
STRUCTURE OF MULTIPLEXERS ON STARS

TOM BOOTHBY, ANDREW FANOE, TRACY ZHANG

Abstract. In this paper, we will talk about n−plexers, an object
crucial in the construction of an n to 1 graph. We will talk mostly
about m−plexers on n−stars and try to classify what structures
are possible.

1. Definitions and Basic Methods

Definition 1.1. A multiplexer is an ordered pair P = (G, Π), where
G is a graph with boundary and Π = (ΠU , ΠK) is a partition of the set
of all distinct unordered pairs of boundary vertices into two sets, called
the unknown set and the known set. We call an element of the unknown
set an unknown pair, and an element of the known set a known pair.
We require that P has the following properties.

(1) The graph G is recoverable.
(2) For any valid response matrix on G, if we only know the re-

sponse matrix entries corresponding to known pairs, we cannot
determine the value of any entry corresponding to an unknown
pair.

(3) For any valid response matrix on G, if we know only the re-
sponse matrix entries corresponding to known pairs and one
unknown pair, we can recover the response matrix.

If |ΠU | = n, we will call this an n− plexer.

Definition 1.2. An n−star, denoted Fn, is a graph with boundary
with one interior node and n boundary nodes, with one edge connecting
each boundary node to the interior node and no other connections

Definition 1.3. The complete graph on n vertices is a graph with
boundary with n boundary nodes, no interior nodes, and an edge con-
necting any two boundary nodes. It will be denoted Kn

Definition 1.4. By the quadrilateral [v1, v2, v3, v4], we mean the set of
edges [v1, v2], [v2, v3], [v3, v4], [v1, v4].

In the special case where we are looking for an m − plexer on Fn,
we can view the definition of a multiplexer in a more visual way, which
will sometimes be useful for us.

First, we note that a choice of a pair of boundary vertices of Fn is
equivalent to the choice of an edge of Kn, which is equivalent to a choice
of an entry of the response matrix. As such, we will make references to
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unknown entries of the response matrix and unknown edges. Second,
we note that Fn has one interior node, so that as in Nick Addington’s
paper, the problem of recovering a Kirchhoff matrix on Fn from a
response matrix on Kn is equivalent to recovering the Kirchhoff matrix
from the R matrix of Kn instead, where the R matrix is defined by
R = Λ− A. The benefit of this is discussed in Nick’s paper:

Theorem 1.5. Any 2 × 2 sub-matrix of the R matrix of Kn has zero
determinant.

Proof. The proof is in Nick’s paper. Basically, it can be shown that
the R matrix is rank 1, and therefore has the desired property. ¤

What this means for us is that when are checking to see what entries
are determined in the R matrix by our known pieces of information,
we only need to look at 2× 2 determinants.

In the special case where we have an off-diagonal 2 × 2 sub-matrix,
this theorem takes the following form:

(1) λijλkl = λikλjl for all pairwise distinct i, j, k, l

This condition is called the quadrilateral condition because it says that
if we form any quadrilateral in Kn, the products of the weights on
opposite sides are equal.

We now develop some basic tools for proving properties of multiplex-
ers. We will mainly focus of what sort of structure is forced upon us
by definition (1.1). Also, it should be noted that we will be using both
matrices and determinants and quadrilaterals on Kn to prove proper-
ties of multiplexers, so the reader should realize that anything stated
for one of these two settings holds true in the other.

Theorem 1.6. When attempting to construct an m − plexer on Fn,
the following conditions must be met:

(1) If we choose an unknown entry in the response matrix, then
any 2 × 2 sub-matrix containing that entry must have another
unknown entry in it. Equivalently, if we have a choose an un-
known edge in Kn, any quadrilateral containing that edge must
have another unknown edge.

(2) If we have a 2 × 2 sub-matrix with three known entries, the
fourth entry is also a known entry.

(3) If we have an m − plexer (Fn, Π), then there does not exist a
k − plexer (Fn, Φ), k < m, such that ΦU ⊂ ΠU .

(4) If we have an m − plexer (Fn, Π), then there does not exist a
k − plexer (Fn, Φ), k > m, such that ΠU ⊂ ΦU .

Proof. The proofs of (1) and (2) are basic applications of definition (1.1)
and are left to the reader to verify. Also, we only need prove one of (3)
and (4), since the two statements are obviously equivalent. We choose
to prove (3). Suppose we do have ΦU ⊂ ΠU . We show that this leads
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to a contradiction. Since k < m, we know there exists a pair [i, j] such
that [i, j] ∈ ΠU , but [i, j] /∈ ΦU . According to property (3) of definition
1.1, if we specify the value of the pair [i, j], we determine the values
of all other elements of ΠU , which in particular specifies all the values
of ΦU . ΦU is the unknown set of a multiplexer; therefore property
(2) of definition 1.1 says that we cannot determine any one of the
unknown pairs only from known pairs. This contradiction completes
the proof. ¤

2. Examples of Multiplexers

The goal of this section will be to provide a very large class of mul-
tiplexers on n-stars. Work is still being done here, and we hope to get
some sort of classification of all possible multiplexers on n-stars. We
start this section by deriving a large class of multiplexers on Fn.

We describe a partition of the set of all distinct unordered pairs of
boundary vertices of Fn. Let i be an integer. We define the partition

C(i) to have C
(i)
U = {[x, y] where either x ≤ i and y ≤ i or x > i and

y > i}. We take C
(i)
K to be the set of all other distinct unordered pairs.

Intuitively, this saying that on Kn the edges we are choosing form the
disjoint union of Ki and Kn−i, using all the vertices of Kn.

Theorem 2.1. (Fn, C(i)) is a multiplexer.

Proof. That Fn is recoverable is obvious. We now show properties

(2) and (3) of definition 1.1 hold. We know that the entries of C
(i)
K

have the form a ≤ i and b > i or a > i and b ≤ i. This corresponds
to a rectangle of known information in the top right corner of our R
matrix and in the bottom left corner of our R matrix. For example, if
n = 8, i = 5 our matrix would have the following form, where bullets
mark the diagonal and x marks an unknown entry.




• x x x x λ16 λ17 λ18

x • x x x λ26 λ27 λ28

x x • x (x) λ36 (λ37) λ38

x x x • x λ46 λ47 λ48

x x x x • λ56 λ57 λ58

λ16 λ26 λ36 λ46 (λ56) • (x) x
λ17 λ27 λ37 λ47 λ57 x • x
λ18 λ28 λ38 λ48 λ58 x x •




We verify property (2). As previously remarked, since we are dealing
with Fn, we only need to look at determinants of 2× 2 sub-matrices.
In particular, we can only recover an unknown entry if it is in a 2× 2
sub-matrix with exactly three known entries. But if we have three
known entries in one 2 × 2 sub-matrix, we clearly must also have the
fourth known, since our known entries appear in rectangular blocks.
This verifies property (2). Property (3) is also easy to verify. Assume
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Figure 1. Example of Theorem 2.1 when n=6 and i=3

we specify the value of some x, say it is λab where without loss of
generality we assume a ≤ i and b ≤ i. We use this to recover all entries
of the form λjk, where j > n− i and k > n− i. We can do this using
the relation λabλjk = λakλbj where for any pair j and k so that j > i
and k > i, λak and λbj are known entries. A similar argument shows
that specifying λab where a > i and b > i gives all entries of the form
λjk where j ≤ i and k ≤ i. This shows that property (3) is satisfied,
and hence we have that (Fn, C

(i)) is a multiplexer. ¤

Corollary 2.2. Fn always contains a multiplexer of size (2m2+n2−2mn−n)
2

,
where 1 ≤ m < n.

Proof. By Theorem 2.1, (Fn, C(m)) is a multiplexer, for all 1 ≤ m < n

where |C(i)
U | is easily computed as (2m2+n2−2mn−n)

2
¤

For this class of multiplexers, we can consider their size as a function
of m, say f. Clearly f is differentiable, since f is a polynomial, and its
derivative is easily computed as 2m−n, and the second derivative is a
positive constant. Therefore, the graph of f is concave up and attains
minimum at m = n/2, and the maximum occurs at m = 1. Therefore,
we have a lower and upper bound for plexers constructed as in theorem
2.1. Therefore, we have successfully proved the following theorem.

Theorem 2.3. When constructing multiplexers on Fn using theorem

2.1, we have that the maximum size possible is (n−1)(n−2)
2

and the min-

imum size possible is d (n2−2n)
4

e
We also have the following neat result.

Theorem 2.4. Defining a partition D(i) as (D
(i)
U , D

(i)
K ) = (C

(i)
K , C

(i)
U ),

we have that (Fn, D(i)) is a multiplexer if and only if i = 1, 2

Proof. We have a proof of this, but we are still working on the details.
The motivation behind why it only works for i = 1, 2 is that for higher
numbers we can use the square root trick to violate property (2) of
definition 1.1. ¤
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3. A Maximum and Minimum Theorem

The goal of this section is stated in the following theorem:

Theorem 3.1. Assume there exists an m − plexer on Fn, n ≥ 5.

Then we necessarily have the two inequalities n− 1 ≤ m ≤ (n−1)(n−2)
2

.

This theorem will be proved in parts throughout the entire section.
We start out by establishing a lower bound.

Theorem 3.2. For n ≥ 5, there is no k − plexer on Fn if k < n− 1.

Proof. The motivation for this proof will be part (1) of Theorem 1.6,
which says that if we have a quadrilateral with one unknown edge, it
must contain another unknown edge. We begin by selecting an un-
known edge, which without loss of generality we assume to be [1, 2].
Consider the quadrilaterals Qk = [1, 2, k, k + 1] for 3 ≤ k ≤ n − 1.
There are n − 3 of these quadrilaterals whose pairwise intersection is
the edge [1, 2]. Now consider the quadrilateral Q = [1, 3, n, 2]. We show
Q ∩ Qk = [1, 2] for all 3 ≤ k ≤ n − 1. To do this, we must check that
none of the quadrilaterals Qk contain the edges [1, 3], [3, n] or [n, 2].
That is, we must check that none of [1, k + 1], [2, k], and [k, k + 1] are
ever equal to [1, 3], [3, n] or [2, n]. Since k ≥ 3, [1, k + 1] 6= [1, 3] for
any k. Similarly, since k ≤ n − 1, [2, k] 6= [2, n] for any k. Also, since
n ≥ 5, [k, k + 1] 6= [3, n] for any k, since n − 1 6= 3. We conclude
from this that Q ∩ Qk = [1, 2], for all k. Therefore, we have a set of
n− 2 quadrilaterals, {Q,Q3, . . . , Qn−1}, such that their pairwise inter-
section is [1, 2]. Therefore, by part (1) of Theorem 1.6, each of these
n−2 quadrilaterals must have another unknown edge. Also, since these
quadrilaterals have pairwise intersection [1, 2], we know that this will
necessarily add n−2 unknown edges. We therefore conclude that if we
have a k − plexer (Fn, Π), k = |ΠU | is at least n− 1, as required. ¤

Note, we do need that n ≥ 5 for this to work, and in fact, there
exists a 2− plexer on F4.

Now that we have established a lower bound, we will show that there
is no better lower bound.

Theorem 3.3. If n ≥ 4, there exists an (n− 1)− plexer.

Proof. As in Theorem 2.4, we know that (Fn, D(1)) is a multiplexer

for all n ≥ 4. But we know that |D(1)
U | = |C(1)

K | = n(n−1)−(n−1)(n−2)
2

=
2n−2

2
= n−1. Therefore, we have that (Fn, D

(1)) is an (n−1)−plexer
for all n ≥ 4. ¤

We now prove the existence of an upper bound. We begin with a
lemma

Choose k matrix indices (i1, j1), . . . , (ik, jk), ik > jk, where k is an
integer. Define the map L′ as the map which takes a conductivity
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function γ to the vector (λi1j1 , . . . , λik,jk
), where λil,jl

is the (il, jl) entry
of Λγ. we have the following lemma

Lemma 3.4. If k < n, L′ is not injective.

Proof. We know the map L which takes γ to Λγ is a homeomorphism,
since we are working over Fn. In particular, L is continuous, which
gives clearly that L′ is continuous. Also, we see clearly that the domain
of the map L′ can be viewed as an open subset of Rn, while the range
can be viewed as a subset of Rk. Therefore, if we had that L′ were
injective, we would have by the invariance of domain theorem that
k ≥ n and that the range of L′ is an open set of Rk. In particular, this
means that if k < n, L′ is not injective ¤

We use this lemma to establish the existence of an upper bound on
the size of an m− plexer on Fn

Theorem 3.5. Assume there exists an m − plexer on Fn, n ≥ 4.

Then we necessarily have m ≤ (n−1)(n−2)
2

.

Proof. Assume we have an ordered pair (Fn, Π) such that |ΠU | >
(n−1)(n−2)

2
. But then |ΠK | = n(n−1)

2
− |ΠU | < n(n−1)−(n−1)(n−2)

2
= n− 1.

Therefore, when we try to verify property (3) of definition 1.1, we would
be trying to recover the R matrix with only |ΠK | + 1 = k < n known
entries. But by lemma 3.4, no matter what the position of these k en-
tries in the matrix are, it will always be possible to find values of these
k entries that do not uniquely determine the R matrix. If this were not
true, the map L′ would be injective, which it cannot be, since k < n.
Therefore, we have that (Fn, Π) is not a multiplexer, as required. ¤

Finally, we show that there is no better upper bound.

Theorem 3.6. For all n ≥ 4, we have an (n−1)(n−2)
2

− plexer.

Proof. We showed in Theorem 2.1 that (Fn, C
(1)) is a multiplexer, and

a simple computation shows that |C(1)
U | = (n−1)(n−2)

2
, as required. ¤

Thus, we have proven Theorem 3.1, and in fact we proved a little
better, since our minimum works for n ≥ 5 where our maximum works
for n ≥ 4.


