, k], and [k, k + 1] are
ever equal to [1, 3], [3, n] or [2, n]. Since k ≥ 3, [1, k +1] 6= [1, 3] for any
k. Similarly, since k ≤ n−1, [2, k] 6= [2, n] for any k. Also, since n ≥ 5,
[k, k+1] 6= [3, n] for any k, since n−1 6= 3. We conclude from this that
Q ∩QK = [1, 2], for all k. Therefore, we have a set of n− 2 quadrilat-
erals, {Q, Q3, . . . , Qn−1}, such that their pairwise intersection is [1, 2].
Therefore, by part (1) of Theorem 1.7, each of these n− 2 quadrilater-
als must have another unknown edge. Also, since these quadrilaterals
have pairwise intersection [1, 2], we know that this will necessarily add
n−2 unknown edges. We therefore conclude that if we have a k-plexer
(Fn, Π), k = |ΠU | ≥ n− 1, so that there is no k-plexer if k < n− 1, as
required. ¤

Note, we do need that n ≥ 5 for this to work, and in fact, there
exists a 2-plexer on F4. We also note that the above actually shows
that there is no choice of partition Π such that if |ΠU | < n−1, (Fn, Π)
satisfies condition (1) of being a multiplexer.

Now that we have established a lower bound, we will show that there
is no better lower bound.

Theorem 3.3. If n ≥ 4, there exists a type I (n− 1)-plexer.

Proof. If n = 4, we know this from our catalogue at the beginning(eventually
this will make sense). If n ≥ 5, we know from Theorem 2.7 that
(Fn, Π1,n−1) is a type I multiplexer for all n ≥ 5. But we know that

|ΠU
1,n−1| = |ΠK

1⊕(n−1)| = n(n−1)−(n−1)(n−2)
2

= 2n−2
2

= n − 1. Therefore,

we have that there does exist an (n − 1)-plexer on Fn if n ≥ 4, as
required ¤

We now prove the existence of an upper bound. We begin with a
lemma

Choose K matrix indices (i1, j1), . . . , (iK , jK), iK > jK , where K is
an integer. Define the map L′ as the map which takes a conductivity
function γ to the vector (λi1j1 , . . . , λiK ,jK

), where λiL,jL
is the (iL, jL)

entry of Λγ. we have the following lemma

Lemma 3.4. If K < n, L′ is not injective.

Proof. We know the map L which takes γ to Λγ is a homeomorphism,
since we are working over Fn. In particular, L is continuous, which

FFFFF MULTIPLEXERS! 13

gives clearly that L′ is continuous. Also, we see clearly that the domain
of the map L′ can be viewed as an open subset of Rn, while the range
can be viewed as a subset of RK . Therefore, if we had that L′ were
injective, we would have by the invariance of domain theorem that
K ≥ n and that the range of L′ is an open set of RK . In particular,
this means that if K < n, L′ is not injective ¤

We use this lemma to establish the existence of an upper bound on
the size of an m-plexer on Fn

Theorem 3.5. Assume there exists an m-plexer on Fn, n ≥ 3. Then

we necessarily have m ≤ (n−1)(n−2)
2

.

Proof. Assume we have an ordered pair (Fn, Π) such that |ΠU | >
(n−1)(n−2)

2
. But then |ΠK | = n(n−1)

2
− |ΠU | < n(n−1)−(n−1)(n−2)

2
= n− 1.

Therefore, if we pick any entry of the R matrix with which to verify
condition (2) of Definition 1.1, we would be trying to recover the R
matrix with only |ΠK |+ 1 = k < n known entries. But by Lemma 3.4,
no matter what the position of these k entries in the matrix are, it will
always be possible to find values of these k entries that do not uniquely
determine the R matrix. If this were not true, the map L′ would be
injective, which it cannot be, since k < n. Therefore, we have that
(Fn, Π) is not a multiplexer, as required. ¤

Finally, we show that there is no better upper bound.

Theorem 3.6. For all n ≥ 3, we have a type I (n−1)(n−2)
2

-plexer.

Proof. We showed in Theorem 2.1 that
(
Fn, Π1⊕(n−1)

)
is a type I mul-

tiplexer, and a simple computation shows that |ΠU
1⊕(n−1)| = (n−1)(n−2)

2
,

as required. Also, as shown in the catalogue at the beginning, we do
have a 3-plexer on F4 ¤

Thus, we have proven Theorem 3.1, and in fact we proved a little
better, since our minimum works for n ≥ 5 where our maximum works
for n ≥ 4.

4. Classification of Type I Multiplexers on Fn

The main goal of this section will be to prove Claims 2.5 and 2.9,
which when taken together would give a total classification of type I
multiplexers on stars. The first step to this proof is a full classification
of type Ia multiplexers.

Theorem 4.1. Assume n ≥ 5. If a type I multiplexer (Fn, Π) is not of
the form (Fn, Πk⊕(n−k)) for some k, then it is not a type Ia multiplexer

Proof. The proof will proceed by construction of Π. We must start by
marking some unknown entry, and we can assume, after switching rows
and columns if necessary, that we have λ12 ∈ ΠU . Currently, we have

14 ANDREW FANOE AND TRACY ZHANG

that ΠU ⊂ ΠU
2⊕(n−2). However, by Theorem 1.7, we have that the only

way we can have ΠU ⊂ ΠU
2⊕(n−2) is if we actually have ΠU = ΠU

2⊕(n−2),

which we assumed does not happen. Therefore, we cannot have ΠU ⊂
ΠU

2⊕(n−2), and we must have that there exists some λij ∈ ΠU and λij ∈
ΠK

2⊕(n−2). But by construction, that means there exists λij ∈ ΠU such
that i ≤ 2 and j ≥ 3, and we can assume, switching rows and columns
if necessary, that we have λ13 ∈ ΠU . Therefore, we see in general that
we must have at least two entries in the top row marked.

The proof proceeds by assuming that we have a k ≥ 3 such that
λ1j ∈ ΠU if j ≤ k, and λ1j ∈ ΠK if j > k. Below is a picture of this
when n = 8 and k = 5, where an unspecified entry is left blank.




• × × × × X X X
× •
× •
× •
× •
X •
X •
X •




Currently, we have that ΠU ⊂ ΠU
k⊕(n−k), which would imply that ΠU =

ΠU
k⊕(n−k), which we assumed doesn’t happen. Therefore, we have that

there exists some λij so that λij ∈ ΠU and λij ∈ ΠK
k⊕(n−k), which by

construction implies that we have λij ∈ ΠU such that i ≤ k and j > k.
We can assume, after switching rows and columns if necessary that we
have λ2(k+1) ∈ ΠU . But then we have by Theorem 1.7 that we must
have one of the three entries λ1(k+1), λ1j, and λ2j as an unknown entry,
for all j ≥ k + 2. But λ1j ∈ ΠK for all j ≥ k + 1, which gives us that
we must have λ2j ∈ ΠU for all j ≥ k + 1. We also have that the same
argument would give that if we have λi(k+1) ∈ ΠU , where i ≤ k, then
we also have λij ∈ ΠU for all j ≥ k + 2, so that if i ≤ k, we either have
λij ∈ ΠU for all j ≥ k +1 or λij ∈ ΠK for all j ≥ k +1, so that we only
need to consider marking whole blocks of unknown entries at once.

The proof proceeds by specifying 1 ≤ l ≤ k such that we have
λij ∈ ΠU for all 2 ≤ i ≤ l + 1, j ≥ k + 1, and λij ∈ ΠK for all
l + 2 ≤ i ≤ k and j ≥ k + 1. Below we have a picture of this where
n = 8, k = 5, and l = 3, where again an empty entry corresponds to

FFFFF MULTIPLEXERS! 15

an unspecified entry.



• × × × × X X X
× • × × ×
× • × × ×
× • × × ×
× • X X X
X × × × X •
X × × × X •
X × × × X •




We are trying to construct a type Ia multiplexer, which means that we
must not be able to recover any of the diagonals. In particular, we must
not be able to recover λii for any i > k. We recall that we specified λ1i

as known for all i > k. Also, since we want to not be able to recover
λii for any i > k, we can conclude from Theorem 1.7 and looking at
quadrilaterals that we have on of λ1i, λ1j, and λij as unknown for all
i, j > k, which in particular gives us that λij is unknown for all i, j > k.
This is pictured below for our case n = 8, k = 5, l = 3




• × × × × X X X
× • × × ×
× • × × ×
× • × × ×
× • X X X
X × × × X • × ×
X × × × X × • ×
X × × × X × × •




We now switch the rows 1 and l +1 and columns 1 and l +1. This will
give us that λij is unmarked if i, j ≤ l. It also gives us λij ∈ ΠU if i ≤ l
and j > l. Additionally, it tells us that λij ∈ ΠK for all l + 1 ≤ i ≤ k
and j > k. Finally, it tells us that λij ∈ ΠU for all i, j > k. For our
example, this takes on the following form:




• × × × × ×
• × × × × ×

• × × × × ×
× × × • X X X
× × × • X X X
× × × X X • × ×
× × × X X × • ×
× × × X X × × •




We notice immediately that if l = 1 or l = 2, then we have ΠU ⊃ Πl,n−l,
which is a type Ib multiplexer if l = 1, 2, which means that either we
do not have a type I multiplexer, or Π = Πl,n−l and we have a type Ib
multiplexer. Similarly, we cannot have n− l = 1, 2 Therefore, we now
assume 3 ≤ l ≤ n− 3.

16 ANDREW FANOE AND TRACY ZHANG

We now show that no choice of n, k, and l can lead to a type Ia
multiplexer, which shows that the only type Ia multiplexers are of the
form (Fn, Πk⊕(n−k)). As we saw above, our matrix has the following
form: 


×

× X
X ×




where in the bottom right corner, the block of unknown entries is a
principal (n − k) × (n − k) sub-matrix. We want to have a type Ia
multiplexer, which means we want that no diagonals of our bottom
right block are recoverable. In particular, λnn is not recoverable. But
then we see from quadrilaterals and Theorem 1.7 that one of λin, λnj,
and λij is unknown, for all l +1 ≤ i ≤ k and l +1 ≤ j ≤ k, which gives
that λij is unknown. This gives our matrix the following form:




×
× × X

X ×




where as shown before, the top left block is l× l, where l ≥ 3, and the
bottom right block matrix is in total (n− l)× (n− l) where (n− l) ≥ 3,
which means that we clearly have ΠU ⊃ Π(n−k)⊕(k−l),l, which means
ΠU = Π(n−k)⊕(k−l),l, so that we have a type Ib multiplexer, and not a
type Ia multiplexer. Therefore, the only type Ia multiplexers on Fn

are (Fn, Πk⊕(n−k). ¤

We now give a full classification of type Ib multiplexers. We previ-
ously showed that anything of the following form was a type Ib multi-
plexer: 


× X
X × ×
× X




We note that the top left corner is really just a copy of Kk t Km−k

for some m and k. But we previously showed that this was a type Ia
multiplexer. Using this as motivation, we now will prove the following
theorem:

Theorem 4.2. Any type Ib multiplexer on Fn, except for (F, Πk,n−k

for k = 1, 2 can be expressed in block form as follows:


 Ia ×
× X




FFFFF MULTIPLEXERS! 17

Proof. We have a type Ib multiplexer, which means some of the di-
agonals are initially recoverable. In fact, we know that at least three
diagonals are recoverable, which is easy to see. A quadrilateral which
can recover a diagonal entry would consist of entries λii, λik, λji, and
λjk, and once we recovered λii, we could clearly use λii and λik to get
λkk and similarly we can get λjj. Now switch rows and columns until
all the recoverable diagonals are in the bottom right corner. Using the
square root trick, we conclude that the entire bottom right corner must
be known, giving our matrix the following form:


 A

X




where A has the property that no diagonals are initially recoverable.
From this, we can fill in the top right and bottom left as all unknown
entries, since any known entry in these blocks would recover a diagonal
of A. Therefore, our matrix has the form:


 A ×
× X




All that remains is to show that the matrix A is a type Ia multiplexer,
and to show that all that remains is to check that the matrix A satisfies
condition (2) of being a type I multiplexer.

Pick an unknown edge in A and turn it into a known edge. First, we
recover as many diagonals of A as possible using only quadrilaterals in
A. Then, reorder the matrix A so that all of the recovered diagonals
are in the bottom right corner. Then, arguing as before, we see that
the matrix A takes the form:


 A′ ×
× X




which means the entire matrix is now of the form:



A′ ×
× X ×
× X




Using the square root trick and regrouping the matrix, we see that we
have finally have the following as our matrix:


 A′ ×
× X




18 ANDREW FANOE AND TRACY ZHANG

where none of the diagonals of A′ are recoverable. We see clearly that
if A′ is non-empty, then there are some unknown entries appearing in
the block in the upper right hand corner. However, if such an un-
known entry exists, it is easy to see that it cannot be recovered from
the information we currently have. In fact, the only way it might be
possible is the square root trick, which we cannot use since none of the
diagonals of A′ are recoverable. But this is a contradiction, since we
started our recovery process by specifying an unknown entry, which by
condition (2) of the definition of a multiplexer is enough to specify the
entire matrix. This contradiction arose from the assumption that A′

was non-empty. Therefore, A′ is empty. But that means specifying an
unknown entry of A was enough to specify all of the diagonals of A,
and hence all of A by Theorem 1.6. Therefore, we have shown that A
is a type Ia multiplexer, as required. ¤

Combining these two results, we get that the only type I multi-
plexers are (Fn, Πk,n−k) for k = 1, 2, (Fn, Πk⊕(n−k)) for any k, or
(Fn, Πl⊕(k−l),n−k) for 1 ≤ l ≤ k, which finally proves Claims 2.5 and
2.9. Also, since we previously classified F3 and F4, we have a full
classification of all multiplexers on Fn, for all n.

