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Abstract. If the equilibrium measure is obtained for a finite network we may
resolve the solution to the Dirichlet problem as well as other important kernels.

We seek the equilibrium measure to the Dirichlet boundary value problem on

a finite circular network. A solution for the principal equilibrium on specific
circular network is given and comments on the difficulty for generalizing the

equilibrium measure.
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1. Introduction

First we need some preliminaries, the formal problem statement as well as the
description of the finite circular network. A more in depth coverage of the prelimi-
naries and proofs for statements (where needed) can be found at [1] and [2].

The main focus of this paper will be on resolving the equilibrium measure, be-
cause with the equilibrium measure we can solve the Dirichlet problem as well as
resolve the Poisson kernel and the Neumann to Dirichlet map. The equilibrium
measure is composed of two parts, what I call the principle and symmetric. It
turns out that generalizing the principle equilibrium measure is straight forward,
but the symmetric equilibrium measure is very complicated to write down (or so it
seems). A portion of this paper will be dedicated to exposing what has been found
as well as the difficulties that arise with attempting to generalize the symmetric
equilibrium measure.

2. Preliminaries

We will only consider networks Γ(V,E) that are simply connected and finite,
with V as the set of verticies and E as the set of edges. The set C(V ) will be the
vector space of real valued functions on V . The main difference operator we will
be using is the Laplacian on Γ which is given by:

(1) L(u)(x) =
∑
x∼y

c(x, y)(u(x)− u(y))

[1] A function G : F̄ × F → R is the Green’s function if and only if ∀y ∈ F ,
Gy : F̄ × F → R is the unique solution of

(2)

{
LGy = εy, on F

Gy = 0, on δ(F )

where εy(x) is the discrete Dirac delta function (εy(y) = 1 and null otherwise).
Here a distinction is made, but required, whenever the phrase “equilibrium mea-
sure” appears this is meant to include both the principle and symmetric. Otherwise
principle or symmetric is implied.

The principle equilibrium measure is a function vF such that:

(3)

{
LvF = 1, on F

vF = 0, on δ(F )

The symmetric equilibrium measure is a function vF
y such that:

(4)

{
LvF

y = 1, on F \ {y}
vF

y = 0, on δ(F ) ∪ {y}
We state the fundamental relationship between the Green’s function and the equi-
librium measure:

(5) G =
vF − vF

y

|vF − vF
y |
vF (y)

where we define |vF − vF
y | ≡

∑
z∈F (vF − V F

v )(z).
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There are some other assumptions we make, even though the Schroedinger op-
erator is used in [2] we let the potential be null, and we assume unit conductances
on the network.

3. Problem statement

The main objective is to solve the Dirichlet boundary value problem, in order
to solve this problem we seek the Green’s function. A solution to the Dirichlet
problem is a function u that satisfies the following properties:{

L(u)(x) = f, on F

u = 0, on δ(F )

where f ∈ C(F ) and g ∈ δ(F ). It is also stated in [2] that:

u(x) =
∑

G(x, y)f(y)

Thus to find the function u we use the Green’s function, but to find the Green’s
function we need the equilibrium measure, as seen in (5). Refer to [2] for information
about the Poisson kernel. So now our main focus is resolving the equilibrium
measure. We did not find the general expression for the symmetric equilibrium
measure in general, but we will continue with the goal to obtain the equilibrium
measure.

4. The Circular Planar Network m circles n rays

Figure 1. The network Γ
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Here we give a description of the finite network we will be working on. Figure
1 above will be described. It has m circles and n rays, we will consider the case



4 MAURICE FABIEN UNIVERSITY OF WASHINGTON

in which m = 2 and n = 3. We define the set F and it’s boundary as F =
{x00, x11, x12, . . . , x26} and δ(F ) = {x31, x32, . . . , x36}, respectively. The notation
xij is read “The vertex j at circle i”, as a convention x00 is the vertex located at
the center of the circle.

5. Resolving principle equilibrium measure

In this section we will obtain the principle equilibrium measure using two differ-
ent techniques. The first technique will be the process of expanding the Laplacian
at every vertex in F , getting a system of equations and then solving that system.
And the second technique is from Encinas, Carmona, and Bendito [3], using infor-
mation about the symmetry of the graph. With the second technique we still end
up with a system of equations but the number of equations is reduced considerably.

5.1. Technique 1. Referring to equation (3), we want a function vF that satisfies
those two properties. In order to find this function we expand the Laplacian about
every vertex in F and use the information on the boundary where necessary. We
start at the center vertex x00. Let vF = v. Then we have by (1):

L(v)(x00) = (v00 − v11) + (v00 − v12) + . . .+ (v00 − v16)(1a)

= 6v00 − (v11 + . . .+ v16)
= 1

This yields one equation in seven unknowns. We need more equations to find the
principle equilibrium measure. The other equations will be given by expanding the
Laplacian about the rest of the verticies in F . Expanding the Laplacian about x11

we have:

L(v)(x11) = (v11 − v00) + (v11 − v12) + (v11 − v16) + (v11 − v21)(1b)
= 4v11 − v00 − v12 − v16 − v21 = 1

Expanding the Laplacian about nodes {x12, . . . , x16} we have:

L(v)(x12) = 4v12 − v00 − v11 − v13 − v22 = 1(1c)

L(v)(x13) = 4v13 − v00 − v12 − v14 − v23 = 1(1d)

L(v)(x14) = 4v14 − v00 − v13 − v15 − v24 = 1(1e)

L(v)(x15) = 4v15 − v00 − v14 − v16 − v25 = 1(1f)

L(v)(x16) = 4v16 − v00 − v11 − v15 − v26 = 1(1g)

Then finally the Laplacian about nodes {x21, . . . , x26} we have:

L(v)(x21) = 4v21 − v11 − v22 − v26 − v31 = 1(1h)

L(v)(x22) = 4v22 − v12 − v21 − v23 − v32 = 1(1i)

L(v)(x23) = 4v23 − v13 − v22 − v24 − v33 = 1(1j)

L(v)(x24) = 4v24 − v14 − v23 − v25 − v34 = 1(1k)

L(v)(x25) = 4v25 − v15 − v24 − v26 − v35 = 1(1l)

L(v)(x26) = 4v26 − v16 − v21 − v25 − v36 = 1(1m)



THE DIRICHLET BOUNDARY VALUE PROBLEM ON A FINITE CIRCULAR NETWORK USING EQUILIBRIUM MEASURE5

Notice that for equations (1h) through (1m) we can apply the boundary data
to eliminate six variables (v31, . . . , v36). We now put our system into matrix-vector
notation Av = 1:

6 −1 −1 −1 −1 −1 −1 0 0 0 0 0 0
−1 4 −1 0 0 0 −1 0 −1 0 0 0 0
−1 −1 4 −1 0 0 0 0 0 −1 0 0 0
−1 0 −1 4 −1 0 0 0 0 0 −1 0 0
−1 0 0 −1 4 −1 0 0 0 0 0 −1 0
−1 0 0 0 −1 4 −1 0 0 0 0 0 −1
−1 −1 0 0 0 −1 4 −1 0 0 0 0 0
0 0 0 0 0 0 −1 4 −1 0 0 0 −1
0 −1 0 0 0 0 0 −1 4 −1 0 0 0
0 0 −1 0 0 0 0 0 −1 4 −1 0 0
0 0 0 −1 0 0 0 0 0 −1 4 −1 0
0 0 0 0 −1 0 0 0 0 0 −1 4 −1
0 0 0 0 0 −1 0 −1 0 0 0 −1 4





v00
v11
v12
...
v24
v25
v26


=



1
1
1
...
1
1
1



Looking at the matrix A we see it has a lot of structure, the entries of the
main diagonal are the the degree of the vertex corresponding to the row of the en-
try (row 1 corresponds to x00, row 2 corresponds to x11 and so on). The matrix A
has weak diagonal dominance (which can be easily verified). Also A is symmetric
(self-adjoint but all entries of A are real),is invertible, and is positive definite. In
section 6 we give MATLAB code to verify invertibility, positive definiteness, as well
as symmetry. Below we give the solution to v = A−11.

v =



3.5000
3.3333
3.3333
3.3333
3.3333
3.3333
3.3333
2.1667
2.1667
2.1667
2.1667
2.1667
2.1667


The components of the solution vector v represent the coefficients of the equi-

librium measure.

Theorem 1: The principle equilibrium measure vF on the network Γ is given
by the following expression:

V F =
7
2
ε00(x) +

10
3

(
ε11(x) + · · ·+ ε16(x)

)
+

13
6

(
ε21(x) + · · ·+ ε26(x)

)
Proof: We need to verify the principle equilibrium measure satisfies the follow-

ing two properties: L(V F ) = 1 on F and vF = 0 on δ(F ). First we check property
one:
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Notice if x = x00 ∈ F then V F (x00) = 7/2. Referring to equation (1a) we have
L(vF )(x00) = 6v00 − (v11 + . . . + v16) = 6 ∗ 7/2 − 6 ∗ 10/3 = 1. Doing the same
procedure for the remaining vertices in F we see that property one is satisfied.

Property two is straight forward, if x ∈ δ(F ) we have vF = 0, since none of the
discrete Dirac Delta functions are centered about any boundary nodes. �

5.2. Technique 2. This technique exploits the symmetry of the network to re-
duce the number of unknowns, as well as the number of equations. The way that
technique 2 accomplishes this is by realizing that the principle equilibrium measure
must have equal value on every vertex that lies on the same circle. For instance
v11 = v12 = . . . = v16, this is confirmed by looking at the solution vector v in
subsection 5.1.

Let α1 = v00, α2 = v11 = v12 = . . . = v16, and α3 = v21 = v22 = . . . = v26.
Rewriting equations (1a) through (1m) with this insight we obtain the following:

6α1 − 6α2 = 1
2α2 − α1 − α3 = 1

2α3 − α2 = 1

This system has three equations and three unknowns which is a drastic improve-
ment from technique 1 which has 13 equations and 13 unknowns. One might also
notice that this is a telescoping series, which can help make the system of equa-
tions more compact. We may generalize the coefficients for the principal equilibrium
measure very easily.

For the network Γ with m circles and n rays the coefficients of the principle
equilibrium measure may be written as:

2n(α1 − α2) = 1
2α2 − α1 − α3 = 1

...
2αm−1 − αm−2 − αm = 1

2αm − αm−1 = 1

Theorem 2: The principle equilibrium measure vF on the network Γ with m circles
and n rays is given by the following expression:

vF = α1ε00(x) + α2

(
ε11(x) + · · ·+ ε1,2n(x)

)
+ · · ·+ αm

(
εm1(x) + · · ·+ εm,2n(x)

)
Proof: The same argument is used as in Theorem 1. �
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6. The coefficients of the principal equilibrium measure in general

In section 5.2 we did not solve for the coefficients of the principal equilibrium
measure, in this section we give analytic expressions for the coefficients. This
derivation is from Zhen Wei [4].

n(α1 − α2) = 1
...

−(α1 − α2) + (α2 − α3) = 1

−(αm−2 − αm−1) + (αm−1 − αm−3) = 1

so let Φ1 = α1 − α2 = 1/n then Φ1 = 1/n

Φ2 = 1 + Φ1 = 1 + 1/n

Φ3 = 1 + Φ2 = 1 + 1 + 1/n
...

Φm−1 = 1 + Φm−2

= 1 + 1 + Φm−3 = 1× (m− 2) + Φ1

= m− 2 + 1/n

so αm = (m− 2)× 1 + 1/n+ 1 = (m− 1) + 1/n

αm−1 = (m− 2)× 1 + 1/n+ αm = (2m− 3) + 2/n

αm−2 = (m− 3)× 1 + 1/n+ αm−1 = (3m− 6) + 3/n

αm−4 = (m− 4)× 1 + 1/n+ αm−2 = (4m− 10) + 4/n
...

α1 = [m− (m− 1 + 1)]× 1 + 1/n+ α2

= 1/n+ (m− 1)/n+m× (m− 1)/2

= m/n+ (m2 +m)/2

�

7. The symmetric equilibrium measure

The symmetric equilibrium measure is where we experienced difficulty with at-
tempting to generalize. We have good faith that a generalization does exist, but
will not be very elegant. In this section we will give exposition about the case when
m = 2 and n = 3. In this special case we have 13 different symmetric equilibriums
to consider. To think about this crudely, this implies that we have 13 different sets
of 12 by 12 matrices to invert (assuming they are invertible). If we want to gener-
alize this, then in the general case we would have to invert 2mn+ 1 different sets of
2mn by 2mn matrices (assuming they are invertible). This does seem do-able but
might rely on computational techniques to solve, and at the end of the day the final
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expression for the symmetric equilibrium measure will be rather complicated. The
expression for the coefficients of the symmetric equilibrium measure will depend on
what node you have chosen for y.

7.1. Resolving the symmetric equilibrium measure. As in section 5.1 we let
m = 2 and n = 3. For our example we will let y = x00. Essentially we are removing
x00 from our interior data and making it part of our boundary data. We expand
the Laplacian at all the interior nodes (F \ {x00}):

3v11 − v12 − v16 − v21 = 1
3v12 − v11 − v13 − v22 = 1
3v13 − v12 − v14 − v23 = 1
3v14 − v13 − v15 − v24 = 1
3v15 − v14 − v16 − v25 = 1
3v16 − v15 − v11 − v26 = 1
4v21 − v11 − v22 − v26 = 1
4v22 − v12 − v21 − v23 = 1
4v23 − v13 − v22 − v24 = 1
4v24 − v14 − v23 − v25 = 1
4v25 − v15 − v24 − v26 = 1
4v26 − v16 − v25 − v21 = 1

putting this in vector matric notation we have:

3 −1 0 0 0 −1 −1 0 0 0 0 0
−1 3 −1 0 0 0 0 −1 0 0 0 0
0 −1 3 −1 0 0 0 0 −1 0 0 0
0 0 −1 3 −1 0 0 0 0 −1 0 0
0 0 0 −1 3 −1 0 0 0 0 −1 0
−1 0 0 0 −1 3 0 0 0 0 0 −1
−1 0 0 0 0 0 4 −1 0 0 0 −1
0 −1 0 0 0 0 −1 4 −1 0 0 0
0 0 −1 0 0 0 0 −1 4 −1 0 0
0 0 0 −1 0 0 0 0 −1 4 −1 0
0 0 0 0 −1 0 0 0 0 −1 4 −1
0 0 0 0 0 −1 −1 0 0 0 −1 4





v11
v12
...
v24
v25
v26


=



1
1
1
...
1
1
1



And the solution vector for this system is given by:
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v =



3.0000
3.0000
3.0000
3.0000
3.0000
3.0000
2.0000
2.0000
2.0000
2.0000
2.0000
2.0000


Here we end up with the result that all the nodes that lie on the same circle end up
having the same coefficients. This case is very different from the other cases that
must be done.

Next we consider y = x11, to see the contrast between the symmetry. As done
earlier in this section, we expand the Laplacian at all the interior nodes (F \{x11}):

5v00 − v12 − v13 −−v14 − v15 − v16 = 1
3v12 − v00 − v13 − v22 = 1

4v13 − v00 − v12 − v14 − v23 = 1
4v14 − v00 − v13 − v15 − v24 = 1
4v15 − v00 − v14 − v16 − v25 = 1

3v16 − v00 − v15 − v26 = 1
3v21 − v22 − v26 = 1

4v22 − v12 − v21 − v23 = 1
4v23 − v13 − v22 − v24 = 1
4v24 − v14 − v23 − v25 = 1
4v25 − v15 − v24 − v26 = 1
4v26 − v16 − v25 − v21 = 1

In matrix vector notation we have:
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5 −1 −1 −1 −1 −1 0 0 0 0 0 0
−1 3 −1 0 0 0 0 −1 0 0 0 0
−1 −1 4 −1 0 0 0 0 −1 0 0 0
−1 0 −1 4 −1 0 0 0 0 −1 0 0
−1 0 0 −1 4 −1 0 0 0 0 −1 0
−1 0 0 0 −1 3 0 0 0 0 0 −1
0 0 0 0 0 0 3 −1 0 0 0 −1
0 −1 0 0 0 0 −1 4 −1 0 0 0
0 0 −1 0 0 0 0 −1 4 −1 0 0
0 0 0 −1 0 0 0 0 −1 4 −1 0
0 0 0 0 −1 0 0 0 0 −1 4 −1
0 0 0 0 0 −1 −1 0 0 0 −1 4





v00
v12
...
v24
v25
v26


=



1
1
1
...
1
1
1


and

the solution vector is given by:

v =



3.4661
3.2484
3.2747
3.2841
3.2747
3.2484
1.6697
2.0045
2.1001
2.1211
2.1001
2.0045


We note here that v12 = v16, v13 = v15, v22 = v26, and v23 = v25. All the other
values are unique. A common theme appears to be present in all of the symmetric
equilibriums - there is some sort of symmetry among the coefficients (thus the name
“symmetric equilibrium”). The issue becomes now that we are required to repeat
this entire process for the remaining vertices in F \ {x00, x11}. To help reduce the
work done it seems that there are three cases you can exploit.

• First case is when y = x00, this case is unique from all the other cases that
will be considered because it reduces the degree of all the nodes on the first circle
by one. This was the first example we considered, and we saw that the symmetry
was that all the nodes that lie on the same circle end up have the same coefficients.

• Second case is if we let y be a node on the first circle, this is the second ex-
ample we considered, and we saw that there was a line that had unique equilibrium
coefficients along it at every node (this line always contains the node that was
removed, y = x11). This line divide the graph into two parts and nodes on corre-
sponding sides of the graph were the same (v12 = v16, v13 = v15, v22 = v26, and
v23 = v25).

• The last case is in which we let y be a node on the mth circle. In this situation
we should expect another type of symmetry that is different from the first two cases.

If we let y be a node on a circle between one and m, they should also have similar
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structure, but when we change nodes, we change entries around in the matrix, and
this pattern seems hard to track. In summary of this section, an expression for the
symmetric equilibrium should exist, it just will have a very complicated form (or
so it seems).

8. Computational verification section 5.1

Another useful idea not pursued is the use of block structure. Many of the matrices
associated with this problem seem to exhibit very nice form.
%%%%====%%%%==== For the system presented in section 5.1 ====%%%%====%%%%
%%Constructing main diagonal
for i=2:13

D(i)= 4;
end

D(1)=6;

mainDiagonal = diag(D);
%%
%=%Constructing off diagonals
for i=1:12

offdiagonal(i)=-1;
end

Oh= zeros(13,13);
Lowerd = diag(offdiagonal,-1);
Upperd = diag(offdiagonal,1);

DiagonalMatrix = Oh + mainDiagonal+Upperd+Lowerd;
%=%
for i=3:7

DiagonalMatrix(i,1)=-1;
end

for i=3:7
DiagonalMatrix(1,i)=-1;

end

DiagonalMatrix(7,2)=-1;

for i=9:13
DiagonalMatrix(i,(i-10)+3)=-1;

end

DiagonalMatrix(13,8)=-1;

DiagonalMatrix(2,7)=-1;

for i=2:6
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DiagonalMatrix(i,(i-2)+9)=-1;
end

DiagonalMatrix(8,13)=-1;

A=DiagonalMatrix

b=ones(13,1);
%Crude but the backslash method works
x=A\b

%Notice that all the det’s are positive
for i=1:10

det( A(1:i, 1:i) )
end

%Check that A’-A=0
A’-A

%END OF CODE

%%%%====%%%%==== For the system presented in section 5.1 ====%%%%====%%%%

9. Computational verification section 7.1

%%%%====%%%%==== For the system presented in section 7.1, y=x_{00} ====%%%%====%%%%

D=zeros(12,1);

for i=1:6
D(i)= 3;

end
for i=7:12

D(i)= 4;
end

mainDiagonal = diag(D);
for i=1:11

offdiagonal(i)=-1;
end

Oh= zeros(12,12);
Lowerd = diag(offdiagonal,-1);
Upperd = diag(offdiagonal,1);

DiagonalMatrix = Oh + mainDiagonal+Upperd+Lowerd;

for i=7:12
DiagonalMatrix(i,i-6)=-1
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end

DiagonalMatrix(12,7)=-1

for i=1:6
DiagonalMatrix(i,i+6)=-1

end

DiagonalMatrix(1,6)=-1
DiagonalMatrix(7,12)=-1
DiagonalMatrix(7,6)=0

A=DiagonalMatrix;

b=ones(12,1);
x=A\b

%END OF CODE

%%%%====%%%%==== For the system presented in section 7.1, y=x_{00} ====%%%%====%%%%

%%%%====%%%%==== For the system presented in section 7.1, y=x_{11} ====%%%%====%%%%
D=zeros(12,1);
D(1)=5;
D(2)=3;
for i=3:5

D(i)= 4;
end
D(6)= 3;
D(7)= 4;
D(8)= 3;

for i=9:12
D(i)=4;

end
mainDiagonal = diag(D);
for i=1:11

offdiagonal(i)=-1;
end

Oh= zeros(12,12);
Lowerd = diag(offdiagonal,-1);
Upperd = diag(offdiagonal,1);
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DiagonalMatrix = Oh + mainDiagonal+Upperd+Lowerd;

for i=3:6
DiagonalMatrix(i,1)=-1

end

for i=2:6
DiagonalMatrix(1,i)=-1

end

%for i=9:12
% DiagonalMatrix(i,(i-9)+2)=-1

%end

DiagonalMatrix(12,7)=-1;
DiagonalMatrix(7,12)=-1;
DiagonalMatrix(2,8)=-1

for i=3:6
DiagonalMatrix(i,(i-3)+9)=-1

end
DiagonalMatrix(7,7)=3
DiagonalMatrix(2,9)=0
DiagonalMatrix(7,6)=0
DiagonalMatrix(8,8)=4
DiagonalMatrix(8,8)=4
DiagonalMatrix(6,7)=0

for i=8:12
DiagonalMatrix(i,(i-8)+2)=-1

end

A=DiagonalMatrix;

b=ones(12,1);
x=A\b

%END OF CODE

%%%%====%%%%==== For the system presented in section 7.1, y=x_{11} ====%%%%====%%%%
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