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Abstract. The purpose of this paper is to examine the Dirichlet problem on
directed current networks. The term directed networks refers to networks in

which conductances are associated with a direction and the conductance is
only used if current agrees with that direction. The difference between these

networks and the undirected case is essentially that in the directed current
case the Dirichlet to Neumann (response) map is piecewise linear while in the

undirected case the same map is linear [2]. Refer to [1] for an examination of
the Dirichlet problem on undirected graphs.

Please note that this paper is a continuation of Orion Bawdons work [3] from

the 2005 UW REU program. Bawdon provided conjectures but no justification
for many of the results in sections 2 and 3.1 and Lemma 3.11, and most of the

definitions used are his.

We begin by looking at the case of a star and then progress to arbitrary

directed networks. The main results are proofs of the existence of a harmonic
extension for all directed networks, and the uniqueness on a symmetric directed

network.
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1. Definitions

Definition 1.1. A directed graph with boundary is a triple (V, ∂V,A), where V is
a set, ∂V is a nonempty subset of V , and A ⊂ V × V .

The members of V are called nodes .The members of the set int V = V \∂V will
be called the interior nodes . The members of the set ∂V will be called boundary
nodes. ∂Vi, ∂Vo ⊂ ∂V , where ∂Vi = {j ∈ ∂V | ∃k ∈ intV, (v, k) ∈ A} and
∂Vo = {j ∈ ∂V | ∃k ∈ intV, (k, v) ∈ A}. Note that ∂Vi and ∂Vo may or may not
be disjoint sets.

The members of A are called arcs . An arc is the directed-network analogue of
an edge.

Definition 1.2. Let i, j ∈ V . i, j are neighbors (denoted i ∼ j) if either (i, j) ∈ A
or (j, i) ∈ A.

Definition 1.3. Let i, j ∈ V . There is a path from i to j (denoted i→ j) if there
is a sequence (i1, ..., in), with i1 = i, in = j, and (ik, ik+1) ∈ A for all 1 ≤ k < n.

Definition 1.4. A directed current network is a pair (Γ, γ) where Γ = (V, ∂V,A) is
a directed graph with boundary and where γ : V ×V → R is a nonnegative function
with γij > 0 ↔ (i, j) ∈ A. This function γ represents the conductance of each arc
between two nodes.

Definition 1.5. A symmetric network is a network (Γ, γ) where Γ is a symmetric
graph; i.e., a graph such that (i, j) ∈ A↔ (j, i) ∈ A.

Definition 1.6. Given i, j ∈ V and a function u : V → R, we say that i and j are
u-neighbors (denoted i ∼u j) if either of the following is true:

• u(i) > u(j) and γij > 0
• u(i) < u(j) and γji > 0

The function u represents the electrical potential at each node. The physical
interpretation of this definition is that i and j are u-neighbors when an arc exists
between them and current flows along it.

For any node i ∈ V , given a potential function u on V we can define a function
representing the current out of i:

Ii(u) =
∑

u(j)≤u(i)

γij(u(i) − u(j)) −
∑

u(j)≥u(i)

γji(u(j) − u(i))(1)

The sum is over the currents along the arcs into or out of i. When u(i) =
u(j), γij(u(i) − u(j)) = γji(u(j) − u(i)) = 0, so even though we consider both
directions between the nodes with equal voltages, nothing is added to either sum.
This function is an application of Ohm’s Law: the current along an arc is equal to
the voltage difference between the nodes at its endpoints multiplied by the arc’s
conductance.

Definition 1.7. A function u : V → R is called harmonic, subharmonic or super-
harmonic if, for all i ∈ int V , Ii(u) is equal to zero, less than or equal to zero, or
greater than or equal to zero, respectively. If for some function φ : ∂V → R, u = φ
on ∂V , u is called an extension of φ.
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The Dirichlet Problem: Given a directed current network and a set of boundary
potentials, does there exist a harmonic extension and, if so, is it unique? First we
will consider the simplest nontrivial case.

2. The Dirichlet Problem for a Star

Definition 2.1. A star is a directed current network with exactly one interior
node.

Let Γ be a star with interior node i0, and let φ be a set of boundary potentials.

Lemma 2.2. {u(i0) | u is a harmonic extension of φ } is a non-empty interval.

Proof. First, we define two useful values:

δ = inf{φ(j) | j ∈ ∂V }

ξ = sup{φ(j) | j ∈ ∂V }

Now we consider three cases:

(1) A star with no arcs directed inward to i0. If u(i0) < δ, Ohm’s law would
predict that current flows from ∂V to i0. But because no arcs are directed
inward to i0, Ii0(u) = 0. If ui0 = δ then Ii0 (u) = 0. By definition u(i0) is
a harmonic extension of φ on {u(i0) ≤ δ}. If u(i0) > δ, then Ii0(u) > 0, so
there is no harmonic extension of φ on {u(i0) > δ}.
We have a harmonic extension u of φ on the interval (−∞, δ].

(2) A star with no arcs directed outward from i0. Similarly to case 1, if
u(i0) ≥ ξ, then Ii0(u) = 0; therefore, u(i0) is a harmonic extension of
φ. No arcs are directed such that current can flow outward from i0 as pre-
dicted by Ohm’s law. If u(i0) < ξ, then Ii0 (u) < 0, so there is no harmonic
extension of φ on {u(i0) < ξ}.
We have a harmonic extension u of φ on the interval [ξ,∞).

(3) A star with at least one arc directed out from i0 and at least one arc directed
into i0. Fix boundary voltages φ for all j ∈ ∂V , and let x = u(i0). Let
f(x) = Ii0 (u), then:

f(x) =
∑

j|φ(j)≤x

γi0j(x − φ(j)) −
∑

j|φ(j)≥x

γji0(φ(j) − x)

Rearranging:

f(x) =
∑

j|φ(j)≤x

(γi0jx− γi0jφ(j)) +
∑

j|φ(j)≥x

(γji0x− γji0φ(j))

=


 ∑

j|φ(j)≤x

γi0j +
∑

j|φ(j)≥x

γji0


 x−


 ∑

j|φ(j)≤x

γi0jφ(j) +
∑

j|φ(j)≥x

γji0φ(j)



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Note that this final equation is of the form f(x) = Mx+ B, with

M =
∑

j|φ(j)≤x

γi0j +
∑

j|φ(j)≥x

γji0

B = −


 ∑

j|φ(j)≤x

γi0jφ(j) +
∑

j|φ(j)≥x

γji0φ(j)




Furthermore, we know that M ≥ 0 because every γi0j and γji0 is nonnega-
tive, so a sum of them is also nonnegative. B is a real number.

Take the values φ(j) for all j ∈ ∂V (call them φ-values) and list them
in increasing order. As x, the potential at node i0, varies between two
consecutive φ-values, M and B are constants. Therefore the function f(x)
is piecewise linear. That is to say, it is linear as it varies between consec-
utive φ-values. M , which is the slope of f(x), can change as x increases,
depending on the conductances of the arcs.

f(x) is also continuous. When x equals one of the φ-values, some of the
γi0j or γji0 disappear from the sum because no current flows along an arc
with equal potential at each endpoint. But f(x) approaches the same value
from each direction whenever x is close to a φ-value.

If ∃p ∈ ∂Vi and ∃q ∈ ∂Vo such that φ(p) ≥ φ(q), then M > 0. Because f(x)
is continuous, we also know that f(x) is strictly increasing. f(x) → −∞
as x→ −∞ and f(x) →∞ as x→∞. If there is no p ∈ ∂Vi and q ∈ ∂Vo

such that φ(p) ≥ φ(q), then f(x) is not strictly increasing and there is no
unique harmonic solution (Figure 2).

We have shown that f(x) is a continuous, strictly increasing, piecewise
linear function (Figure 1). By the Intermediate Value Theorem there exists
a unique x such that f(x) = 0. So there is a unique harmonic extension
of φ; we have a degenerate non-empty interval on which x = u(i0) is a
harmonic extension of φ.

If ∀p ∈ ∂Vi and ∀q ∈ ∂Vo, φ(p), φ(q), then M = B = 0 when u(i0) ∈
[inf ∂Vi, sup∂Vo] and M > 0 when u(i0) 6∈ [inf ∂Vi, sup ∂Vo]. So u(i0) is a
harmonic extension of φ on the nonempty interval [inf ∂Vi, sup ∂Vo].

So {u(i0) | u is a harmonic extension of φ } is a non-empty interval. �

Lemma 2.3. If u is a subharmonic extension of φ, then there is a harmonic exten-
sion v of φ such that u(i0) ≤ v(i0).

Proof. We consider the same three cases as in the proof of Lemma 2.2:

(1) A star with no arcs directed inward to i0. In this situation, Ii0 ≥ 0. So the
only subharmonic extension occurs when Ii0 = 0. This is also a harmonic
extension of φ. Given a subharmonic extension u of φ, there is a harmonic
extension v of φ such that u(i0) = v(i0).
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u(i)

I (i)u

Figure 1. This is a graph of the current through the interior
node i as a function of the potential at i. Note that the function is
continuous, increasing and piecewise linear. There is a unique po-
tential at which the current is zero; this is the harmonic extension.

5

7

4

Figure 2. In this figure, the label near each boundary node repre-
sents the potential at that node. This star has no unique solution,
because there is no p ∈ ∂Vi, q ∈ ∂Vo such that φ(p) ≥ φ(q). The
set of harmonic extensions of φ is the interval [4,5].

(2) A star with no arcs directed outward from i0. Here we have subharmonic
extensions that are not necessarily harmonic. Consider the graph of Ii0 as
a function of u(i0). It is continuous, because Ii0 approaches the same value
from each direction whenever x is close to a φ-value. It is nondecreasing,
because the slopes are always positive or zero.
So we have that Ii0 is a continuous and nondecreasing function of u(i0).
Given a subharmonic extension u of φ, a harmonic extension v of φ can
only occur at a higher potential than u(i0), or an equal potential if the
subharmonic extension is already harmonic.
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(3) A star with at least one arc directed outward from i0 and at least one arc
directed inward to i0. We have already shown in the proof of Lemma 2.2
that f(x) = Ii0 (u), with x = u(i0), is continuous and strictly increasing.
Take a subharmonic extension u of φ. If u is also harmonic, then the
only harmonic extension v of φ occurs at v(i0) = u(i0) because there is a
unique harmonic extension of φ. If u is not also harmonic, then the unique
harmonic extension v occurs at a higher potential because f(x) is strictly
increasing.

So we have that if u is a subharmonic extension of φ, then there is a harmonic
extension v of φ such that u(i0) ≤ v(i0). �

If the star is a symmetric network, there is an arc directed in from p ∈ ∂V and
an arc directed out to q ∈ ∂V such that φ(p) ≥ φ(q). This gives the following
corollary:

Corollary 2.4. Given symmetric star network with boundary potentials φ, there is
a unique harmonic extension of φ.

3. The Dirichlet Problem for Arbitrary Directed Networks

Now we will consider the Dirichlet Problem on an arbitrary directed current
network with boundary potentials φ. First the existence of a solution will be es-
tablished and then uniqueness will be considered.

3.1. Existence of a Harmonic Extension.

Definition 3.1. A function v has a local maximum at node i if for all j such that
i ∼ j, v(i) ≥ v(j), and a local minimum at a node k if for all j such that k ∼ j,
v(k) ≤ v(j).

Lemma 3.2. If for all i ∈ int V there exists some j ∈ ∂V such that i→ j then all
subharmonic extensions u of φ have no strict local maximum in int V .

Proof. Let u be a subharmonic extension of φ. Suppose u has a strict local max-
imum at i0 ∈ int V , and let S = {i | i ∼ i0}. Since u(i0) > u(i) for all i ∈ S,∑

j|u(j)>u(i0)
γi0j(u(j) − u(i0)) is an empty sum; there are no j to sum over. Since

there exists some j ∈ ∂V such that i0 → k, there is at least one arc directed out
from i0, so Ii0(u) =

∑
j|u(j)<u(i0)

γji0(u(j)−u(i0)) > 0. By contradiction u cannot
have a local maximum. �

The following lemma can be proved similarly.

Lemma 3.3. If for all i ∈ int V there exists some j ∈ ∂V such that j → i then all
superharmonic extensions u of φ have no strict local minimum in int V .

A harmonic extension is both subharmonic and superharmonic, so we have the
following corollary:

Corollary 3.4 (The Max/Min Principle for Directed Networks). If for all i ∈ int V
there exists some j, k ∈ ∂V such that j → i and i→ k, then all harmonic extensions
u of φ have no strict local minimum or maximum in int V .

Corollary 3.5. If for all i ∈ int V there exists some j ∈ ∂V such that i→ j then for
any subharmonic extension u of φ and for all i ∈ int V , u(i) ≤ sup{u(j) | j ∈ ∂V }.
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Proof. Take a subharmonic extension u of φ. Let M = sup{u(i) | i ∈ int V }
and N = sup{u(j) | j ∈ ∂V }. Take i0 ∈ int V such that u(i0) = N . Let
Sk = {j | j ∈ ∂V and (k, j) ∈ A}.

Suppose Si0 6= ∅. Since u is subharmonic, Ii0 (u) ≤ 0. Since u(i0) ≥ u(i) for all
i ∈ int V , no current can flow into i0 from any interior node. So ∃j0 ∈ Si0 such
that u(i0) ≤ u(j0) ≤ N . So M ≤ N .

Else if Si0 = ∅, then no current can flow into i0 so Ii0(u) ≥ 0. Since u is
subharmonic it must be the case that Ii0(u) = 0. So for all i such that (i0, i) ∈ A,
u(i) = u(i0) = M . There is a j ∈ ∂V such that i0 → j. Using induction, for all
ik such that i0 → j passes through ik, u(ik) = u(i0). So there exists in such that
(in, j) ∈ A, u(in) = M and Sin 6= ∅. So M ≤ N . �

The following corollary results from a similar proof.

Corollary 3.6. If for all i ∈ int V there exists some j ∈ ∂V such that j → i then
for any superharmonic extension u of φ and for all i ∈ int V , u(i) ≥ inf{u(j) | j ∈
int V }.

Theorem 3.7. Given any directed network, there is a harmonic extension of φ.

Proof. There are three cases to consider:

(1) We assume the hypothesis of Lemma 3.2. Let F ={u | u is subharmonic with values φ on ∂V }.
We know this set is non-empty: as an example, set u(i) = infφ for all
i ∈ int V . This is a subharmonic extension of φ.

Now define v(i) = supu(i)|u∈F . Suppose this extension v of φ is subhar-
monic and not harmonic. Then we should be able to take the harmonic
function v′ at the interior node i that is determined by the values of v at
its neighbors. This will still be a subharmonic extension, but v′(i) > v(i).
This is a contradiction; v(i) was defined as the sup over all the subharmonic
extensions at i. This contradiction entails that v(i) was already harmonic.

(2) Here we assume the hypothesis of Lemma 3.3. Similarly to Case 1, let H =
{u | u is superharmonic with values φ on ∂V }. Define w(i) = infu(i)|u∈H ;
this is, by a similar indirect proof, a superharmonic and harmonic extension
of φ.

(3) We have considered the cases such that for all i, there is a path to or from
some j ∈ ∂V . Now consider what happens if one or both of these conditions
is not satisfied. Take networks on G = (V, ∂V,A) containing at least one
i ∈ int V such that either:
• For all j ∈ ∂V, i 9 j or
• For all j ∈ ∂V, j 9 i
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Suppose V ′ = {i | i ∈ int V and ∀j ∈ ∂V , i 9 j} 6= ∅.
Define the following

∂V ′ = {i ∈ V ′ | ∃k ∈ V/V ′ : k → i}
A′ = {(i, k) ∈ A | i, k ∈ V ′}
G′ = (V ′, ∂V ′, A′)

Ṽ = V/V ′

Ã = {(i, k) ∈ A | i, k ∈ Ṽ }
G̃ = (Ṽ , ∂V, Ã) (See Figure 3)

G

G

’

~

Figure 3. For all i ∈ G′ and j ∈ ∂V, i 9 j. There is a harmonic
extension on G̃. By setting all potentials in G′ higher than or equal
to the sup over the potentials in G̃, we have a harmonic extension
over the whole graph that is not unique.

By cases 1 and 2, there exists a harmonic extension u of φ on G̃. Let
s = sup{u(k) | k ∈ Ṽ }. u can be extended to G′ by setting u(k) = c for all
k ∈ V ′ where c ≥ s. This causes u to be a harmonic extension on G since
it will prevent current from flowing along any arcs connecting nodes in Ṽ
to nodes in V ′ and any arcs in A′.

Note that if V ′ = {i | i ∈ int V and ∀j ∈ ∂V , i 6← j} 6= ∅ the result
is proved in the same manner by taking c ≤ inf{u(k) | k ∈ Ṽ } �

Note that in the third case in the proof of this theorem we know that the har-
monic solution we get is not unique because c was not a unique value. This gives
the following corollary to the proof:

Corollary 3.8. If there exists i ∈ ∂V such that either
• For all j ∈ ∂V, i 9 j or
• For all j ∈ ∂V, j 9 i

then a harmonic extension of φ exists and it is not unique.
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We will continue discusing the uniqueness of the harmonic extension in the fol-
lowing section.

3.2. Uniqueness of the Harmonic Extension. In this section we assume that
every interior node has a path both to and from the boundary.

Definition 3.9. A graph is connected through the interior if, for every pair of
interior nodes i and k, either i→ k or k→ i and the path does not go through any
boundary node.

Definition 3.10. A connected component Γc is a subgraph of Γ that is connected
through the interior. If Γc = Γ, the whole graph Γ is connected through the interior.
(Figure 5)

When we look for the unique Dirichlet solution we can assume that every network
is connected through the interior, because a unique solution on every connected
component is a necessary and sufficient condition for a unique solution on the
entire graph.

Figure 4. This network is not connected through the interior, but
it has two connected components.

Figure 5. These are the two connected components of the net-
work in Figure 4.

Note that in general a symmetric network does not have equal conductances in
each direction. The undirected network is a special case of the symmetric network,
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where the conductances are equal in each direction.

For all i ∈ int V let

m(i) = inf{u(i) | u is a superharmonic extension of φ}
M (i) = sup{v(i) | v is a subharmonic extension of φ}

The following result is not used in the rest of this paper, but we provide a proof
because the hypothesis appeared in Orion Bawdon’s paper.

Lemma 3.11. Let i ∈ int V . If α < M (i), then there exists a subharmonic
extension u of φ with u(i) = α. If α > m(i), then there exists a superharmonic
extension u of φ with u(i) = α.

Proof. Suppose α < M (i). Let δ = M (i) − α and let u(k) = M (k) − δ for all
k ∈ int V .

For l, k ∈ int V , u(l)− u(k) = (M (l) − δ)− (M (k)− δ) = M (l) −M (k).
We have that u(k) < M (k) for all k ∈ int V and u(j) = M (j) = φ(j) for all

j ∈ ∂V . So for all k ∈ int V and j ∈ ∂V , u(k)− u(j) < M (k)−M (j).
So for k ∈ int V and l ∈ V , u(k)− u(l) ≤M (k)−M (l).
Therefore for all k ∈ int V ,

Ik(u) =
∑

u(j)<u(k)

γkj(u(k)− u(j)) +
∑

u(j)>u(k)

γjk(u(k)− u(j))

≤
∑

M(j)<M(k)

γkj(M (k)−M (j)) +
∑

M(j)>M(k)

γjk(M (k)−M (j))

= Ik(M ) ≤ 0 for all k ∈ int V

so u is a subharmonic extension of φ with u(i) = α.
A similar proof holds for the existence of a superharmonic extension u with

u(i) = α if α > m(i). �

False Conjecture 3.12. Given a directed network with boundary potential func-
tion φ, if every node in V has a path to and from every other node, there is a unique
harmonic extension of φ.

Counterexample. Every node in Figure 6 has a path to and from every other node,
but there is not, in general, a unique harmonic extension of a boundary potential
function. �

A B

C D

E

Figure 6.
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Lemma 3.13. Given a symmetric network with exactly one boundary node where
every interior node has a path to the boundary and a path from the boundary, there
is a unique harmonic extension.

Proof. By Corollary 3.4, the maximum and the minimum of the harmonic extension
occur on the boundary. There is only one boundary node j, so the max and min are
equal to the potential at j. Therefore the potential at every interior node equals
the potential at j. �

Theorem 3.14. Given a symmetric network with at least 2 boundary nodes that
is connected through its interior, all of the following are true:

(1) The Dirichlet problem has a unique solution.
(2) The interior voltages and all the currents depend continuously on the bound-

ary potential function.
(3) For any boundary node p, fixing voltages on ∂V \ p implies that the current

at p is a continuous, increasing function of the voltage at p.

Proof. We use induction on the number of interior nodes.
Base case: A graph with no interior nodes. Items 1 and 2 are trivially true.

Item 3 is true because, on a star, the current at the interior node is a continuous,
increasing function of the voltage at that node (Figure 1). Assume inductively that
Theorem 3.14 holds for a graph with n interior nodes.

Now take a graph Γ0 with n + 1 interior nodes. Consider a new graph Γ1 with
the same vertices, edges and conductivity function as Γ0, except one of the interior
nodes in Γ0 corresponds to an boundary node called p in Γ1. Γ1 has n interior
nodes, so by the inductive assumption and Item 3 there is a unique potential φ(p)
such that I(p) = 0. So Γ0 has a unique Dirichlet solution; this corresponds exactly
to the solution on Γ1 with the uniquely determined φ(p). Thus Item 1 holds for a
graph with n+ 1 interior nodes.

Define F (φ) : φ |∂V \p 7→ φ |∂V . This is the map from the boundary potentials
on ∂V \ p to the unique potential on p such that the current I(p) = 0. Define
lim supφ→φ0

F (φ) = M and lim infφ→φ0 F (φ) = m. Now take two sequences:

φj | F (φj)→M as φj → φ0

ψj | F (ψj)→ m as ψj → φ0

Define the function Ip(φj, F (φj)) as the current at node p due to the unique har-
monic extension of the potentials φj on ∂V \ p and F (φj) on p. Take

Ip(φ0,M ) = Ip( lim
n→∞

(φj, F (φj)))

= lim
n→∞

Ip(φj, F (φj)), by continuity from the inductive hypothesis

= lim
n→∞

0

= 0
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Now take

Ip(ψ0,m) = Ip( lim
n→∞

(ψj, F (ψj)))

= lim
n→∞

Ip(ψj , F (ψj))

= lim
n→∞

0

= 0

From the proof of Item 1, there is a unique harmonic extension. So necessarily
M = m; otherwise, there would be two different harmonic extensions. Thus F is
continuous at φ0. So the potential at p is continuously dependent on the potentials
on ∂V \ p for Γ0, and since Item 2 holds for Γ1, Item 2 holds for Γ0.

Lastly, we show that Item 3 holds on Γ0:
(1) Take a harmonic extension on Γ0 (Figure 7).
(2) Raise the potential at boundary node B (Figure 8), and assume that there is

a harmonic extension of these boundary values such that the new potentials
at interior nodes E and F are lower than in the harmonic extension of Figure
7.

(3) Now create a subharmonic extension on Γ0 (Figure 9) by raising the po-
tentials at nodes E and F back to the values they had in the harmonic
extension of Figure 7. The current out of each interior node is now nega-
tive.

This is a subharmonic extension of the boundary data. Because every subharmonic
function is less than or equal to some harmonic function at every interior node,
there must be a harmonic extension such that the potentials at all the interior
nodes are greater than the potentials in Figure 9. This cannot be the harmonic
extension we assumed in Figure 8. Thus we have a contradiction, because there is
a unique harmonic extension of the boundary potentials.

B

E F

DC

A

Figure 7.

So raising the potential at p will not cause any potentials in the interior to de-
crease in the new harmonic extension. In fact, all the potentials in the interior will
strictly increase. It must be the case that at least one interior node’s potential does
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Higher Potential Higher Potential

Higher Potential

Lower Potential Lower Potential

B

E F

DC

A

Figure 8.

Higher Potential Higher Potential

Higher PotentialB

E F

DC

A

Figure 9.

increase, or the new extension would not be harmonic. Suppose the potential at
one or more interior nodes does not increase when the potential at p is raised. At
least one of these interior nodes is a neighbor of the node whose potential incresed,
because the graph is connected. Call this node b. So there is more current flow-
ing into b than there was before the potential at p was raised, because one of b’s
neighbors has a higher potential relative to b than before. But this current is more
than the current that flows out of b, because none of the potentials in the interior
decrease. So the extension is not harmonic. By this contradiction, the potential at
every interior node increases when the potential at p is raised.

Consequently, the current will decrease at every boundary node other than p which
is connected to the interior when the potential at p is raised. Thus the current at
p is an increasing function of the voltage at p.

All three items hold for a graph with n + 1 interior nodes, and the theorem is
proved by induction. �
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Given a graph consisting of connected components, Theorem 3.14 holds for each
connected component. So a stronger result follows:

Corollary 3.15. The conclusion of Theorem 3.14 holds for symmetric networks
consisting of connected components that each have at least one boundary node.

4. Future Research

(1) While having a symmetric network is a sufficient condition for having a
unique harmonic extension for every set of boundary potentials, it is not a
necessary condition. A more thorough examination of directed graphs may
lead to a necessary and sufficient condition, or at least a weaker sufficient
condition.

Also, in our research we have found three types of graphs: those that have
a unique harmonic extension for every set of boundary potentials, those
that have a unique solution for some boundary potentials and not for oth-
ers, and those that never have unique solutions. If sufficient and necessary
conditions can be found for the first type of graphs, it seems likely that a
classification system can be established for directed networks using these
three categories.

(2) Our research has been on directed electrical networks with current moving
continuously along the arcs. Ernie Esser suggested that someone look at
computer networks where discrete packets of information move along arcs,
with an upper bound at each node on the number or size of packets allowed.
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