
COMPLEXERS FROM STARS

LINDSAY ERICKSON

Abstract. A complexer is a plexer on a graph with an admittance function
γ such that the positive real-valued entries in the response correspond exactly

to the members of ΠK , the known set of the plexer’s partition. A star network
whose admittances conform to certain conditions becomes a complexer via a

F−K transformation. This paper defines those conditions, thereby providing
a way to cook up a complexer on a star by choosing an appropriate admittance

function.
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1. Simple Parallel Edges and their Admittances

In this paper I use i =
√
−1. All indices therefore appear as j, k, l.

Admittance is the periodic-voltage analogue of conductance. Admittances of circuit
elements are represented on the complex plane as follows, with Y representing ad-
mittance and ω representing the angular frequency of the voltage across the circuit
element:

For a resistor with resistance R ∈ R+, Y = 1
R

. It is independent of ω.
For a capacitor with capacitance C ∈ R+, Y = iωC
For an inductor with inductance L ∈ R+, Y = 1

iωL = −i
ωL .

I will consider networks where the potentials are periodic functions of one ω.

When circuit elements are combined in parallel or in series along an edge, that
edge has a well-defined equivalent admittance (denoted Yeq) according to two rules
of addition:

Date: August 2, 2007.

1



2 LINDSAY ERICKSON

• For m admittances Y1, Y2, · · · , Ym in parallel, Yeq = Y1 + Y2 + · · ·+ Ym.
• For n admittances Y1, Y2, · · · , Yn in series, Yeq = (Y −1

1 +Y −1
2 +· · ·+Y −1

n )−1.

Definition 1.1. An R-edge is an edge consisting only of resistors in series; an
L-edge is an edge consisting only of inductors in series, and a C-edge is an edge
consisting only of capacitors in series. Likewise, an RC-edge consists of resistors
and capacitors in series; an RL-edge consists of resistors and inductors in series; an
LC-edge consists of inductors and capacitors in series; and an RLC-edge consists
of all three types of elements in series. Each edge has a well-defined Yeq found by
adding the elements in series.

Definition 1.2. A simple parallel edge is a parallel connection consisting of at least
one of the following: an R-edge, an RC-edge, an RL-edge, an RLC-edge. It may
also consist of C-edges, L-edges and LC-edges, though that is not required. This
paper considers networks made up of simple parallel edges. Such networks have a
unique Dirichlet solution [1].

Simple Admittances

Figure 1. The set of all possible simple admittances for fixed ω
in the complex plane. Simple admittances always lie in the right
half-plane.

Definition 1.3. A simple admittance is the associated Yeq of a simple parallel edge.

A simple admittance γ as a function of ω is of the form:
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γ(ω) = f + ωg +
−h
ω

+
[

1
p1(ω − ξp1)

+ · · ·+ 1
pd(ω − ξpd )

]

+
[

1
q1(ω − βq1 )

+ · · ·+ 1
qm(ω − βqm )

]
+

[
ωr1

(ω − δr1 )(ω − ψr1)
+ · · ·+ ωrn

(ω − δrn )(ω − ψrn )

]

+
[

ωs1
(ω − µs1)(ω − τs1)

+ · · ·+ ωst

(ω − µst)(ω − τst)

]

where
• f ∈ R+

• g, h ∈ iR
• pj = iL and
ξpj = iR

L for each RL-edge from 1 to d
• qj = 1

iC and
βqj = 1

iRC for each RC-edge from 1 to m
• rj = C and
δrj , ψrj are the roots of the quadratic equation iLCω2 − i for each LC-edge
from 1 to n

• sj = C and
µsj , τsj are the roots of the quadratic equation iLCω2 + CRω − i for each
RLC-edge from 1 to t

Note that in the remainder of this paper I will refer to simple admittances as
admittances of the form α0 + α1i, where α0 ∈ R+ and α1 ∈ R as in Figure 1.

Remark 1.4. A sum of simple admittances is also a simple admittance; the set is
closed under addition.

2. Nifty Results from Complex Algebra

It is useful to identify complex numbers with vectors in R2. The symbol ∼
represents identification.

Lemma 2.1 (The Parallel Lemma). For two complex numbers

x = x0 + ix1 ∼
[
x0

x1

]

y = y0 + iy1 ∼
[
y0
y1

]

xy is real if and only if x ‖ ȳ in R2.

Proof. Take ȳ ∼
[

y0
−y1

]
. Define a new vector ȳ′ orthogonal to the vector ȳ by

multiplying the complex number ȳ by i so that ȳ′ ∼
[
y1
y0

]
.

The product xy is real if and only if =(xy) = x0y1 + x1y0 = 0. But it is also
the case that x · ȳ′ = x0y1 +x1y0. So xy is real if and only if the vector x is orthog-
onal to ȳ′. Since ȳ′ is also orthogonal to ȳ, it follows that xy is real if and only if
x ‖ ȳ in R2. �
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Figure 2. The Conjugate Lemma: x ‖ ηȳ if and only if x is
parallel to y conjugated over the line proportional to

√
η.

From here on, the notation x ‖ y means that arg(x) = arg(y).

Lemma 2.2 (The Conjugate Lemma). For complex numbers x, y, η, x ‖ ηȳ if and
only if x is parallel to y conjugated over the line proportional to √

η.

Proof. Take y and η as in Figure 2, where

y = y0e
iθ, y0 ∈ R

η = η0e
iφ, η0 ∈ R

Note that
√
η ‖ e 1

2 φ. Now take x ‖ ηȳ. This is true exactly when x ‖ ei(φ−θ), so
arg(x) − arg(

√
η) = 1

2
φ − θ. Also, arg(y) − arg(

√
η) = θ − 1

2
φ. So x is parallel to

the conjugate of y across the line proportional to
√
η if and only if x ‖ ηȳ. �

Figure 3. When η is a simple admittance, the open shaded region
in the complex plane represents all possible values for √

η.
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3. Complex-Valued F −K Transformations

Definition 3.1. An n-star , denoted Fn, is a connected graph with exactly one
interior node, n boundary nodes, and no boundary-to-boundary connections.

In this section I will consider networks consisting of a Fn with an associated
simple admittance function γ on its edges. For such a network, the F −K trans-
formation defines the complete graph that corresponds to the response matrix Λ
according to the formula in [2]:

λjk =
γjγk

σ
(1)

where σ = γ1 + γ2 + · · ·+ γn.

4. Complexers

Definition 4.1. A plexer is an ordered pair P = (G,Π) where G is a graph with
boundary and Π is a nontrivial partition of the set of all distinct unordered pairs
of boundary vertices. The partition Π = (ΠU ,ΠK) defines two sets: the unknown
set (consisting of unknown pairs) and the known set (consisting of known pairs).
P has the following properties:

(1) For a valid response matrix on G, given only the values of the entries
corresponding to the known pairs, it is not possible to determine the values
of any entry corresponding to an unknown pair.

(2) For a valid response matrix on G, given only the values of the entries
corresponding to known pairs and one unknown pair, we can recover the
entire response matrix.

A catalogue of plexers appears in [3].

Definition 4.2. A complexer is an ordered triple C = (G,Π, γ) where (G,Π) is a
plexer and γ is a simple admittance function on G’s edges. Additionally, the known
set ΠK in P must correspond exactly to the positive real entries in the response
matrix Λ for G; equivalently, the unknown set ΠU must correspond exactly to the
union of the nonreal and negative real entries in Λ.

A k-complexer is a complexer such that |ΠU | = k.

The following definitions are adapted from [3]:

Definition 4.3. A Πm⊕(n−m) complexer is a complexer such that the nonreal
entries, or ΠU , in Λ correspond exactly to a Km and a Kn−m, disjoint, on the
boundary nodes.

Definition 4.4. A Πm,n−m complexer, where m = 1 or 2, is a complexer such that
the real entries ΠK in Λ correspond exactly to a Kn and a Kn−m, disjoint, on the
boundary nodes.

Remark 4.5. Strictly speaking, (F4,Π2,2, γ), where γ a simple admittance func-
tion, is not a complexer because it is not the case that, given one unknown entry
in Λ, one may recover all the unknown entries in Λ. This triple still has interesting
algebraic properties that I discuss in Section 6.
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Definition 4.6. A Πl⊕(m−l),n−m complexer is a complexer such that the real entries
ΠK in Λ correspond exactly to a Kn−m and a Kl,m−l , disjoint, on the boundary
nodes.

5. Cooking up Complexers on Stars

Some stars become complexers via a F −K transformation. All and only these
stars satisfy certain conditions on their admittances, so it is possible to cook up
complexers by choosing the appropriate admittance function on a star and then
transforming it into a K.

Remark 5.1. First, an explanation of my notation. In the figures that follow,
the labels aj , bj and cj that appear next to each node represent the values of the
admittances on the corresponding edges of the original star. (Figure 4)

a
1

2
a

b
2

b
1

2
a

b
2

b
1

a
1

Figure 4. The graph on the left is the original F4 with a simple
admittance function on its edges; it transforms to the K4 on the
right. The labels a1, a2, b1, b2 on the K are the admittances on the
corresponding edges of the original star.

It is important to remember that every complexer started as a Fn and underwent
a F −K transformation.

In this section, take a Fn with associated simple admittances γj on its edges.
Recall that σ = γ1 + · · ·+ γn is in the right half-plane.

Theorem 5.2. When n ≥ 4, a Fn will transform to a Πm⊕n−m complexer (Figure
5) if and only if it satisfies the following conditions:

(1) a1 ‖ a2 ‖ · · · ‖ am

(2) b1 ‖ b2 ‖ · · · ‖ bn−m

(3) a1 ‖ σb̄1
(4) b1 ∦ a1

Proof. For all the edges between the aj and bk to be real-valued, it must be the
case that for all j from 1 to m and for all k from 1 to n−m,

ajbk
σ

∈ R

⇔ aj ‖
(
bk
σ

)

⇔ aj ‖ σb̄k
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Figure 5. This is ΠK of a Πm⊕(n−m) complexer. It is the com-
plement of ΠU . All and only these edges in the complete graph on
these n vertices correspond to response entries in R+.

In other words, Conditions 1, 2 and 3 taken together. This guarantees that every
edge in ΠK is real-valued. Now we must guarantee that no edge in ΠU is real. That
is to say, for all j and k,

bjbk
σ

6∈ R

⇔ bj ∦
(
bk
σ

)

⇔ bj ∦ a1, because a1 ‖
(
bk
σ

)

This is Condition 4. It guarantees that no edge in ΠU is real. By definition this is
a Πm⊕(n−m) complexer. �

Corollary 5.3. When n ≥ 4, a Fn that transforms to a Πm⊕(n−m) complexer has
no real-valued admittances.

Proof. First assume that one of the aj is real. Then all the other aj are real too.
By the Conjugate Lemma, all the bk are parallel to σ. Then σ and all the bk must
be real; if they were not, then σ could not be the sum of the admittances. But then
a1 ‖ b1, which contradicts Condition 4. So none of the aj is real. Similarly, none of
the bk is real. �

Theorem 5.4. When n − m ≥ 3 and l,m − l ≥ 1, a Fn will transform to a
Πl⊕(m−l),n−m complexer (Figure 6) if and only if it satisfies the following condi-
tions:

(1) a1 ‖ a2 ‖ · · · ‖ al

(2) b1 ‖ b2 ‖ · · · ‖ bm−l

(3) a1 ‖ σb̄1
(4) c1 ‖ c2 ‖ · · · ‖ cn−m ‖

√
σ

(5) a1 ∦ b1
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Figure 6. This is ΠK of a Πl⊕(m−l),n−m complexer. It is the
complement of ΠU . All and only these edges in the complete graph
on these n vertices correspond to response entries in R+.

Proof. Conditions 1, 2 and 3 follow from the proof of Theorem 5.2. In addition, it
must be the case that for all j, k from 1 to r,

cjck
σ

∈ R

⇔ cj ‖ σc̄k
⇔ cj ‖ σc̄j
⇔ c2j ‖ σ
⇔ cj ‖

√
σ

This is Condition 4. Additionally, it must be the case that no edge from an aj to
a cl or from a bk to a cl is real:

ajcl
σ

6∈ R and
bkcl
σ

6∈ R

⇔ aj ∦ σc̄l and bk ∦ σc̄l
⇔ aj ∦

√
σ and bk ∦

√
σ

⇔ aj ∦ bk, because aj ‖ bk ⇔ bk ‖
√
σ �

Corollary 5.5. When n − m ≥ 3 and l,m − l ≥ 1, a Fn that transforms to a
Πl⊕(m−l),n−m complexer has no more than n−m real-valued admittances.

Proof. If the star has more than n−m real-valued admittances, then at least one
aj or bk is real-valued. Without loss of generality, assume a1 is real. Then all the
aj are real. By the Conjugate Lemma, all the bk are parallel to σ. Then, because
all the cl are parallel to

√
σ and σ is the sum of the admittances,

√
σ and σ must

also be real. But then b1 is real, and a1 ‖ b1, which contradicts Condition 5. So
none of the aj is real. Similarly, none of the bk is real.

So a star that transforms to a Πl⊕(m−l),n−m complexer has no more than n − m
real-valued admittances. �
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Remark 5.6. A star with n − m real-valued admittances can transform to a
Πl⊕(m−l),n−m complexer. Assume one of the star’s admittances is real-valued and,
without loss of generality, it is called c1. Then all the ck are real and

√
σ is real.

So σ is real. As long as
∑l

j=1 aj is conjugate to
∑m−l

k=1 bk over the real axis, all the
conditions are satisfied.

6. Unusual Small Partitions

Further discussion of the Π1,n−1 complexer and the Π2,2 partition is useful, be-
cause they are special cases of the larger theorems.

The Π1,n−1 complexer is a special case of the Πl⊕(m−l),n−m complexer, where
m = 1.

a

c
c

c

c

c

1

2

3

4

...

n−1

Figure 7. This is ΠK of a Π1,n−1 complexer. It is the complement
of ΠU . All and only these edges in the complete graph on these n
vertices correspond to response entries in R+.

Lemma 6.1. A Fn transforms to a Π1,n−1 complexer (Figure 7) if and only if it
conforms to the following conditions:

(1) c1 ‖ c2 ‖ · · · ‖ cn−2 ‖
√
σ

(2) c1 ∦ σā

Proof. Condition 1 follows from the proof of Theorem 5.4; it guarantees that every
edge in the Kn−1 is real-valued. Additionally, it must be the case that no edge
between a and any cj is real-valued, which is Condition 2. �

Corollary 6.2. A Fn that transforms to a Π1,n−1 complexer has no real-valued
admittances.

Proof. First assume one of the cj is real. Then all the cj are real. By the Conjugate
Lemma,

√
σ and σ are real. Then a is real, because σ is the sum of the admittances.

But then no entry in the response is nonreal-valued, and the star cannot transform
to a complexer. So none of the cj is real-valued. Similarly, a is not real. �

This result is significant because a star that transforms to a Πl⊕(m−l),n−m with
l,m− l ≥ 1 may have some real-valued admittances, as shown in Corollary 5.5.



10 LINDSAY ERICKSON

(F4,Π2,2) is not a plexer [3], so (F4,Π2,2, γ) is not a complexer. But it is still
possible to discuss the conditions a F4 must satisfy if there is to be a Π2,2 parti-
tion on its response entries. These conditions are interesting because they are less
stringent than the conditions a Fn, n ≥ 5, must satisfy if it is to transform to a
Π2,n−2 complexer.

a b

c
2

c
1

Figure 8. This is a F4 with a Π2,2 partition on its response
entries. The solid lines denote the entries in R+ in Λ; the dashed
lines represent the entries not in R+.

Lemma 6.3. A F4 transforms to a Π2,2 complexer (Figure 8) if and only if it
conforms to the following conditions:

(1) a ‖ σb̄
(2) c1 ‖ σc̄2
(3) a ∦ σc̄1, a ∦ σc̄2, b ∦ σc̄1, b ∦ σc̄2

Proof. It must be the case that
ab

σ
,
c1c2
σ

∈ R

⇔ a ‖ σb̄ and c1 ‖ σc̄2
These are Conditions 1 and 2. Now to ensure that the other four response entries
are not real-valued:

ac1
σ

6∈ R,
ac2
σ

6∈ R,
bc1
σ

6∈ R,
bc2
σ

6∈ R

⇔ a ∦ σc̄1, a ∦ σc̄2, b ∦ σc̄1, b ∦ σc̄2 �

Note that it is not required that a1 ‖ a2 ‖
√
σ on a F4. For such a partition to

result on a Fn, n ≥ 5, it is required that all the cj are parallel to
√
σ, as shown in

Theorem 5.4.

7. Demonstrations

Example 7.1. A Π1⊕4 complexer on a F5. (Figure 9)
To cook up this complexer, first choose a ray from the origin in the right half-

plane that will be proportional to σ. This will define the ray proportional to
√
σ,

because arg(
√
σ) = 1

2 arg(σ).

It follows from the conditions in Theorem 5.2 that a never lies within the region



COMPLEXERS FROM STARS 11

b1
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b4

b1

b2

b3

b4

σ

σ

a

a

1/2

Figure 9. The solid edges in the complete graph are real-valued
and correspond to ΠK ; the dashed edges are not real-valued and
correspond to ΠU .

between the real axis and the line proportional to σ. Also, the angle between a
and the line proportional to

√
σ must be smaller than the angle between the line

proportional to
√
σ and the imaginary axis. This follows from the stipulation that

all the admittances are in the right half-plane. Choose any simple admittance a in
accordance with these directions, as in Figure 9.

This move determines everything else. The bk are all conjugate to a over the
line proportional to

√
σ, so the argument of every bk is determined. So the line

proportional to the bk is determined. σ is also determined; it is the intersection
of the line proportional to σ and the line proportional to the bk. Additionally,
a +

∑4
k=1 bk = σ, so the modulus of (b1 + b2 + b3 + b4) is determined. All that

remains, then, is to divide this the value of this modulus among the four bk.

Example 7.2. A Π2⊕3,3 complexer on a F7. (Figure 10)
To cook up this complexer, first choose a ray from the origin in the right half-

plane that will be proportional to σ. This will define the ray proportional to
√
σ,

because arg(
√
σ) = 1

2
arg(σ).

Next, choose a simple admittance a1 in accordance with the conditions in Example
1. a1 ‖ a2, so the argument of a2 is determined. Choose a modulus for a2. The
argument of the bk is determined, because a1 is conjugate to the bk over the line
proportional to

√
σ. The modulus of (b1 + b2 + b3) must be great enough to allow

a simple admittance from (a1 + a2 + b1 + b2 + b3) and parallel to
√
σ to intersect

the line proportional to σ, as in Figure 10. Choose the modulus of each bk in this
way. Then σ is determined; it is the intersection of the simple admittance from
(a1 + a2 + b1 + b2 + b3) parallel to

√
σ and the line proportional to σ. Additionally,

a1 + a2 +
∑3

k=1 bk +
∑3

k=1 cl = σ, so the modulus of (c1 + c2 + c3) is determined.
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Figure 10. The solid edges in the complete graph are real-valued
and correspond to ΠK ; the dashed edges are not real-valued and
correspond to ΠU .

All that remains, then, is to divide this the value of this modulus among the three
cl.
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