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ABSTRACT. Let W be a Coxeter group. We say that w ∈ W is cyclically fully commutative

(CFC) if every cyclic shift of every reduced expression for w is fully commutative (FC). This

definition is motivated by the conjugacy problem, because a cyclic shift of w ∈ W is simply

conjugation by the initial generator. In this paper, we classify the CFC-finite groups – those that

only contain finitely many CFC elements, and show that they are precisely the FC-finite groups.

In these groups, we characterize the CFC elements, enumerate them via a recurrence relation, and

determine the conjugacy classes that contain them. In Type A, we show that the CFC elements

are precisely the permutations that avoid the patterns 321 and 3412, and we ask how this might

generalize to other Coxeter groups.

1. COXETER GROUPS

A Coxeter group W is a generalized reflection group, generated by a set S = {s1, . . . , sn} of

involutions. It is defined by its presentation

〈s1, . . . , sn | (sisj)
mij = 1〉 ,

where mij := m(si, sj) ∈ N ∪ {∞} are called bond strengths, and mij = 1 if and only if

i = j. This information can be encoded by a Coxeter graph Γ, which has vertex set S and an

edge for each pair of non-commutating generators (i.e., m(s, t) ≥ 3). Additionally, each edge

is labeled with the corresponding bond strength, though if m(s, t) = 3, it is customary to drop

the label. If m(s, t) = 2, then we have the commutation relation st = ts. If m(s, t) = 3, then

we have sts = tst, and with m(s, t) = 4 we have stst = tsts, and so on. These are called

braid relations. For any subset J ⊆ S, the subgroup WJ = 〈si | si ∈ J〉 is called the standard

parabolic subgroup generated by J .

If S∗ is the free monoid over S, then words in S∗ correspond to elements of W . A word

w = sx1
sx2

· · · sxm
of minimal length is a reduced expression for w of length `(w) = m, and we

say that a word w = w1w2 · · ·wm, where wi ∈ W , is reduced if `(w) = `(w1) + · · · + `(wm).
Put an equivalence relation ≈ on S∗ where two words are equivalent if they differ by a sequence

of commutation moves (i.e., st 7−→ ts provided that m(s, t) = 2). The resulting equivalence

classes are called commutation classes. An element w ∈ W is said to be fully commutative

if all of its reduced expressions lie in the same commutation class. We denote the set of fully
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commutative elements by FC(W ). Matsumoto’s theorem says any two reduced expressions for

w differ by a sequence of commutation relations and braid relations.

The classification of the finite Coxeter groups is well-known, and consists of several infinite

families and a few exceptional cases. Perhaps the most common infinite family is An for n ≥
1, whose Coxeter graph is a line-graph with bond strengths 3. This group is isomorphic to

the symmetric group SYMn+1, through the map si 7−→ (i, i + 1). It is well-known that the

fully commutative elements of An are precisely the 321-avoiding permutations [?]. These are

the permutations π such that there is no i < j < k such that π(i) > π(j) > π(k), where

π(1)π(2) · · ·π(n + 1) is the 1-line notation of π. These are counted by the ubiquitous Catalan

numbers [?].

A Coxeter group is FC-finite if |FC(W )| < ∞. The FC-finite groups were classified by

Stembridge [?], and they consist of seven infinite families. In a follow-up paper [?], Stembridge

characterized and enumerated the FC elements in these groups. In this paper, we will do the

same for the CFC-finite groups, which coincide with the FC-finite groups. Perhaps surprisingly,

enumerating the CFC elements is much easier than the FC elements, because they all satisfy a

common characterization and recurrence relation.

2. CYCLICALLY FULLY COMMUTATIVE ELEMENTS

In this section, we will introduce two equivalence relations on the elements of a Coxeter groups

that are both relevant to conjugacy. One of these relations will lead us directly to the definition

of cyclically fully commutative elements, and we will utilize the other later in this paper.

Observe that for any w = sx1
sx2

· · · sxm
∈ W , sx1

wsx1
is a cyclic shift of w. Clearly,

`(sx1
wsx1

) ≤ `(w). If every cyclic shift of every reduced expression for w has length |w|,
then we say that w is cyclically reduced.

Definition 2.1. An element w ∈ W is cyclically fully commutative (or CFC) if for any reduced

expression sx1
sx2

· · · sxm
of w, every cyclic shift is (i) fully commutative, and (ii) cyclically

reduced. If only (i) holds, then we say that w is weakly CFC.

We denote the set of CFC elements of W by CFC(W ), and the set of weakly CFC elements

by cfc(W ).

Example 2.2. Let W = A4, which is isomorphic to the symmetric group SYM5. Then s3s2s1s4s3s2

is FC, but it is not CFC (or weakly CFC) because there is a braid relation that wraps around the

end of the word. In contrast, the word s3s2s1s4s3 is weakly CFC but not CFC.

We will now define the equivalence relations ∼ and ∼κ on W . The former first appeared

in a paper on characters of Hecke algebras [?], and the latter has been used for the conjugacy

problem [?], and has also been called rotation equivalence [?].

Definition 2.3. Let W be a Coxeter group.

(i) Write w ∼ w′ if there is a sequence w = w0, . . . , wr = w′ such that `(wi) = `(wi+1),
wi+1 = xiwix

−1

i , and `(xiwi) = `(xi) + `(wi) or `(wix
−1

i ) = `(wi) + `(x−1

i ) for all xi

and some xi ∈ W .
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(ii) If w ∼ w′, and furthermore, |xi| = 1 for each i, then we write w ∼κ w′.

An alternative way to define κ-equvalence is through the conjugacy graph, which has vertex

set W , and a directed edge (w, w′) is present if `(w) ≥ `(w′), and sx1
wsx1

= w′, for some

reduced expression sx1
· · · sxm

of w. The strongly connected components are the κ-equivalence

classes. Furthermore, define a partial ordering �κ, where w′ �κ w if there is a directed path

from w to w′ in the conjugacy graph. The rank function ρ(w) := 1

2
`(w) turns (W/∼κ,�κ) into

a graded poset.

The following example shows how two elements can be equivalent without being κ-equivalent.

Example 2.4. Let W = An, and put w0 = s1 and x0 = s1s2 Then, s2 = x0w0x
−1

0 , and so

s1 ∼ s2 despite s1 �κ s2. By continuing this argument, we see that any two simple generators in

An are conjugate.

Remark 2.5. The CFC elements are precisely the FC elements that are minimal in (W/∼κ,�κ),
and CFC(W ) ⊆ cfc(W ) ⊆ FC(W ).

The following result relates the two types of equivalence.

Theorem 2.6. Let W be a finite Weyl group, C be a conjugacy class of W , and Cmin the set of

elements of C of minimal length. Then

(a) For each w ∈ C , there is a w′ ∈ Cmin with w′ �κ w.

(b) If w, w′ ∈ Cmin, then w ∼ w′.

3. CLASSIFICATION OF CFC-FINITE GROUPS

In [?], John Stembridge gave a complete classification of the Coxeter groups that contain

finitely many FC elements, called the FC-finite groups. In a similar vein, the CFC-finite groups

can be defined as the Coxeter groups that contain only finitely many CFC elements. In this

section, we will show that a group is CFC-finite if and only if it is FC-finite. Since CFC(W ) ⊆
FC(W ), the CFC-finite groups contain the FC-finite groups, thus it suffices to show that every

FC-finite group is also CFC-finite. The following simple lemma is needed.

Lemma 3.1. If wk ∈ FC(W ) for all k ∈ N, then wk ∈ CFC(W ) for all k ∈ N.

Proof. We prove the contrapositive. If wk 6∈ CFC(W ), then there is some subword stst · · · ,

possibly wrapping around the end of the word. However, this is contained as a subword of wk+1,

and thus wk+1 6∈ CFC(W ). �

Theorem 3.2. The irreducible CFC-finite Coxeter groups are An (n ≥ 1), Bn (n ≥ 2), Dn

(n ≥ 4), En (n ≥ 6), Fn (n ≥ 4), Hn (n ≥ 3), and I2(m) (5 ≤ m < ∞).

Proof. Stembridge classified the FC-finite groups by classifying their Coxeter diagrams. In par-

ticular, he gave a list of ten forbidden properties that an FC-finite group cannot have. The list

of FC-finite groups are precisely those that avoid all ten of these obstructions. The first five

conditions are easy to state, and are listed below.

(1) Γ cannot contain a cycle.

(2) Γ cannot contain an edge of weight m(s, t) = ∞.
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(3) Γ cannot contain more than one edge of weight ≥ 4
(4) Γ cannot have a vertex of degree ≥ 4, or more than one vertex of degree 3.

(5) Γ cannot have both a vertex of degree 3 and an edge of weight ≥ 4.

For each of the ten conditions, including the above five, Stembridge shows that if it fails, one can

produce a word w ∈ W such that wk ∈ FC(W ) for all k ∈ N. This, together with Lemma 3.1,

implies that if W is CFC-finite, then it is FC-finite, and the result follows immediately. �

[insert picture]

4. STRUCTURE OF CFC ELEMENTS

Each of the infinite families of the CFC-finite Coxeter graphs consist of a subgraph Γ0 with a

distingished vertex s1 called the joint, attached to a line-graph {s2, . . . , sk}, called the branch of

Γ. We call Γ0 the center of Γ.

[insert picture of Γ0 for the 6 types]

The following result shows that CFC elements have a very restricted form.

Lemma 4.1. If W is CFC-finite, and w ∈ CFC(W ), then each branch generator can only occur

once in a reduced expression of w.

Proof. Assume by contradiction that the statement is false, and that w ∈ CFC(W ) is a coun-

terexample. Let si be the branch generator that occurs most frequently in a reduced expression

of w, say c times. If we view w as a cyclic word, between consecutive occurence of si must be at

least two instances of generators from the set {si−1, si+1}. This eliminates the possiblity that si

is the endpoint generator, sk. Moreover, since neither si−1 nor si+1 occur more frequently than

si, they both must occur exactly c times. Therefore, every branch generator occurs with the same

frequency in w. However, between any two instances of the endpoint generator sk in w must be

at least two instances of sk−1, a contradition. �

Lemma 4.1 allows us to enumerate the CFC elements of the CFC-finite groups. Let Wn denote

a rank-n CFC-finite group of a fixed type, where n ≥ 3, and let Wn−1 be the parabolic subgroup

generated by all generators except the final branch generator of Wn.

Theorem 4.2. Let W be a CFC finite group. Suppose that w ∈ CFC(W ), and some generator

s ∈ S appears in w more than once. Then

(i) W = Hn or W = I2(m).
(ii) There is a (unique) generator t such that m(s, t) = 2k + 1 > 3.

(iii) The occurences s and t alternate, occurring with the same frequency, but more than k
times each.

Proof. To do. �

Corollary 4.3. If an = |CFC(Wn)|, then an satisfies the recurrence

(4.1) an = 3an−1 − an−1 .
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1 2 3 4 5 6 7 8 9 10

|FC | 2 5 14 42 132 429 1430 4862 16796 58786

|CFC | 2 5 13 34 89 233 610 1597 4181 10946

TABLE 1. The number of FC and CFC elements in Type A.

Proof. Every CFC element in Wn is also CFC in Wn−1, and there are an−1 of these. Let s = sk,

the final branch generator of Wn, and consider the CFC elements that contain s. Since each

generator appears at most once, every element can be written as sw or ws, thus we need to

compute the cardinality of

{sw | w ∈ CFC(Wn)} ∪ {ws | w ∈ CFC(Wn)} .

Each of these two sets has size an−1, and sw = ws iff sk−1 6∈ w, thus the intersection has size

|CFC(Wn−1)| = an−2. By inclusion-exclusion, the union has size 2an−1 − an−2. In summary,

there are 2an−1 − an−2 CFC elements that contain s, and an−1 CFC elements that don’t, thus

an = 3an−1 − an−2. �

5. ENUMERATION OF THE CFC ELEMENTS

By Proposition 4.3, to enumerate the CFC elements in Wn for each type, we just need to count

them in the smallest groups of that family. In this section, we will denote the number of CFC

elements in a type by the corresponding lowercase letter, e.g., bn = |CFC(Bn)|.

5.1. Type A. Both elements of A1 = {1, s} have order 2, and there are five CFC elements in

A2 = I2(3) = {1, s, t, st, ts, sts}, thus a1 = 2 and a2 = 5. The odd-index Fibonacci numbers

satisfy the recurrence in (4.1) as well as the initial seeds (see [?]). Therefore, an = F2n−1.

By induction, the CFC elements in An are precisely those that have no repeat generators. In

the language of [?], these are the Boolean permutations, and are characterized by avoiding the

patterns 321 and 3412. (A permutation π avoids 3412 if there is no set {i, j, k, l} with i < j <
k < ` and π(k) < π(`) < π(i) < π(j)). The following result is immediate.

Corollary 5.1. An element w ∈ An is CFC if and only if w is 321-avoiding and 3412-avoiding.

It is worth noting that F2n−1 also counts the 1324-avoiding circular permutations on [n + 1]
(see [?]). However, these are set-wise not the same as the CFC elements in An = SYMn+1. As

a simple example, the permutation (2, 3) ∈ A3 does not avoid 1324 but is clearly CFC. Also,

the element s2s3s1s2s4s3 ∈ A4 (or (1, 3, 5, 2, 4) in cycle notation) has no (circular) occurence of

1324, but is not CFC.

5.2. Type B. Both elements of B1 have order 2. In B2 = I2(4), the elements sts = tst are

weakly CFC but not cyclically reduced. All remaining element other than the longest element

are CFC, so we have b1 = 2 and b2 = 5.

5.3. Type D. The group D1 consists of two commuting generators, and D2 is isomorphic to A3.

Therefore, d1 = 4 and d2 = 13.
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1 2 3 4 5 6 7 8 9 10

|FC | 2 7 24 83 293 1055 3860 14299 53481 201551

|CFC | 2 5 13 34 89 233 610 1597 4181 10946

TABLE 2. The number of FC and CFC elements in Type B.

2 3 4 5 6 7 8 9 10

|FC | 4 14 48 167 593 2144 7864 29171 109173

|CFC | 4 13 35 92 241 631 1652 4325 11323

TABLE 3. The number of FC and CFC elements in Type D.

3 4 5 6 7 8 9 10

|FC | 10 42 167 662 2670 10846 44199 180438

|CFC | 10 34 92 242 634 1660 4346 11378

TABLE 4. The number of FC and CFC elements in Type E.

1 2 3 4 5 6 7 8 9 10

|FC | 2 5 24 106 464 2003 8560 36333 153584 647775

|CFC | 2 5 13 34 89 233 610 1597 4181 10946

TABLE 5. The number of FC and CFC elements in Type F .

5.4. Type E. The groups E4 and E5 are isomorphic to A4 and D5, respectively, and so e4 = 34
and e5 = 92. We note that if we define E3 by removing the joint vertex from the Coxeter graph,

leaving an edge and singleton vertex, then is is readily checked that e3 = 10, and so e5 = 3e4−e3.

5.5. Type F . The groups F2 and F3 are isomorphic to A2 and B3, respectively, and so f2 = 5
and f3 = 13. Similar to Type E, if we define F1 as having a singleton Coxeter graph, then

f1 = 2, and f3 = 3f2 − f1. Thus, these are also counted by the odd-indexed Fibonacci numbers

with a “shifted” seed, yielding fn = F2n+1.

5.6. Type H. The group H1 has order 2, and in H2 = I2(5), the elements sts and tst are weakly

CFC but not cyclically reduced. All other elements except the longest element are CFC, so

h1 = 2 and h2 = 7.

Let’s give a slightly better characterization in Type H. (These are the only ones where CFC is

not equivalent to containing every generator at most once).

6. CONJUGACY CLASSES OF CFC ELEMENTS

In this section, we will investigate when two CFC elements in a CFC-finite group are con-

jugate. For a word w ∈ W , let Γ[w] be the subgraph induced by w. Explictly, it has vertex
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1 2 3 4 5 6 7 8 9 10

|FC | 2 9 44 195 804 3185 12368 47607 182720 701349

|CFC | 2 7 21 56 147 385 1008 2639 6909 18088

TABLE 6. The number of FC and CFC elements in Type H.

set supp(w) and an edge {s, t} with label m(s, t) is present for each s, t ∈ supp(w) such that

m(s, t) ≥ 3.

It turns out the conjugacy of the CFC elements is “usually” determined by the isomorphism

class of the induced subgraph Γ[w]. As we will see, this always holds for simply-laced case. One

problem arises due to the even bond strengths in types B and F , and another problem occurs

because Hn is not a Weyl group.

As an example, we will first consider the two extreme cases. Suppose W is CFC-finite, but

not type H or I2(m). The CFC elements are the Coxeter elements of the standard parabolic

subgroups. First, consider the length-1 CFC elements – the simple generators. It is well-known

that s and t are conjugate if and only if they are connected by a path in Γ traversing only edges of

odd bond strength. Next, consider the length-n CFC elements – the Coxeter elements. Since the

Coxeter graphs of the CFC finite groups are all trees, C(W ) is contained in a single conjugacy

class [?].

Lemma 6.1. Let W be a CFC-finite, and suppose that w, w′ ∈ CFC(W ) are conjugate. Then

Γ[w] and Γ[w′] are isomorphic.

Proof. To do.

It may be helpful to use the fact that if w and w′ are CFC, then they are in Cmin, and so by

part (b) of Theorem 2.6, w ∼ w′, implying that they have the same length. However, this only

works (as far as we know) for the finite Weyl groups (An, Bn, Dn, E6, E7, E8, F4, I2(m)). �

The converse of Lemma 6.1 obviously fails, because for s ∈ S, Γ[s] is a singleton vertex, and

not all of the generators in types B or F are conjugate (due to the edge of even bond strength).

Lemma 6.2. Let W be a simply-laced CFC-finite group (i.e., type A, D, or E). If w, w′ ∈
CFC(W ) and Γ[w] and Γ[w′] are isomorphic, then w and w′ are conjugate.

Proof. To do. �

I think this will hold in type H and I2(m) if we also account for the number of repeats of the

generators on the “strong” edge.

Finally, we need to finish the type B and F case. The former should be easier because all of

the groups are finite (and thus we can try some computations for the small cases).
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7. FUTURE RESEARCH

The notion of patterns, and pattern avoidance, can be generalized from the symmetric group

(type A) to arbitrary Coxeter groups [?]. Since the CFC elements in type A have a simple char-

acterization via pattern avoidance, it would be interesting to investigate if this a just a special

case of a more general phenonomon in other Coxeter groups. This may be unrealistic, because

being fully commutative does not generalize in this manner. However, we’ve seen how passing

from FC to CFC surprisingly simplifies the combinatorics in the FC-finite groups.

Also, are there any nice analogs any other of Stembridge’s results on FC-elements?
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