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The purpose of this paper is to explore
a matrix we shouldn’t ignore.

While the properties of Lambda are known
as a response matrix it’s not alone.

For this mapping there exists an inverse
whose properties are just as diverse.

Eta, we decided, is its name.
If you don’t like it, we’re to blame

— what a shame
— you’re so lame

— end of game
. . . we’re the same.
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1. Index of Terminology

Convention 1.1. The Kirchhoff Matrix, denoted K, will be written here in the
conventional block form as [

A B
BT C

]
,

where the submatirx A contains boundary-boundary information, B and BT con-
tain boundary-interior information, and C contains interior-interior information.

Definition 1.2. The Dirichlet-to-Neumann Map, denoted Λ, is defined to be the
unique linear operator taking boundary electric potentials to their generated bound-
ary currents.

Definition 1.3. The Neumann-to-Dirichlet Map, denoted H, is defined to be the
unique linear operator taking boundary currents to their generated boundary elec-
tric potentials, with the stipulation that the sum of the electric potentials on the
boundary of every connected component of the graph is equal to zero.

Definition 1.4. The column vector, εi, is defined by the rule

εi(p) =
{

1, p ∈ ∂Vi

0, p ∈ ∂V \ ∂Vi

Furthermore, the matrix εis constucted so that the ith column of εis εi. For conve-
nience, let E = εεT .

Definition 1.5. There exists a generalized path, p ↔ q, between two boundary
vertices p and q if and only if there exists a sequence of neighboring vertices in G
which begins with p and ends with q.

Definition 1.6. If P = (p1, p2, ..., pk) and Q = (q1, q2, ..., qk) are sets of boundary
vertices, then there exists a generalized k-connection from P to Q if and only if
there exists a permutation, σ, such that there exist generalized paths {pi ↔ qσ(i)}
that are vertex disjoint.

2. Derivations of the Response Matrices

2.1. The Dirichlet-to-Neumann Map. Consider the electrical network Γ =
(G, γ) with V being the set of vertices, ∂V the set of boundary vertices, and
intV = V \ ∂V the set of interior vertices. We will further require that G be a
graph with boundary, each of whose m connected components contains a boundary
vertex; for simplicity we will call this condition boundedness. Furthermore we will
denote each connected component of G as Gi = (Vi, Ei), 1 ≤ i ≤ m. Let K be
the Kirchhoff matrix of Γ, partitioned in the conventional manner with boundary
vertices followed by interior vertices such that

K =
[

A B
BT C

]
Let ψ be a column vector corresponding to the currents on the boundary and

u be a column vector corresponding to the electric potential at the vertices of G

(partitioned appropriately, with u =
[

x
y

]
). Thus,

(1) Ku =
[

A B
BT C

]
u =

[
A B
BT C

] [
x
y

]
=

[
ψ
0

]
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Note that eTψ = 0, where eT =
[

1 . . . 1
]
. The vector u is not uniquely

determined by ψ, since the addition of a constant vector to a solution will also
yield a solution.

Lemma 2.1. Let Γ = (G, γ) be a connected electrical network, where V is the set
of vertices. Let K be the Kirchhoff matrix of Γ, partitioned in the conventional
manner. Then, the submatrix C of K is nonsingular if and only if ∂V 6= ∅.

Proof. By definition, the row and column sums of K are zero. That is, the constant
vector e is in the nullspace of K, which implies that detK = 0. Furthermore, the
determinant of any principal proper submatrix of K is nonzero. If ∂V = ∅, then
C = K, which implies that C is singular. On the other hand, if ∂V 6= ∅, then C is
a principal proper submatrix of K, which implies that C is nonsingular. �

Lemma 2.2. Let Γ = (G, γ) be an electrical network and K be the Kirchhoff
matrix of Γ, partitioned as usual. Then, the submatrix C of K is nonsingular if
and only if G is bounded.

Proof. Order the interior nodes of G such that

C =


C1 0 . . . 0

0 C2
. . .

...
...

. . . . . . 0
0 . . . 0 Cm

 ,
where Ck corresponds to interior-interior connections within the kth connected
component of G. It follows that

detC =
m∏

i=1

detCi.

That is, C is singular if and only if there exists i such that Ci is singular.
By the previous lemma, C is nonsingular if and only if for all 1 ≤ i ≤ m, ∂Vi 6= ∅.

Thus, the submatrix C of K is nonsingular if and only if G is bounded. �

Given that C is invertible we may use (1) to recover y from x, as follows.

BT x + Cy = 0

⇒ −C−1BT x = y

Now we may construct a linear mapping from boundary electric potentials to bound-
ary currents, which we will refer to as the response matrix or the Dirichlet-to-
Neumann Map.

(2) ψ = Ax + By = (A−BC−1BT )x ≡ Λx

Lemma 2.3. The vector space 〈εi〉mi=1 is a subspace of the nullspace of Λ.

Proof. We will prove the equivalent claim that for all 1 ≤ i ≤ m, Λεi = 0. Since G
is bounded, the Dirichlet problem on Γ is well-posed, given the input potential εi.
Define u by the rule

u(p) =
{

1, p ∈ Vi

0, p ∈ V \ Vi
.

This potential satisfies both the given boundary data and Kirchhoff’s law on the
interior of V . Since this Dirichlet problem is well-posed, this solution is, in fact,
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the unique solution of this problem. Because u is locally constant, the current
generated is identically zero on V . �

Lemma 2.4. The kernel of the response matrix of a bounded, connected graph is
〈εi〉mi=1.

Proof. In this case, 〈εi〉mi=1 = 〈e〉 is the space of constant vectors. By the results
in [Morrow’s book], null Λ = 1. By the previous lemma, 〈e〉 is a subspace of the
nullspace of Λ. Both spaces have the same dimension, so they are equal. �

Theorem 2.5. The kernel of the response matrix of a bounded network is 〈εi〉mi=1.

Proof. Order the boundary vertices so that Λ is the following block form:

Λ =


Λ1 0 . . . 0

0 Λ2
. . .

...
...

. . . . . . 0
0 . . . 0 Λm

 ,
where Λi denotes the Dirichlet-to-Neumann map, computed for the ith connected
component of G. The dimension of the nullspace of Λ is equal to the sum over
i of the dimension of the nullspace of Λi. It follows that the dimension of the
nullspace of Λ is exactly m. Since the vectors ε1, . . . , εm are linearly independent,
their span is also of dimension m. By Lemma 2.3, the span of the vectors ε1, . . . , εm
is contained in the nullspace of Λ. These spaces are of equal dimension; the claim
follows. �

2.2. The Neumann-to-Dirichlet Map. Although the boundary currents ψ are
uniquely determined by the given boundary electric potentials x, the reverse is not
true. In order to ensure the uniqueness of x given ψ, we require that the sum of
the electric potential of the boundary vertices of each connected component of G
be equal to zero. This condition can be represented symbolically as∑

p∈∂Vi

u(p) = 0 for all 1 ≤ i ≤ m

where ∂Vi refers to the boundary vertices of Gi. Define εi to be a column vector
of boundary data equal to the characteristic function of ∂Vi, and define ε to be the
matrix whose columns are εi. Then, εiT x = 0 for all 1 ≤ i ≤ m; that is,

(3) εTx = 0.

Expressing (2) and (3) in matrix form,[
Λ
εT

]
x =

[
ψ
0

]
.

Multiplying on the left by
[

Λ ε
]
, we have[

Λ ε
] [

Λ
εT

]
x = Λψ(4)

⇒
(
Λ2 + E

)
x = Λψ.

Lemma 2.6. The matrix Λ2 + E is invertible.



ON THE NEUMANN-TO-DIRICHLET MAP 5

Proof. Note that (
Λ2 + E

)
x =

[
Λ ε

] [
Λ
εT

]
x = 0

⇒ xT
[

Λ ε
] [

Λ
εT

]
x = 0

⇒ ‖Λx‖2 +
∑

1≤i≤m

‖εTi x‖2 = 0.

The equality Λx = 0 holds if and only if x is constant on connected components,
and εTi x = 0 if and only if the entries of x corresponding to vertices in ∂Vi sum to
zero. The only vector that satisfies both of these conditions is the zero vector; the
claim follows. �

We conclude x =
(
Λ2 + E

)−1
Λψ ≡ Hψ where H is a Neumann-to-Dirichlet

Map in that it acts on currents producing electric potentials which generate these
respective currents.

Theorem 2.7. The kernels of the response matrices Λ and H are identical.

Proof. Since Λ2 + E is invertible, Hξ =
(
Λ2 + E

)−1
Λξ = 0 if and only if Λξ =

0. �

It follows that the vectors εi form a basis for the kernel of H.

Theorem 2.8. The Neumann-to-Dirichlet Map is symmetric.

Proof. Let H =
(
Λ2 + E

)−1
Λ be the Neumann-to-Dirichlet Map for some electrical

network, Γ = (G, γ).

Since rows and columns of E are in the kernel of Λ,(
Λ2 + E

)
Λ = Λ3 = Λ

(
Λ2 + E

)
⇒ Λ

(
Λ2 + E

)−1
=

(
Λ2 + E

)−1
Λ(5)

Since the inverse of a transpose is the transpose of an inverse, the square of a
transpose is the transpose of a square, and E is symmetric,

H =
(
Λ2 + E

)−1
Λ = Λ

(
Λ2 + E

)−1
= HT . �

Notice that in (4), multiplying any columns of ε by nonzero scalars will have
no effect on our imposed stipulation, (3), due to its homogeneity, and the above
argument will still be sound. Let us consider the case on the connected graph (where
ε = e) where an arbitrary scalar, α, is introduced. Then let Hα =

(
Λ2 + α2E

)−1
Λ,

which is an equally valid Neumann-to-Dirichlet Map.

Theorem 2.9. The equality Hα = H holds for all α 6= 0.

Proof. Let’s take the derivative of Hα with respect to α.
d

dα
Hα =

d

dα

(
Λ2 + α2E

)−1
Λ

= −
(
Λ2 + α2E

)−1
(2αE)

(
Λ2 + α2E

)−1
Λ

= −
(
Λ2 + α2E

)−1
(2αE)Λ

(
Λ2 + α2E

)−1

= 0,
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since Λ commutes with
(
Λ2 + α2E

)−1 by the same reasoning as in (5), and because
the rows and columns of E are in the kernel of Λ. Thus we may conclude that
Hα =

(
Λ2 + α2E

)−1
Λ =

(
Λ2 + E

)−1
Λ = H for all α 6= 0. �

Observe that this argument is generalizable to arbitrary bounded graphs.

Theorem 2.10. The equality Λ =
(
H2 + E

)−1
H holds.

Proof. For the sake of understanding, we will assume the equality Λ =
(
H2 + E

)−1
H

deduce an indisputably true statement through a chain of if-and-only-if correspon-
dences. Supposing that H =

(
Λ2 + E

)−1
Λ, consider the following chain of equiv-

alent statements.

Λ =
(
H2 + E

)−1
H

⇔ Λ = (((Λ2 + E)−2Λ2 + E)−1(Λ2 + E)−1Λ)

⇔ Λ = ((Λ2 + E)−2Λ2 + E2)−1Λ

⇔ ((Λ2 + E)−1Λ2 + E2)Λ = Λ

⇔ (Λ2 + E)−1Λ3 = Λ

⇔ Λ3 = Λ(Λ2 + E),

which is obviously true. The claim follows. �

Let D = {ξ : εT ξ = 0} and let n be the number of boundary vertices for a given
electrical network. Since the boundary currents produced by Λ always sum to zero,
we may consider Λ to be a map from Rn → D. That is, Λ : Rn → D. If we restrict
the domain of Λ to D, then Λ|D : D → D is an invertible map; denote its inverse
by H. Notice that H is not defined on all of Rn, but we may extend its domain
to include vectors that correspond to illegal currents (ones disobeying Kirchhoff’s
law) where H orthogonally projects such a vector to a legal current vector. This is
done by requiring that Hε = 0 and extending H linearly.

3. Properties of Neumann-to-Dirichlet Map

Lemma 3.1. The Neumann-to-Dirichlet Map is positive semi-definite.

Proof. We know that Λ, the response matrix for any given electrical network, Γ =
(G, γ), is positive semi-definite. Therefore,

ψT Hψ = xTψ

= xT Λx ≥ 0. �

Theorem 3.2. The determinants of principal proper submatrices of the Neumann-
to-Dirichlet Map for connected networks are positive.

Proof. Since H is positive semi-definite, the determinant of any principal proper
submatrix of H is non-negative. It remains to be shown that the determinant of
every principal proper submatrix is non-zero. Let P ( ∂V and S = ∂V \P Assume
to the contrary that detH (P ;P ) = 0. Then there exists a non-zero x such that[

HPP HPS

] [
x
0

]
= 0,
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which implies that there exists a non-zero y such that[
HPP HPS

HT
PS HSS

] [
x
0

]
=

[
0
y

]
⇒

[
ΛPP ΛPS

ΛT
PS ΛSS

] [
0
y

]
=

[
x
0

]
⇒ ΛSSy = 0,

which contradicts the invertibility of principal proper submatrices of Λ. The claim
follows. �

Lemma 3.3. The diagonal entries of the Neumann-to-Dirichlet Map are positive.

Alternate Proof. Hij is the jth entry of H acting on ei, the ith unit basis vector
for Rn. We must orthogonally project ei to produce a legal current vector (one
obeying Kirchhoff’s Current Law on each connected component). For the sake of
unobtrusive notation, we will consider a connected graph, and the argument will
generalize to bounded graphs.

Hei = H(ei − αe)

In order to have a legal current, 1 − αn = 0, where n is equal to the number of
boundary vertices. This implies that α = 1/n. That is, the projection of ei into a
legal current spaces is

(ei − e/n) (j) =

{
(n− 1)/n if j = i

−1/n if j 6= i

For the sake of generalization, if G were bounded and not necessarily connected
where i ∈ ∂Vk and nk = |∂Vk|, the projection into a legal current space would be

(nk − 1)/nk if j = i

−1/nk if j 6= i but j ∈ ∂Vk

0 if j /∈ ∂Vk

If the maximum electric potential were to occur at a vertex other than i, then the
current from this vertex would be positive into the rest of the graph, a contradiction.
Therefore, the maximum electric potential must occur at the ith vertex. Due to
our requirement that the electric potentials on the boundary sum to zero, (3), the
electric potential at the ith vertex must be positive. �

Corollary 3.4. For 1 ≤ i ≤ n, ηii > ηij for all j 6= i.

Lemma 3.5. The Neumann-to-Dirichlet Map is not necessarily a Kirchhoff matrix.

Proof. If the Neumann-to-Dirichlet Map, H, were a Kirchhoff matrix, then

Hij > 0 for i = j

Hij ≤ 0 for i 6= j

Note that extending the previous argument to show that the off-diagonal entries of
the Neumann-to-Dirichlet Map are negative is impossible. Consider the following
counterexample.

In Figure 1 the currents, denoted in parentheses, are consistent with the previ-
ously prescribed method while the electric potentials do not observe the required
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5/2
(3/4)

1/4
(−1/4)

−1
(−1/4)

−7/4
(−1/4)

1/3

1/8

1/11

1/2

Figure 1. Electrical network of a F4 graph with vertex labels
to the left of/below the vertices (boundary vertices are solid black
while the interior vertex is white), current in parentheses, electric
potential to the right of current, and conductivities to the left
of/below the edges connecting the vertices.

sign conventions of a Kirchhoff matrix i.e. the electric potential on vertex four is
positive. Thus, in general, H is not a Kirchhoff matrix. �

4. Entry Relationships

4.1. Generalizations of Relationships.

Definition 4.1. There exists a generalized path, p ↔ q, between two boundary
vertices p and q if and only if there exists a sequence of vertices in G whose edges
join p to q.

Definition 4.2. If P = (p1, p2, ..., pk) and Q = (q1, q2, ..., qk) are sets of boundary
vertices, then there exist a generalized k-connection from P to Q if and only if there
exist vertex-disjoint generalized paths {pi ↔ qi}.

Note that most literature refer to paths as being sequences of interior vertices,
and subsequently, k-connections are defined in terms of these paths. Note that
generalized paths do not distinguish between interior and boundary vertices, and
that generalized k-connections are defined in terms of generalized paths.

Theorem 4.3. If the pq-th entry in the Neumann-to-Dirichlet Map, ηpq, is not
equal to zero, then there exists a generalized path between p and q, p↔ q.

Proof by Contrapositive. Assume that there does not exist a generalized path be-
tween p and q. That is, the connected component containing p and that containing
q are distinct. Observe that ηpq reflects the effect of the current at q on the volt-
age at p. Since p and q lie in distinct connected components, they are effectively
independent of one another; it follows that ηpq = 0. �

Definition 4.4. Given a graph G = (V,E) and two disjoint sets of vertices P,Q ⊂
V , a cutset of the pair (P ;Q) is a set R ⊂ V such that for every p ∈ P and q ∈ Q,
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1

2

3

4

5

α

β

γ

δ

ε

Figure 2. The pentagon graph demonstrates that we should con-
sider generalized connection, and not just connections through the
interior.

every path from p to q intersects R. A minimal cutset of the pair (P ;Q) is a cutset
of P and Q of minimal cardinality among all such cutsets.

So, a cutset R of a pair (P ;Q) can be thought of as a set of vertices such that,
when R is removed from G, along with any edges that had included any vertex
v ∈ R, the resulting graph has the property that for every p ∈ P and q ∈ Q, there
is no generalized connection between p and q. Using this definition, we can prove
an interesting theorem.

Theorem 4.5. Suppose that Γ = (G, γ) is a resistor network, and that there does
not exist a generalized 2-connection between P = (i, j) ⊂ V and Q = (k, l) ⊂ V
with P ∩Q = ∅. Then ηik + ηjl = ηil + ηjk.

Proof. Equivalently to saying that there exists no generalized 2-connection between
P and Q, we can say that the minimal cutset R between P and Q in G is of
cardinality 1. Assume that R can be chosen such that R ∩ P = R ∩Q = ∅; if not,
the claim follows trivially.

We will now construct two sets of vertices V1, V2 ⊂ V . Let V1 contain all vertices
v, with the condition that there exists a path p, either from k to R or from l
to R, such that v is an element of this path. Let V2 = V \ V1. Consider the
Neumann problem on G1 = (V1, E1), where E1 ⊂ E is formed by removing all
elements of E that do not include any element of V1, with boundary current vector
ψ1 = [δn,k − δn,l]. Note that since the sum of the elements of ψ1 is zero, it is a valid
current vector. Requiring the normalization on boundary voltages employed in this
paper, there exists a unique voltage u1, defined on V1, such that Iu1 |∂V1

= ψ1.
Consider next the Neumann problem on G, with boundary current vector ψ =

[δn,k − δn,l]. That is, ψ is simply ψ1 on ∂V1 and identically zero on ∂V2. Requiring
the same normalization as before, this problem is well-posed. I claim that

u(v) =
{

u1(v), v ∈ V1

u1 (R) , v ∈ V2
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i j

k
l

Figure 3. Say that there is a missing 2-connection between (i, j)
and (k, l). We can then visualize our network in this manner.

solves this Neumann problem. This requires a bit of work. Say that this potential
function is imposed on G. Consider the following lemma:

Lemma 4.6. The current flowing into R from the graph V1 is zero.

Proof. If R is an interior node, then this follows easily from Kirchhoff’s law, since
u1 solves the Neumann problem on G1. If R is a boundary node, then this follows
from the requirement that Iu1 is identically zero on V1 \ {k, l}. �

It follows that no current flows into V2, so Kirchhoff’s law is be satisfied on the
interior of V2. Since u1 satisfies the Neumann problem on G1, Kirchhoff’s law is
also satisfied on the interior of V1. By definition, Iu assumes the correct boundary
values. It follows, provided that u is appropriately normalized, that u solves the
Neumann problem on G.

As previously mentioned, the Neumann problem on G is well-posed. Since u is
a valid solution of this problem, u is the unique solution of this problem. It follows
that for the imposed current vector ψ, ui = uj . In terms of the elements of the
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Neumann-to-Dirichlet map, ui = ηik − ηil, while uj = ηjk − ηjl. It follows that
etaik − ηil = ηjk − ηjl, which implies that ηik + ηjl = ηil + ηjk. �

This is a somewhat strange relation — it really doesn’t feel as straightforward
as the determinantal results for Λ felt. It turns out that there is a determinantal
generalization of this result. Bizarre!

Theorem 4.7. Suppose that Γ = (G, γ) is a resistor network, and that there
does not exist a generalized k-connection between P = (p1, . . . , pk) ⊂ V and Q =
(q1, . . . , qk) ⊂ V with P ∩Q = ∅. Let L = [`ij ] be a matrix of linear relations, where
`ij =

(
ηpiqj

− ηpiqk

)
−

(
ηpkqj

− ηpkqk

)
. Then detL = 0.

Proof. By the assumption that there exists no generalized k-connection between P
and Q, the matrix Λ (∂V \Q; ∂V \ P ) is singular. That is, there exists a nonzero
vector x such that [

ΛPS ΛPQ

ΛSS ΛSQ

] [
x1

x2

]
=

[
0
0

]
,

where [x1 x2]
T is the appropriate partitioning of x and S = ∂V − (P ∪Q). It

follows that [
ΛPP ΛPS ΛPQ

ΛPS
T ΛSS ΛSQ

] 0
x1

x2

 =
[

0
0

]
.

Finally, it follows that ΛPP ΛPS ΛPQ

ΛPS
T ΛSS ΛSQ

ΛPQ
T ΛSQ

T ΛQQ

 0
x1

x2

 =

 0
0
y

 ,
where y = ΛSQ

T x1 +ΛQQx2. Rewriting this in terms of the Neumann-to-Dirichlet
map, we have

(6)

 HPP HPS HPQ

HPS
T HSS HSQ

HPQ
T HSQ

T HQQ

 0
0
y

 =

 0
x1

x2

 + be,

where b is a real constant and e is a vector of ones of appropriate length. (Note that
this constant vector is necessary, since while H maps into the space of vectors with
element sum zero, the element sum of x = [x1 x2]

T is not necessarily zero.) By the
first line of (6), HPQy = be, where e is again a vector of ones of appropriate length.
Furthermore, not all of the elements of y are 0, for if y was composed entirely of
zeros, then x would also be composed entirely of zeros, contradicting the fact that
x is non-zero.

Since y is a current vector, its elements sum to zero. It follows that we can
express yn as −

∑n−1
i=1 yi; thus, it follows from the previous equation that

H̃PQỹ = be,

where H̃PQ is the k× (k− 1) matrix with ij-th element equal to ηpiqj
− ηpiqk

, and
y is the vector (y1 . . . yn−1)

T . By subtracting the k-th row from all other row in
this matrix equation, we are finally left with the equation

Lỹ = 0,
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p1

p2

p3

q1

q2

q3

(0)(0)

0

0

0(1)

(−1)

(1)

Figure 4. Say that there is a missing 2-connection between (i, j)
and (k, l). We can then visualize our network in this manner.

where L is the (k−1)×(k−1) matrix with ij-th entry
(
ηpiqj − ηpiqk

)
−

(
ηpkqj − ηpkqk

)
.

Recall that not all of the elements of y are zero. Further, it cannot be that the
only nonzero entry of y is the n-th entry, since the sum over the elements of y is
zero. It follows that ỹ is not composed entirely of zeros. That is, the kernel of L is
nontrivial. The claim follows. �

4.2. Some Useful Inequalities. Using current-pattern arguments similar to those
of the previous section, we can produce inequalities strikingly similar to the inequal-
ities described in [Morrow’s paper] for the Dirichlet-to-Neumann map. Consider the
following theorem.

Theorem 4.8. Suppose that Γ = (G, γ) is a resistor network, and that there exists
a generalized k-connection between P = (p1, . . . , pk) ⊂ V and Q = (q1, . . . , qk) ⊂ V
with P ∩Q = ∅. Then ηp1q1 − ηp1q2 − (ηp2q1 − ηp2q2) > 0.

Let’s impose the following boundary conditions: the current on ∂V − (P ∪Q)
is identically zero; the current at p1 is equal to 1; the current at p2 is −1; and the
voltage on P is identically zero. Recall a theorem from [Nate’s other paper]:

Theorem 4.9. Consider a network Γ = (G, γ) with boundary. Partition the bound-
ary ∂V of G into three disjoint subsets, NB, NC , and NN , where |NB | = |NN |.
Suppose that φB defines a voltage function on NB, φV defines a voltage function on
NV , and ψB defines a current function on NB. There exists a unique γ-harmonic
potential u, defined on V , such that u|NB

= φB, u|NV
= ψB, and I|NC

= ψC if and
only if the submatrix Λ (NB ∪NC ;NC ∪NN ) of the response matrix is nonsingular.

Since we are working on a circular planar network, and since there exists a
generalized k-connection between P and Q, the matrix Λ (NB ∪NC ;NC ∪NN ) =
Λ (∂V \Q; ∂V \ P ) is nonsingular. It follows that these boundary conditions induce
a well-posed problem. By Lemma [write such a lemma], there exists A > 1 such
that q1 = −A and q2 = A.

Normalize the potential on V such that the boundary voltages sum to zero.
This normalization preserves the equality up1 = up2 . In terms of the Neumann-to-
Dirichlet map, up1 = ηp1p1 − ηp1p2 + A (ηp1q2 − ηp1q1) and up2 = ηp2p1 − ηp2p2 +
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A (ηp2q2 − ηp2q1); equating these voltages, it follows that

(7) (ηp1p1 − ηp1p2) + (ηp2p2 − ηp1p2) = A ((ηp1q1 − ηp1q2)− (ηp2q1 − ηp2q2)) .

By Corollary 3.4, the left side of (7) is positive; since A is positive, the claim follows.


