
DETERMINANT OF A PRINCIPLE PROPER SUBMATRIX OF THE

KIRCHHOFF MATRIX

MATTHEW J. LEWANDOWSKI

Abstract. In this paper, we develop a new method for analyzing the principle submatrix
of the Kirchhoff matrix corresponding to the interior nodes of an electrical network. More
specifically, we show that the determinant is always positive, and we give a means to calculate
the determinant in terms of tree diagrams associated with the network.
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1. Introduction

We start with an electrical network Γ = (G, γ). G is a graph with a collection of vertices
V (also referred to as nodes).We consider the partition of V into two sets, ∂V which denotes
the set of boundary vertices, and intV which denotes the set of interior vertices. We require
that ∂V

⋂

intV = {∅}, thus V = ∂V
⋃

intV and |V | = |∂V |+ |intV |. We label the vertices
with numbers i ∈ [1, |V |] by first numbering the boundary nodes, and then numbering the
interior nodes. That is, for vi ∈ ∂V , we require i ∈ [1, |∂V |], and for vi ∈ intV , we require
that i ∈ [|∂V | + 1, |V |]. For notational convenience, the symbol i will often be used to
refer to vertex i, so it will make sense to write something like i ∈ ∂V . We also consider
a relation ∼ on V which defines when two vertices are adjacent in the graph G. If two
vertices are related by ∼ then we say i ∼ j, and that (i, j) is the edge that joins vertex
i to vertex j. We are not considering directed graphs, so we let (i, j) = (j, i). Also, we
do not allow an edge to be between a node and itself, thus i ≁ i. Let the set of edges
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E = {(i, j)|i ∼ j}. It will be helpful to label certain subsets of E. Let Ebb = {(i, j)|i ∼
j and i ∈ ∂V and j ∈ ∂V } be the set of boundary vertex to boundary vertex edges; let
Eii = {(i, j)|i ∼ j and i ∈ intV and j ∈ intV } be the set of interior vertex to interior vertex
edges; and let Eib = {(i, j)|i ∼ j and i ∈ ∂V and j ∈ intV } be the set of interior vertex
to boundary vertex edges. Clearly, the sets are pairwise disjoint, and E = Ebb

⋃

Eii

⋃

Eib.
We define γ : E → R+ which assigns to each edge a conductance which is greater than
zero. Since (i, j) = (j, i), we have γ(i, j) = γ(j, i) ≡ γi,j. We define the Kirchhoff matrix,
K = (ki,j) for Γ as follows:

(1) ki,j =















−γi,j if i ∼ j
∑

k:i∼k

γi,k if i = j

0 if i ≁ j and i 6= j

We will find it convenient to write K in block form, K =

(

A B

Bt C

)

, where the dimensions

of A are |∂V | × |∂V |, the dimensions of B are |∂V | × |intV |, and the dimensions of C are
|intV | × |intV |.

This paper will be concerned with analyzing the determinant of C. We know from ar-
guments using the positive semidefiniteness of K that det C > 0 [1]. Starting with Peter
Mannisto’s formulation of the determinant as a sum over loop partitions [2], we will show
that det C > 0 by considering only arguments related to paths and loop partitions. Note:
in figures, interior nodes will be represented with open circles, while boundary nodes will be
represented with filled circles.

2. A Review of Loop Partitions

This section is a review of Peter Mannisto’s discussion in Section 2 [2]. The determinant
of an n × n matrix M can be computed as

det M =
∑

σ∈Sn

sgn(σ)

n
∏

i=1

mi,σ(i).

First, we give a few definitions.

Definition 2.1. The associated graph, GM , of the n × n matrix M is a graph with n

vertices, where for each nonzero mi,j , we create a directed edge from vertex i to vertex j

with weight mi,j . Let VM be the vertices of GM and EM be the edges.

Figure 1 shows an example of a matrix and its associated graph. Note that mi,j 6= mj,i in
general.
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



a b c

d e f

g h i





(a) M

f

b

c
g

d

h

1

2

3

i

e
a

(b) GM

Figure 1. a matrix and its associated graph

Definition 2.2. A loop partition of GM is a set of directed edges such that every node
has exactly one edge leading into it and exactly one edge leading away from it.

(134)(25)
(a) permutation

1

3

4

6

5

2

(b) loop partition

Figure 2. a permutation and its corresponding loop partition

Figure 2 shows a permutation on six elements and its corresponding loop partition.
Notice that by the above definition for associated graph, our graph G is not the associated
graph of K. For one thing, G does not have directed edges. It also does not contain any
edges between a node and itself, which are allowed by the definition of associated graph.

In the associated graph, however, we allow self loops. A self loop is a single directed edge
that leaves node i and returns to node i. Since it is a single edge, the loop only contains
the node i. Since permutations can be decomposed uniquely into cycles, there is a natural
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bijection between permutations and loop partitions, namely sending the cycle c = (i1i2...ik)
to the loop with directed edges lc = (i1, i2)(i2, i3) · · · (ik−1, ik)(ik, i1). An element of Sn, which
is a product of cycles, would thus be sent to the loop partition of GM which is the union of
the loops associated with each cycle. Thus every permutation σ ∈ Sn corresponds to a loop
partition of a graph with n vertices, and we see that cycles in the permutation σ correspond
to loops in the loop partition, and distinct cycles correspond to distinct loops.

Not all edges are used in each loop partition. Let ω(L) be the product of all weights
corresponding to edges in a loop partition L, GM be the associated graph to the matrix M,
|L|c be the number of disjoint loops of L (including self loops), and L (GM) be the set of all
loop partitions on GM . Then Peter Mannisto showed that

(2) det M =
∑

L∈L (GM )

(−1)−n+|L|cω(L)

In words, we can calculate the determinant of M by summing over the contributions from
all loop partitions of GM . Each loop partition gives a contribution, with appropriate sign,
that is equal to the product of all weights of edges included in the loop partition. In Figure
3 below, we show a matrix M and give the contribution to det M of the loop partition in
Figure 2(b).

M =













∗ ∗ α ∗ ∗ ∗
∗ ∗ ∗ ∗ δ ∗
∗ ∗ ∗ β ∗ ∗
γ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ζ













(a) M (* denotes arbitrary value)

−αβδγζ

(b) contribution of loop partition in Figure 2(b)

Figure 3. a loop partition and its contributions to the determinant

3. The Determinant of C

For the submatrix C = (ci,j) of K, we have from equation 2

det C =
∑

L∈L (GC)

(−1)−n+|L|cω(L)

where n = |intV |. Some care must be taken when reexpressing this equation in terms of
our network Γ, since GC is a directed graph, and our network is not directed. By definition,
we have ω(L) =

∏

(i,j)∈L ci,j. As a notational convenience, we define γi,i ≡ ki,i =
∑

k:i∼k γi,k.

There is no edge (i, i) in our graph G because we excluded this possibility at the beginning,
4



but an edge (i, i) can exist in the loop partition L. Thus, γi,i does not correspond to an
actual conductance on Γ, but ci,i is a valid edge weight for the loop partition L. Then,
ω(L) = (−1)|L|E

∏

(i,j)∈L γi,j, where |L|E is the number of edges not associated with self
loops used in the loop partition L. Thus

det C =
∑

L∈L (GC)

(−1)−n+|L|c+|L|E
∏

(i,j)∈L

γi,j

Since each vertex has only one edge to it and one edge away from it, |L|E is also the number
of nodes included in cycles that are not self loops. Thus, n − |L|E is the number of nodes
included only in self loops, so |L|c− (n−|L|E) is the number of cycles that are not self loops.
We call this number ℓ(L). Therefore,

(3) det C =
∑

L∈L (GC)

(−1)ℓ(L)
∏

(i,j)∈L

γi,j.

4. Edge Diagrams and Tree Diagrams

If we expand the the determinant in (3), we obtain a sum of factors, each of which is a
product of conductance. Keep in mind that each γi,i =

∑

k:i∼k γi,k is a sum of conductances.
If k ∈ ∂V , then γi,k corresponds to the conductance of an edge that connects an interior
node to a boundary node. None of these edges are represented in the loop partitions since
L (GC) is a collection of edges associated with the matrix C which relates interior nodes of
G only.

Definition 4.1. For any graph G, define an edge diagram of G as a multiset that contains
u(e) copies of each edge e ∈ E where E is the edge set for the graph G, and u(e) ∈ Z is a
nonnegative integer. An edge diagram is specified completely by this function u : E → Z,
and is denoted Eu. If u(e) = 0 then we say that e 6∈ Eu. We use E(G) to denote the set of
edge diagrams associated with G.

It is called a diagram because it will be helpful to make a picture to depict the set. Figure
4 gives an example of this situation.

Definition 4.2. When the edge set E is part of an electrical network Γ, the value of an
edge diagram is given by value(Eu) ≡

∏

e∈E γ(e)u(e).

In this new language, det C is a sum, with appropriate signs, of values of edge diagrams.
The result of this paper will be to show that det C is actually a sum of values of a specific
subset of edge diagrams, which we refer to as tree diagrams.

Definition 4.3. A tree diagram is an edge diagram Eu ∈ E(G) that has the following
properties:
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(a) the graph W (b) an edge diagram

(c) another edge diagram (d) one more edge diagram

Figure 4. edge diagrams

(1) e ∈ Eu ⇒ u(e) = 1. Since there is at most one of each edge, this set is in bijective
correspondence with a subgraph of G. Thus it makes sense to language about graphs
when talking about this set.

(2) The connected components of Eu are “trees”. I use quotes here because this is not the
standard use of the term tree. These trees are not graphs, for they have no vertices.
However, they are in bijective correspondence with subgraphs of G, which do have
vertices.

(3) ∀ i ∈ intV ∃ e ∈ Eu such that e = (i, j) for some j 6= i (i.e. every interior vertex is
an endpoint for some edge in some component tree of Eu).

(4) For every component tree, there exists a unique q ∈ ∂V such that (q, p) ∈ Eu for
some p ∈ intV , and for any r ∈ ∂V , (r, p) ∈ Eu ⇒ r = q. Edge (p, q) is called a root.

(5) p ∈ ∂V and q ∈ ∂V ⇒ (p, q) 6∈ Eu.

Such an edge diagram is denoted Tu, and the set of all tree diagrams for a given graph G
is denoted T(G). Figure 4(d) is an example of a tree diagram for W given in Figure 7(a);
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below are two more examples for that W .

x

(a) x is a root (b)

Figure 5. example of two tree diagrams for W in Figure 7(a)

5. A Tree Diagram Approach to the Determinant of C

Given an electrical network Γ = (G, γ), G = (E, V,∼), the set T of tree diagrams of G,

and the associated Kirchhoff matrix K =

(

A B

Bt C

)

, we have to following theorem.

Theorem 5.1. The determinant of C is the sum of values of all tree diagrams of G. That

is

(4) det C =
∑

T∈T(G)

value(T)

Before giving the proof, it will be helpful to introduce the following lemma. In general, there
may be more than one interior to boundary edge at a given interior node i. This lemma will
show that instead of considering each of these edges separately, we may consider one inte-
rior to boundary edge at i whose conductance is the sum of the conductances of the actual
interior to boundary edges at i. Given an electrical network as described above, consider a
new network Γ′ = (G′, γ′), G′ = (E ′, V ′,∼′) where we group all interior to boundary edges
at interior node i into a single interior to boundary edge whose conductance is the sum of
the original conductances. If there were no interior to boundary edges at interior node i,
then we do not add a boundary edge.

More specifically, we let intV ′ correspond exactly to intV , and we let E ′
ii correspond

exactly to Eii; we will often give corresponding pieces (edges or vertices) the same name,
but specify where they are. Then, for every j ∈ intV , compute ϕj ≡ cj,j −

∑

k∈intV
k 6=j

γk,j (this
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is the sum of conductances connected to node j ∈ intV that are not associated with edges
in Eii). If ϕj 6= 0, then let there be a boundary vertex of V ′ labeled ∂j connected by an edge
(∂j , j) to j ∈ intV ′ such that γ′(∂j , j) = ϕj. If ϕj = 0, create no such vertex or edge. Thus
∂V ′ = {∂j |ϕj 6= 0}. Let E ′

ib = {(∂j , j)|ϕj 6= 0} and let E ′
bb = {∅}. Also, let γ′|E′

ii
= γ|Eii

and γ′|Eib
be defined as above. If we write out the Kirchhoff matrix for Γ′ in the usual block

decomposition K ′ =

(

A′ B′

B′t C ′

)

, we notice that C ′ = C since we have kept all of the interior

information from Γ in the new network Γ′. The matrices A′ and B′ can be defined using
the above information, but are of little significance here. Let T′(G′) denote the set of tree
diagrams of G′. Call Γ′ the boundary reduced version of Γ. Now we introduce the lemma.

Lemma 5.2.

det C =
∑

T∈T(G)

value(T) ⇐⇒ det C ′ =
∑

T∈T′(G′)

value(T)

In words, this says that if Theorem 5.1. holds for the electrical network Γ, then it holds for
the boundary reduced electrical network Γ′.

Proof of Lemma 5.2.

We have C = C ′ ⇒ det C = det C ′. Thus, it remains to show that
∑

T∈T
value(T) =

∑

T∈T′ value(T). First we define an equivalence relation on the set of
tree diagrams T. For any tree diagram T, let ǫ(T) ⊂ Eii be the set of interior vertex to
interior vertex edges in T. For each component tree of T, there is a root. Let the set of
interior vertices that are connected to a root be denoted r(T) ⊂ V . Define an equivalence
class by setting T1 ∼ T2 if ǫ(T1) = ǫ(T2) and r(T1) = r(T2). Then the equivalence class
can be denoted by Cǫ,r = {T ∈ T|T ∼ T1} where ǫ = ǫ(T1) and r = r(T1). Given T

′ ∈ T′,
it is the only tree diagram with the combination ǫ(T′) and r(T′) since there is at most one
boundary to interior edge at any interior vertex. It is natural to label a tree diagram of T′

by its set of interior to interior edges ǫ and its set of interior nodes r included in a root,
T
′
ǫ,r. There is a natural bijective correspondence between equivalence classes Cǫ,r ⊂ T and

elements T
′
ǫ,r ∈ T′. Figure 6. depicts the grouping of equivalence classes.

The problem has been rephrased to showing that
∑

(ǫ,r)

∑

T∈Cǫ,r
value(T) =

∑

(ǫ,r) value(T′
ǫ,r),

where the sums are over all valid (ǫ, r) that define tree diagrams. Since the outermost sums
are the same on each side, it will suffice to show that

∑

T∈Cǫ,r
value(T) = value(T′

ǫ,r), for an

arbitrary valid (ǫ, r). But value(T′
ǫ,r) =

(
∏

e∈ǫ γ′(e)
)(

∏

a∈r b′∂a,a

)

=
(
∏

e∈ǫ γ(e)
)(

∏

a∈r ϕa

)

.
Here, the first product is over interior to interior edges, and the second is over interior to

boundary edges. On the other hand,
∑

T∈Cǫ,r
value(T) =

∑

T∈Cǫ,r

[

∏

a∈r γ(a, σT(a))
∏

e∈ǫ(T) γ(e)
]

where σT(a) ∈ ∂V is the boundary node that is connected to interior node a in T. But
T1, T2 ∈ Cǫ,r ⇒ ǫ(T1) = ǫ(T2), so the last product is independent of T and can be pulled out of
the summation. However,

∑

T∈Cǫ,r

∏

a∈r γ(a, σT(a)) is just the expansion of
∏

a∈r ϕa as a sum.
8



(a) the graph G (b) three elements of T(G) in the same
equivalence class

(c) the graph G
′ (d) the corresponding element of T

′(G′)

Figure 6. the equivalence classes

Thus,
∑

T∈Cǫ,r
value(T) =

(
∏

e∈ǫ γ(e)
)(

∏

a∈r ϕa

)

. We conclude that
∑

T∈Cǫ,r
value(T) =

value(T′
ǫ,r), and finally that det C =

∑

T∈T
value(T) ⇐⇒ det C ′ =

∑

T∈T′ value(T).
�

With this lemma in hand, given an electrical network Γ, we form the corresponding bound-
ary reduced network Γ′ as described above, and prove Theorem 5.1. for the boundary reduced
network Γ′ (although in the following proof, the boundary reduced network is written with-
out the primes).

Proof of Theorem 5.1.

We will proceed by induction on the number of interior nodes, n. First, we prove the state-
ment for n = 1. Let there be one interior node, p and one boundary node, q. Let γ(p, q) = γ

be the conductance between nodes p and q. The Kirchhoff matrix is

K =

(

γ −γ

−γ γ

)

and so C = (γ). Thus, det C = γ. On the other hand, there is only one

tree diagram: T = {Tγ}, Tγ = {(p, q)}, and value(Tγ) = γ. Thus, det C = value(Tγ) =
∑

value(T).

Now consider the case that n = k +1, i.e. there are k +1 interior nodes. We wish to show
that assuming the theorem is true for all networks with k interior nodes implies that it is true
for networks with k+1 interior nodes. Let Γ = (G, γ) be the boundary reduced version of the
network that we are interested in. Let G = (E, V,∼), E = Eii

⋃

Ebb

⋃

Eib, V = ∂V
⋃

intV ,
and ∂V

⋂

intV = {∅} as usual (remember that in the boundary reduced version, Ebb = {∅}).
We have |intV | = k+1. In particular, the dimension of C is (k+1)×(k+1). For convenience,
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and to minimize confusion, we relabel the interior nodes from one to |intV |. Thus, γi,j for
i < |intV | and j < |intV | refers to the conductance between interior nodes i and j. Using
the earlier notation, ϕj = cj,j −

∑

m∈intV
m6=j

γm,j, and letting
∑

m∈intV
m6=j

γm,j ≡ σj for notational

convenience, C has the following form:

C =













ϕ1 + σ1 −γ1,2 −γ1,3 · · · −γ1,k+1

−γ1,2 ϕ2 + σ2 −γ2,3 · · · −γ2,k+1

−γ1,3 −γ2,3 ϕ3 + σ3 · · · −γ3,k+1
...

...
...

. . .
...

−γ1,k+1 −γ2,k+1 −γ3,k+1 · · · ϕk+1 + σk+1













.

In order to calculate the determinant of C, we use the linearity of the determinant function
with respect to the columns of the matrix. Thus, we can say (using | | to denote the
determinant),

|C| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1 + σ1 −γ1,2 −γ1,3 · · · −γ1,k+1

−γ1,2 ϕ2 + σ2 −γ2,3 · · · −γ2,k+1

−γ1,3 −γ2,3 ϕ3 + σ3 · · · −γ3,k+1
...

...
...

. . .
...

−γ1,k+1 −γ2,k+1 −γ3,k+1 · · · ϕk+1 + σk+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

ϕ1 −γ1,2 · · · −γ1,k+1

0 ϕ2 + σ2 · · · −γ2,k+1
...

...
. . .

...
0 −γ2,k+1 · · · ϕk+1 + σk+1

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

σ1 −γ1,2 · · · −γ1,k+1

−γ1,2 ϕ2 + σ2 · · · −γ2,k+1
...

...
. . .

...
−γ1,k+1 −γ2,k+1 · · · ϕk+1 + σk+1

∣

∣

∣

∣

∣

∣

∣

∣

= ϕ1

∣

∣

∣

∣

∣

∣

∣

∣

ϕ2 + σ2 −γ2,3 · · · −γ2,k+1

−γ2,3 ϕ3 + σ3 · · · −γ3,k+1
...

...
. . .

...
−γ2,k+1 −γ3,k+1 · · · ϕk+1 + σk+1

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

σ1 −γ1,2 −γ1,3 · · · −γ1,k+1

−γ1,2 ϕ2 + σ2 −γ2,3 · · · −γ2,k+1

−γ1,3 −γ2,3 ϕ3 + σ3 · · · −γ3,k+1
...

...
...

. . .
...

−γ1,k+1 −γ2,k+1 −γ3,k+1 · · · ϕk+1 + σk+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Next, we expand the second term in a similar fashion, but this time we split up the second
column. We will continue this process until we have expanded each column. After expanding
the k + 1 columns, there is a term that is the determinant of a matrix whose row sums are
zero; thus this determinant is zero, and we are left with all terms that look like the first term
above, which is a constant multiplied by the determinant of a k × k matrix. We will use the
symbol C(i) to denote the general term like the matrix whose determinant is multiplied by
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ϕ1 above,

(5) C(i) =

1 2 · · · i − 1 i + 1 · · · k + 1






















σ1 −γ1,2 · · · −γ1,i−1 −γ1,i+1 · · · −γ1,k+1

−γ1,2 σ2 · · · −γ2,i−1 −γ2,i+1 · · · −γ2,k+1
...

...
. . .

...
...

...
−γ1,i−1 −γ2,i−1 · · · σi−1 −γi−1,i+1 · · · −γi−1,k+1

−γ1,i+1 −γ2,i+1 · · · γi−1,i+1 ϕi+1 + σi+1 · · · −γi+1,k+1
...

...
...

...
. . .

...
−γ1,k+1 −γ2,k+1 · · · −γi−1,k+1 −γi+1,k+1 · · · ϕk+1 + σk+1























1
2
...

i − 1
i + 1

...
k + 1

In words, to obtain C(i), we start with the matrix C. We then delete the ith row and
column. Then, for all j < i we subtract ϕj from the diagonal. Notice that C(1) agrees with
the determinant term above. This gives

(6) det C =

k+1
∑

i=1

ϕi det C(i)

The labels on the side of equation (5) indicate how we will index the matrix C(i). We
are NOT labeling the rows and columns continuously from one to k, as would normally be
done with a k × k matrix. Instead, we skip i. Thus, (C(i))i,q and (C(i))p,i are NOT entries
of the matrix C(i) for any p or q. (Notice that, conveniently, the rows and columns of C(i)
are indexed to match the indices of the conductances which are the entries of C(i).) Thus,

(7) (C(i))p,q =











−γp,q if p 6= q

σp if p = q and p < i

ϕp + σp if p = q and p > i

Each C(i) allows a natural extension to an electrical network Γi = (Gi, γi). Let Vi be the
vertex set of Gi and let Ei be the edge set of Gi. C(i) is k×k. Thus, it represents a network
with k interior nodes. This network can be gotten in the following way from C(i). For every
j < i, delete vertex ∂j ∈ ∂V and delete edge (∂j , j) ∈ E; let node j remain an interior node
of Gi. Also, delete vertex ∂i ∈ ∂V , and delete edge (∂i, i) ∈ E, but turn node i ∈ intV into
a boundary node i ∈ ∂Vi; this is why Gi has one less interior node than G. We can consider
Gi to be a subgraph of G where we have changed one interior node of G into a boundary
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node. More formally, but equivalently, we have

Vi = V \ {∂j |j ≤ i}

∂Vi = ∂V \ {∂j|j ≤ i} ∪ {i}

intVi = intV \ {i}

Ei = E \ {(∂j , j)|j ≤ i}

Note that edges (k, i) ∈ E where k ∈ intV were interior to interior edges in G, but now are
interior to boundary edges in Gi. We use the conductances of Γ to define the conductances
of Γi,

(8) γi(p, q) = γ(p, q) for p ∈ Vi and q ∈ Vi

With conductances defined by equation (8), we now have a network Γi = (Gi, γi). It

has an associated Kirchhoff matrix Ki =

(

Ai Bi

Bt
i Ci

)

. However, with the above definitions,

we can see that C(i) = Ci. To show this notice that, from equation (8) when p 6= q,
(Ci)p,q = −γi(p, q) = −γp,q. Additionally, (Ci)p,p =

∑

q∼p γi(p, q) =
∑

q∼p γ(p, q). Since the
only changes made when going from G to Gi was at nodes q ≤ i as described above, we have

∑

q∼p γ(p, q) =

{

σp if p < i

ϕp + σp if p > i
. Finally, this gives,

(9) (Ci)p,q =











−γp,q if p 6= q

σp if p = q and p < i

ϕp + σp if p = q and p > i

which, by inspection, tells us that C(i) = Ci. This indeed allows us to assume that, using
the induction hypothesis,

(10) det C(i) =
∑

I∈T(Gi)

value(I)

where T(Gi) is the set of tree diagrams for the graph Gi.
The diagrams help to see what is going on.

12



C =









ϕ1 + c + d 0 −d −c

0 ϕ2 + a + e −a −e

−d −a ϕ3 + a + b + d −b

−c −e −b ϕ4 + b + c + e









C2 =





c + d −d −c

−d ϕ3 + a + b + d −b

−c −b ϕ4 + b + c + e





B2 =





0 0 0
0 −ϕ3 − a 0
0 0 −ϕ4 − e





ϕ1 ϕ2

a

ϕ3

b
ϕ4

c

d e

(a) boundary reduced network derived from C

a

ϕ3

b
ϕ4

c

d e

(b) Γ2, the natural extension of C2

(c) a tree diagram T ∈ T(G) (d) corresponding tree diagram I ∈ T(G′)

Figure 7. example: notice value(T) = ϕ2 · value(I)
13



Using equation (6) and equation (10), we have that

(11) det C =
k+1
∑

i=1

ϕi

∑

I∈T(Gi)

value(I)

We now wish to show that 1) for every T ∈ T(G) we have value(T) = ϕi · value(I) for
some I ∈ T(Gi), and 2) for every I ∈ T(Gi) we have ϕi · value(I) = value(T) for some
T ∈ T(G). An example of this correspondence is given in Figure 7.

For 1), consider some T ∈ T(G). Let i = mink{k|(∂k, k) ∈ T}. Let tj ⊂ T be a component
tree of T. Then T =

⋃

J tj , where j ∈ J for the appropriate indexing set J . By assumption,
there is one component tree ti such that (∂i, i) ∈ ti. Every component tree tk for k ∈ J \ {i}
(which is just a set of edges) can also be considered as a component tree t∗k in Gi, and
value(

⋃

k∈J\{i} tk) = value(
⋃

k∈J\{i} t∗k) since the edges are exactly the same in both graphs.

We know ti = {(∂i, i)}
⋃

k∈K ek for some set of edges {ek} and indexing set K. Consider
t∗k =

⋃

k∈K ej as a subset of Ei. t∗i is a tree in Gi because ti was a tree in G, and because
there is only one boundary node in t∗i (namely i). Let I =

⋃

J t∗j . Then I is a tree diagram in
Gi because each connected component is a tree, it contains every interior node (because T

did), because every component tree contains one boundary node, any edge is only included
once, and there are no boundary to boundary edges. T has one more edge than I, namely
(∂i, i); γ(∂i, i) = ϕi. It follows from above that value(T) = ϕi · value(I) as desired.

For 2), consider some I ∈ T(Gi). Let t∗j ⊂ I be a component tree of I. Then I =
⋃

J t∗j ,
where j ∈ J for the appropriate indexing set J . Assume (i, p) 6∈ I for any p. Then each t∗j is
also a set of edges in G, and is also a tree in G; call the set of edges tj in G. {(∂i, i)}

⋃

J tj = T

ise trivially a tree diagram of G. Since T has one more edge than I, and because this edge has
conductance ϕi, it follows that value(T) = ϕi · value(I). However, if there exists (i, p) ∈ I,
then it occurs in only one component tree of Gi; call it t∗i . As edges in G, the set t∗i does not
contain a boundary node, since i is not a boundary node in G. However, it is still a tree.
Thus, if we let ti be the set of edges t∗i , then (∂i, i)

⋃

ti is a tree that satisfies Definition 4.3
(4) and (5). Since all other t∗j are trees in G as well, we can consider them trees tj ⊂ E. Let
T = {(∂i, i)}

⋃

J tj. T satisfies Definition 4.3 (1)-(5), and thus is a tree diagram in G. Since
γ(∂i, i) = ϕi, it follows that value(T) = ϕi · value(I) as desired.

The induction is now complete.
�

6. The Nature of Determinant of C

With Theorem 5.1 in hand, we have the following theorem about detC. We already know
from arguments about the positive semidefiniteness of K that det C > 0. However, Theorem
5.1 allows us to prove this fact in a different way.

Theorem 6.1.

Let Γ = (G, γ) be an electrical network, where G is a finite graph with edge set E and vertex
14



set V , such that every interior vertex has a path to the boundary, and γ is a non-negative

function on E. Let K =

(

A B

Bt C

)

be the associated Kirchhoff matrix in block form, then

det C > 0.
Proof of Theorem 6.1.

Equation (4) shows that if γ : E → R+, then each value is a positive term. Thus, We
immediately see that det C ≥ 0. It remains to show that there is at least one tree diagram
associated with G. Because of Lemma 5.2, we can assume that Γ is in boundary reduced
form. Thus, every boundary node ∂i ∈ ∂V is connected by an edge (∂i, i) to vertex i ∈ intV .
Let X = {(∂i, i)|∂i ∈ ∂V }. Choose an interior node a and connect it to the boundary by a
path α; use A to denote the set of edges of α. Next, choose another interior node not included
in an edge of X or A and connect it to the boundary with a path β. Find the smallest set
of continuous edges of β starting at b such that the last edge connects to a vertex that is
included in an edge of either X or A; call this set of edges B. Then choose an interior vertex
not included in an edge of any of A, B, or X and repeat the process. Collect all of these
edges in a set called T. Then T is a spanning tree for G (includes all interior nodes and is a
union of component trees), each component tree includes exactly one boundary node, has no
boundary to boundary edges, and contains no double edges. Therefore T is a tree diagram
of G. �

7. Spanning Trees

We begin this section with a couple definitions.

Definition 7.1. A graphical tree is a graph in which, given any two vertices, they are
connected by exactly one path. This is the typical definition of “tree”.

Definition 7.2. A spanning tree of a graph G is a subgraph of G that is a single connected
component, is a graphical tree, and contains all the vertices of G.

Kirchhoff’s Matrix Tree theorem gives a way to calculate the number of spanning trees of
a connected graph. This result comes as a corollary of Theorem 5.1.

Corollary 7.3 (Kirchhoff’s Matrix Tree Theorem). Given a graph G with vertex set V and

edge set E, define an electrical network Γ on G by assigning a conductance of 1 to every

edge in G. Promote one vertex in V to be a boundary vertex. Create the associated Kirchhoff

matrix K =

(

A B

Bt C

)

in the usual block form. Then the number of spanning trees of G is

equal to det C.

Proof of Corollary 7.3. After promoting a vertex of V to a boundary node, we can divide V

into two sets: ∂V and intV such that V = ∂V
⋃

intV and ∂V
⋂

intV = {∅}. Call the new
graph G′, which is a graph with boundary. First of all, since there is a conductance of 1 on
every edge, and since det C has one term from each tree diagram of G′, det C is equal to the
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number of tree diagrams of G′. Every tree diagram of G′ contains every vertex of V and has
no cycles. Thus, every tree diagram of G′ is a spanning tree of G. The set of edges of every
spanning tree of G clearly satisfies conditions (1)-(5) of Definition 4.3 for G′, and thus is a
tree diagram on G′. Thus, spanning trees of G are in one to one correspondence with tree
diagrams of G′, so the number of tree diagrams of G′ is equal to the number of spanning
trees of G. Since det C is equal to the number of tree diagrams of G′, it is also equal to the
number of spanning trees of G. �

Using a similar technique, we can compute the number of spanning trees of a graph that
contains a given edge, a given two edges, or a given three edges. (This should be generalizable,
but I didn’t have time to finish it.) First, we will generalize the notation.

• For the remainder of this section let Γ, G, G′, K, A, B, C, V , and E be defined as
in Corollary 7.3 and its proof.

• For the electrical network which is the same as Γ except has a conductance of 2 at
edges F = {e1, e2, ..., ek}, let C(F ) be the block matrix of the associated Kirchhoff
matrix corresponding to the interior to interior connections. Call the new network
ΓF .

• Let valueF denote the value function associated with the electrical network ΓF , and
let value denote the value function associated with the electrical network Γ.

• Let N(F ) denote the number of spanning trees of G containing the edges in the subset
F ⊂ E.

• Let T(G′) be the set of tree diagrams of G′.

Proposition 7.4. For a given edge e ∈ E, let F = {e}. Then N(F ) = det C(F ) − det C.

Proof of Proposition 7.4.

det C(e) − det C =
∑

T∈T(G′)

(

valueF (T) − value(T)
)

. valueF (T) =

{

2 if e ∈ T

1 if e 6∈ T
and

value(T) = 1. Then valueF (T) − value(T) is 0 if e 6∈ T and is 1 if e ∈ T. Thus det C(e) −
det C =

∑

T:e∈T
1 = N(F ). �

Proposition 7.5. For two distinct edges e1 ∈ E and e2 ∈ E, let F = {e1, e2}, F1 = {e1},
and F2 = {e2}. Then N(F ) = det C(F ) − det C(F1) − det C(F2) + det C.

Proof of Proposition 7.5.

Let T0 denote a tree diagram of G′ such that e1 6∈ T0, and e2 6∈ T0. Let T1 denote a tree
diagram of G′ such that only one of the edges e1, e2, is contained in T1. Let T2 denote a tree
diagram of G′ such that both of the edges e1 and e2 are contained in T1. We have det C(F )−

16



det C(F1)−det C(F2)−det C =
∑

T∈T(G′)

(

valueF (T)−valueF1
(T)−valueF2

(T)+value(T)
)

Let v(T) ≡ valueF (T) − valueF1
(T) − valueF2

(T) + value(T). We know that

valueF (Ti) =











1 if i = 0

2 if i = 1

4 if i = 2

valueF1
(Ti) + valueF2

(Ti) =











2 if i = 0

3 if i = 1

4 if i = 2

value(Ti) = 1 for i = 0, 1, 2

It then follows that v(T0) = 0, v(T1) = 0, and v(T2) = 1. Then
∑

T∈T(G′) v(T) =
∑

T0
v(T0) +

∑

T1
v(T1) +

∑

T2
v(T2) where

∑

Ti
denotes summing over all tree diagrams

that contain i of the given edges. The first two sums are zero and the third adds a one
for every tree diagram containing e1 and e2. Thus,

∑

T2
v(T2) = N(F ). It follows that

N(F ) = det C(F ) − det C(F1) − det C(F2) + det C. �

Proposition 7.6. For three distinct edges e1 ∈ E, e2 ∈ E, and e3 ∈ E, let F = {e1, e2, e3},
Fi = {ei}, Fi,j = {ei, ej} for i 6= j. Then N(F ) = det C(F1) + det C(F2) + det C(F3) −
(

det C(F1,2) + det C(F1,3) + det C(F2,3)
)

+ det C(F ) − det C.

Proof of Proposition 7.6.

The proof is similar to the preceding one. Let Ti denote a tree diagram of G′ that contains
i of the edges in F . We have

det C(F1) + det C(F2) + det C(F3) + det C(F ) − det C

−
(

det C(F1,2) + det C(F1,3) + det C(F2,3)
)

=
∑

T∈T(G′)

(

valueF1
(T) + valueF2

(T) + valueF3
(T) − valueF1,2

(T) −

valueF1,3
(T) − valueF2,3

(T) + valueF (T) − value(T)
)

.

Let

v(T) ≡ valueF1
(T) + valueF2

(T) + valueF3
(T) − valueF1,2

(T)

−valueF1,3
(T) − valueF2,3

(T) + valueF (T) − value(T).

We have

valueF1
(Ti) + valueF2

(Ti) + valueF3
(Ti) = 3 + i for i = 0, 1, 2, 3
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valueF1,2
(Ti) + valueF1,3

(Ti) + valueF2,3
(Ti) =



















3 if i = 0

5 if i = 1

8 if i = 2

12 if i = 3

valueF (Ti) = 2i for i = 0, 1, 2, 3

value(Ti) = 1 for i = 0, 1, 2, 3

Then it follows that v(T0) = 0, v(T1) = 0, v(T2) = 0, and v(T3) = 1. Then
∑

T∈T(G′) v(T) =
∑

T0
v(T0) +

∑

T1
v(T1) +

∑

T2
v(T2) +

∑

T3
v(T3). The first three sums are zero and the

third adds a one for every tree diagram containing e1, e2, and e3. Thus
∑

T3
v(T3) = N(F).

It follows that N(F ) = det C(F1) + det C(F2) + det C(F3) −
(

det C(F1,2) + det C(F1,3) +

det C(F2,3)
)

+ det C(F ) − det C. �

As stated before, this formula should generalize. I think that it will look something like the
following. Let F = {e1, ..., en}, Fi = {ei}, Fi,j = {ei, ej} for 1 ≤ i < j ≤ n, Fi,j,k = {ei, ej, ek}
for 1 ≤ i < j < k ≤ n, and Fi,j,...,m = {ei, ej, ..., em} for 1 ≤ i < j < ... < m ≤ n. I postulate
that

N(F ) = ± det C(F ) ± det C

±
∑

i

det C(Fi) ±
∑

i<j

det C(Fi,j) ±
∑

i<j<k

det C(Fi,j,k) ± · · · ±
∑

i<j<...<m

det C(Fi,j,..,m)

for some appropriate choice of signs. This may also be multiplied by an overall constant.
Then, if we write the above formula in terms of values of tree diagrams, we will have

N(F ) =
∑

T∈T(G′)

v(T)

where v(T) is defined similar to how it is in the proof of Proposition 7.6. This will then
break up according to how many of the edges are contained in the tree diagram, ie,

N(F ) =

n
∑

i=0

∑

Ti

v(Ti)

The hope is that v(Ti) =

{

0 if 1 ≤ i < n

1 if i = n
.
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