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Abstract

This paper will introduce the concept of a “mixed problem.” Knowledge of

Curtis and Morrow’s inverse problem will be assumed throughout the paper.

Only the simplest case of a mixed problem will be considered and it will be

shown that the solution to this problem exists and is unique. We will also

introduce a new map called the “mixed map” and investigate some of its more

interesting properties. Finally, it will be shown that the inverse problem can

be solved by using the mixed map as the input data.
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1 Solution from the Kirchhoff Matrix

Let Γ = (G, γ) be an electrical network where G is a connected graph with boundary.
Suppose that G has m + n ≥ 1 boundary vertices and d ≥ 1 interior vertices for
a total of m + n + d vertices. Consider the case where the voltages of the first
m ≥ 1 vertices are known and the currents at the other n vertices are known. As
always, no information about the interior is known. We now propose the following
problem: Given the specified data, is it possible to determine the currents at vertices
{p1, p2...pm} and the voltage at vertices {pm+1, pm+2...pm+n}? In the classical inverse
problem, the Kirchhoff matrix is partitioned into four submatrices so that

K =

[

A B
BT C

]

.

The motivation for partitioning K in this manner is to separate the data relating
to the boundary from the data related to the interior. However, the mixed problem
contains two different types of boundary nodes, the “voltage” nodes and the “current”
nodes. In order to approach the mix problem, we must also partition A and B so
that

A =

[

A11 A12

AT
12

A22

]

and B =

[

B1

B2

]

.

Note that the submatrix A11 comes from the entries in K corresponding to the m
vertices where the voltages are known and A22 comes from the entries in K corre-
sponding to the n vertices where the currents are known. With this notation, we
can now express the linear system that maps voltages to currents via the Kirchhoff
matrix:





A11 A12 B1

AT
12 A22 B2

BT
1 BT

2 C









v
x
y



 =





φ
ψ
0





,
(1)

where v is the vector containing the m known voltages, x is the vector containing
the n unknown voltages, y is the vector containing the d interior voltages, φ contains
the m unknown currents and ψ contains the n known currents. The zero in the third
cell of the right hand side of the equation is a d-vector with all entries equal to zero.
This is a result of Kirchhoff’s Law which says that the sum of all currents into any
interior node is equal to zero. From (1), we get the two equations

AT
12
v + A22x+B2y = ψ

BT
1
v +BT

2
x+ Cy = 0

with two unknowns, x and y. Rearranging this equation results in

[

A22 B2

BT
2 C

] [

x
y

]

=

[

ψ − AT
12v

−BT
1 v

]

.
(2)
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Theorem 1. The solution to equation (2) exists and is unique.

Proof. Notice that the matrix in equation (2) is a principle proper submatrix of K
and is therefore invertible. Thus, the solution of the system is

[

x
y

]

=

[

A22 B2

BT
2 C

]

−1 [

ψ − AT
12v

−BT
1 v

]

.

Likewise, it is possible to solve for the unknown currents, φ. From the first equa-
tion of (1), we get

φ = A11v + A12x+B1y

= A11v +
[

A12 B1

]

[

x
y

]

= A11v +
[

A12 B1

]

[

A22 B2

BT
2 C

]

−1 [

ψ − AT
12v

−BT
1 v

]

.

We can express all three of the unknown quantities explicitly but the notation
gets rather messy. To simplify the notation, we introduce the following submatrices
of K.

K1 =

[

A11 B1

BT
1 C

]

, K2 =

[

A12 B1

BT
2 C

]

, K3 =

[

AT
12 B2

BT
1 C

]

, K4 =

[

A22 B2

BT
2 C

]

The following equations now express x, y and φ in terms of Schur complements of
the submatrices listed above.

x = (K4/C)−1[ψ − (K3/C)v]

y = −C−1[BT
1 v +BT

2 (K4/C)−1(ψ − (K3/C)v)]

φ = [(K1/C) − (K2/C)(K4/C)−1(K3/C)]v + (K2/C)(K4/C)−1ψ

2 Solution from the Response Matrix

In the previous section, it was shown that the voltages and currents at all vertices
of G can be recovered from the Kirchhoff Matrix. However, the Kirchhoff Matrix is
not necessary to find just the unknown quantities on the boundary. All information
regarding the boundary is contained in the response matrix, Λ = Λγ, and therefore
we should be able to find the unknown vectors pertaining to the boundary, x and φ,
strictly from Λ. Following the same method as in the previous section, we partition
Λ so that

Λ =

[

Λ11 Λ12

ΛT
12 Λ22

]

.
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Then the following matrix equation results:

[

Λ11 Λ12

ΛT
12

Λ22

] [

v
x

]

=

[

φ
ψ

]

. (3)

Note that Λ11 is a square matrix of order m and Λ22 is a square matrix of order n.

Lemma 1. The matrices Λ11 and Λ22 are both invertible.

Proof. Recall that G is a connected graph. Let K ′ be a principle proper submatrix
of K. Since G is connected, K ′ is invertible and moreover, any Schur complement of
K ′ in C is invertible. By definition of Λ, we have

Λ11 = A11 − B1C
−1BT

1

and
Λ22 = A22 − B2C

−1BT
2

which are both Schur complements of principle proper submatrices of K in C . There-
fore, Λ11 and Λ22 are both invertible.

By verifying that Λ−1

22 exists, we can now solve for the unknown quantities, x
and φ. After performing some matrix algebra on equation (3), we end up with the
following solution:

φ = (Λ/Λ22)v + Λ12Λ
−1

22 ψ

x = −Λ−1

22 ΛT
12v + Λ−1

22 ψ.

Or, in matrix form, we have

[

Λ/Λ22 Λ12Λ
−1

22

−Λ−1
22 ΛT

12
Λ−1

22

][

v
ψ

]

=

[

φ
x

]

. (4)

3 The Mixed Map

We now define the matrix from equation (4) as a linear operator M : Rm+n 7→ Rm+n

that maps the space of the known data into the space of the unknown data. We will
refer to M as the “mixed map.” Note that M is a square matrix of order m+ n and
is block skew-symmetric.

Theorem 2. M is an injective linear map.

Proof. We will show that M is injective (or one-to-one) by showing that detM 6= 0.
Using the Schur complement determinant identity we have,

det(M) = det(M/Λ−1

22 )det(Λ−1

22 )

= det(Λ/Λ22 + Λ12Λ
−1

22 Λ22Λ
−1

22 ΛT
12)det(Λ−1

22 )

= det(Λ/Λ22 + Λ12Λ
−1

22 ΛT
12)det(Λ−1

22 )

= det(Λ/Λ22 + (Λ11 − Λ/Λ22))det(Λ−1

22
)

=
det(Λ11)

det(Λ22)
. (5)
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It was previously shown in Lemma 1 that Λ11 and Λ22 are both invertible, i.e. their
determinants are non-zero. Therefore, detM exists and is not zero, which implies that
M is injective.

Actually, M−1 can be calculated quite easily and is given by

M−1 =

[

Λ−1

11 −Λ−1

11 Λ12

ΛT
12Λ

−1

11 Λ/Λ11

]

.
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