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Abstract

Here we explore various spectral properties of the Dirichlet-to-Neumann map resulting from a Kirch-
hoff matrix. Using previous bounds of the eigenvalues of the Schur complement of a matrix in terms of
those of the matrix, we find some nice bounds for the eigenvalues of the response matrix in terms of those
of the Kirchhoff matrix. We also find an interiorization property of the Neumann-to-Dirichlet map to
derive a matrix given the eigenvalues and eigenvectors of the Kirchhoff matrix whose eigenvalues contain
the reciprocals of those of the response matrix. Finally, we give directions for future research.
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1 Introduction

Here we provide a brief overview of notation and past work. In §2 we describe previous work which gives nice
interlacing properties of the eigenvalues of the response and the Kirchhoff matrix and its submatrices. In §3
we describe the Neumann-to-Dirichlet map and a transformation between Neumann-to-Dirichlet maps with
interiorized vertices. In §4 we use the results from the previous sections to obtain bounds and expressions for
the trace of the Neumann-to-Dirichlet map in terms of thoe for the Kirchhoff matrix and various submatrices.
In §5 we use the transformation derived in §3 to get an ”expression” for the eigenvalues of the response matrix.
In §6 we use a Green’s function derived by Ian Zemke to get an alternate expression for the eigenvectors and
eigenvalues of the response matrix, and in §7 we describe further directions for research.

Notation

This paper follows the notation in [2], except we will always work on connected graphs. We let Mn denote
the space of n× n matrices, and {ej}nj=1 the standard basis vectors for Rn. Let G = (V, ∂V,E) be a graph,
where V is a set of vertices, E ⊂ V ×V is the set of edges, and ∂V ⊂ V is a set of boundary vertices. We write
intV = V − ∂V. If a, b ∈ V we write ab ∈ E to be the edge (if it exists) between a and b. Let γ : E → R>0

be a conductivity function. We will sometimes consider γ to be function on V ×V with γ(ab) = 0 if ab 6∈ E.
Then we call Γ = (G, γ) a network. We will write K ∈ M|V | to be the standard Kirchhoff matrix for the
network Γ where we order the entries so that the boundary vertices come before in the column order, so that

K =

(
A B
BT C

)
(1)

where A is a |∂V | × |∂V | sized submatrix representing the boundary to boundary conductivities, B is a
|∂V |×|intV | sized matrix denoting the boundary to interior edges, and C is |intV |×|intV | sized and denotes
the interior to interior conductivities. We will let Λ be the response matrix for this graph. [2] shows that

Λ = A−BC−1BT

where this is the block decomposition as above and C−1 exists because [2] shows that it is positive definite.
We note that both K and Λ and later the Neumann-to-Dirichlet map implies an ordering of the boundary
vertices, and we will refer to this order as the order induced by the corresponding matrix.

In working with eigenvectors, it is often useful to use two somewhat contradictory notations for these
said eigenvectors. If φ is an eigenvector for K (resp. Λ) we will often write φi to be the ith entry in this
eigenvector (or if we are talking about the jth entry in the ith eigenvector we will write the eigenvector to be
φi and its entry φij . The meaning of the statement should be clear from context) but also we will sometimes
consider φ as a function from V (resp. ∂V ) to the real line, and so if x ∈ V (resp. x ∈ ∂V ) we will often
write φ(x) to denote the value of the eigenvector at vertex x. Finally, as the all ones vector comes up quite
often, we will write 1 to denote it, with 1n meaning the all ones vector of length n, and 1m,n meaning the
m× n matrix of all ones. We will also let 0 denote the vector of all zeroes, and 0n and 0m,n in analogy to
1n and 1m,n.

Elementary Results

We first briefly give a fairly basic interpretation of the eigenvectors of Λ. We know that Λ is defined to be
the linear map from boundary voltages to boundary currents, so that if φ is a boundary voltage, then if
v = [φ, ψ]T where |ψ| = |intV | is the γ-harmonic voltage function on the interior of the network it induces,
then Λφ is the boundary current made by this γ-harmonic function. Hence an eigenvector of Λ is a set of
boundary voltages which produce boundary currents proportional to the original voltages, and the proportion
is the eigenvalue. Of course, this is a somewhat dissatisfying interpretation and more physically meaningful
one would definitely be useful.

The following elementary result is very useful:
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Proposition 1.1. For any response matrix (or Kirchhoff matrix interpreted as a response matrix) Λ, we
have that λ = 0 is an eigenvalue of Λ with multiplicity zero, and the eigenvectors of 0 are the vectors in the
span of 1.

Proof. [2] shows that the kernel of Λ is just the span of 1, and so 1 is an eigenvector of Λ with eigenvalue
λ = 0; furthermore as the kernel of Λ is simply the span of 1, it is the only eigenvector with eigenvalue
λ = 0.

Corollary 1.2. If H ∈ Mn is a response matrix (or a Kirchhoff matrix interpreted as a response matrix),
then if φ is a non-constant eigenvector of H, then φ has row sum zero.

Proof. φ is non-constant and hence by Proposition 1.1 does not share an eigenvalue with 1; hence they are
orthogonal, and therefore φ has row sum zero.

We note that in general eigenvectors of the Kirchhoff matrix are not γ-harmonic as defined in [2]; see
[5] for some motivation for why this shouldn’t keep anyone up at night. In general, when talking about
the eigenvalues of K or Λ, we will let λ1 = 0 correspond to φ1 = 1. Note also that because Kirchhoff and
response matrices (and later on Neumann-to-Dirichlet maps) are normal matrices, all their eigenvalues are
non-negative.

A Calculation

Here we provide a simple way of representing the values of a Kirchhoff or response matrix in terms of its
eigenvectors and eigenvalues. Although the proof of this is very straightforward, it leads to some useful
results. Let H ∈Mn be symmetric real-valued (in general this can be Hermitian). By the spectral theorem,
we know that H = UDUT where U is an unitary matrix where the columns are the orthonormal eigenvectors
of H and D is a diagonal matrix where the ith diagonal entry is the eigenvalue corresponding to the
eigenvector in the ith column of U. Let {φi}ni=1 be the eigenvectors with {λi}ni=1 being their corresponding
eigenvalues. It is then not difficult to see that by explicitly doing the matrix calculation that

Hij = (UDUT )ij =

n∑
k=1

λkφkiφkj ,

or in our function notation,

H(x, y) =

n∑
k=1

λkφk(x)φk(y).

Hence, by Proposition 1.1, we have the following:

Proposition 1.3. If H ∈ Mn is a Kirchhoff or response matrix with eigenvectors 1, φ2, . . . , φn and corre-
sponding eigenvalues 0, λ2, . . . , λn, then

Hij =

n∑
k=2

λkφkiφkj

or in our alternative notation,

H(x, y) =

n∑
k=2

λkφk(x)φk(y).

This provides us with this intuition about how the values in the Kirchhoff matrix are affected by its
eigenvalues. With notation as above, we can vary the eigenvalues while keeping the eigenvectors unchanged,
and thus consider Hij as a function of the eigenvalues for each i, j.
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2 Prior Work

Work has been done when considering general Schur complements of Hermitian matrices. If H ∈ Mn is a
Hermitian matrix, let λ↓i (H) be the ith largest eigenvalue of H, and λ↑i (H) the ith smallest eigenvalue of H.

Theorem 2.1. Let H be a Hermitian positive semi-definite matrix, written as

H =

(
H11 H12

H∗12 H22

)
where H11 ∈Mr is non-singular. Then

λ↓i (H) ≥ λ↓i (H/H11) ≥ λ↓i+k(H). (2)

By a little bit of rewriting, and the fact that C is positive definite ([2]), we get this following result:

Corollary 2.2. If K ∈Mn is a Kirchhoff matrix and Λ ∈Mn−k its response matrix with k interior nodes,
then for i ≤ n− k

λ↓i (K) ≥ λ↓i (Λ) ≥ λ↓i+k(K).

This is a result similar to Cauchy’s classical result about the eigenvalues of submatrices of Hermitian
matrices, and is somewhat striking. This is made more so by the following theorem.

Definition 2.1. Let K ∈ Mn and A ∈ Mr where n ≥ r. We say A is embeddable in K if there exists a
unitary matrix U so that A is the r × r submatrix at the top left of UKU∗.

Theorem 2.3. Fan-Pall, [4] Let K ∈Mn and A ∈Mr where n ≥ r. Then A is embeddable in K if and only
if

λ↓i (K) ≥ λ↓i (A) ≥ λ↓i+n−r(K)

for all 1 ≤ i ≤ r.

Corollary 2.1 and Theorem 2.3 imply that the Schur complement of a matrix is embeddable in the original
matrix; however, even in the special case of Kirchhoff matrices and response matrices the unitary matrix
involved seems to sometimes be very complicated.

We can also use a special case of Weyl’s inequalities to get a somewhat sharper bound:

Theorem 2.4. Weyl, [3] Let A,B ∈Mn be Hermitian. For each 1 ≤ k ≤ n we have

λ↑k(A) + λ↑1(B) ≤ λ↑k(A+B) ≤ λ↑k(A) + λ↑n(B).

Corollary 2.5. If K ∈ Mn is a Kirchhoff matrix block decomposed as in Equation 1, and Λ ∈ Mn−k is
the response matrix resulting from taking the Schur complement of C ∈ Mk, then for all 1 ≤ j ≤ n − k
λ↑j (Λ) ≤ λ↑j (A).

Proof. By Theorem 2.4 λ↑k(Λ) ≤ λ↑k(A) + λ↑n(−BC−1BT ); however note that for all x we have that

xT (BC−1BT )x = (BTx)TC−1(BTx) ≥ 0

as by [2] C−1 is positive definite; therefore BC−1BT is positive semi-definite, and so all of its eigenvalues
are non-negative; hence −BC−1BT is negative semi-definite, and so all of its eigenvalues are non-positive,
from which we get the desired bound.

Corollary 2.5 provides a generalization of Theorem 2.10 in [6]; it would also be interesting to attempt to
find an interlacing between the eigenvalues for the Neumann-to-Dirichlet map and those of A in the block
decomposition of K; however the author was unable to do so.
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3 The Neumann-to-Dirichlet Map

Let Λ ∈Mn be a response matrix (or a Kirchhoff matrix interpreted as a response matrix) for some connected
network Γ. This takes boundary voltages to boundary currents; hence it is natural to consider the map which
takes boundary currents to boundary voltages, which we call a Neumann-to-Dirichlet map. This map is not
unique (see the below discussion about the Neumann problem); however, there is only one map which sends
boundary currents to boundary voltages with row-sum zero. [1] found an explicit form for this map; on
connected graphs this Neumann-to-Dirichlet map (which from this point on we will call the Neumann-to-
Dirichlet map) H (eta) can be written as

H = (Λ2 + 1n)−1Λ, (3)

where [1] shows that the expression makes sense as Λ2+1n is invertible. Whenever we have a Kirchhoff matrix
Λ (resp. response matrix), we will always call the matrix given by Equation 3 its Neumann-to-Dirichlet map
or its associated Neumann-to-Dirichlet map. [1] also notes that

H = (Λ2 + α1n)−1Λ

for all α > 0 scalars, hence we do not have to worry about whatever constant they may have had. [1] also
shows that H is a symmetric, semi-definite matrix with row-sum zero and positive diagonal entry. It is,
however, not in general a Kirchhoff matrix (i.e. some of the non-diagonal entries may be positive). We
explore several basic properties of H below.

First we consider its obvious connection to the Neumann problem. Given a network Γ = (G, γ) where
G = (V, ∂V,E), given a vector of currents ξ where |ξ| = |∂V |, the Neumann problem consists of finding a
voltage vector φ = [vT , δT ]T on the entire graph (i.e. |φ| = |V |) so that φ is γ-harmonic and Kφ|∂V = ξ. [1]
shows that this solution is unique up to summing up to a constant, and so if we force φ to have boundary
sum zero, then this solution is unique, and [1] shows that Hξ = v, where H is the Neumann-to-Dirichlet
map associated with the response matrix.

The most important spectral property of the Neumann-to-Dirichlet map for our purposes is the following:

Proposition 3.1. Let Λ ∈Mn be a response matrix and H be as in Equation 3. A vector φ is an eigenvector
of Λ if and only if it is an eigenvector for H, and if λ is its eigenvalue for Λ, then if λ = 0, its eigenvalue
for H is also 0, but if λ 6= 0, then 1/λ is its eigenvalue for H, and vice-versa.

Proof. Suppose φ is an eigenvector of Λ with eigenvalue 0. Then obviously by construction Hφ = 0, so φ is
also an eigenvector of H with eigenvalue 0. Suppose then that its eigenvalue is λ 6= 0. Then we note that as
by Corollary 1.2

(Λ2 + 1n)φ = Λ2φ = λ2φ,

we get that

1

λ2
φ = (Λ2 + 1n)−1φ.

Hence we get that as Λφ = λφ,

(Λ2 + 1n)−1Λφ =
1

λ
φ,

so φ is an eigenvector of H with eigenvalue 1/λ, as claimed. To show the other direction it suffices to note
that by the above we can find n linearly independent eigenvectors with the eigenvalues as in the claim; hence
these are the only eigenvalues for H; hence we are done.

This makes sense; if we put some voltages which happen to generate a current which is proportional to
the voltages, then as the voltages must already have row-sum zero, if we put the current into the Neumann-
to-Dirichlet map, we get the original voltages but with the reciprocal of the proportion. Incidentally, this
results in this curious, but for our purposes useless, property of the Neumann-to-Dirichlet map:
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Corollary 3.2. If Λ is a response matrix, then for all k ≥ 2,

H = (Λk + 1n)−1Λk−1.

Proof. An identical argument to that used in the proof of Proposition 3.1 shows that the eigenvectors and
eigenvalues of H ′ = (Λn + 1n)−1Λn−1 are identical to that of H; it is not difficult to see that H ′ is still
symmetrical and hence can be diagonalized and therefore because the eigenspaces are the same we get that
H ′ = H.

Note that this spectral condition guarantees that that H is the Moore-Penrose generalized inverse of
Λ (see [3]). It also may be worthwhile to consider other powers of H that result from taking different
combinations of powers Λ in the above expressions, but we do not in this paper. Instead, let us trudge
onwards.

3.1 Interiorizing Vertices in the Neumann-to-Dirichlet Map

If G′ = (V, ∂V,E) is a graph with boundary, and v ∈ ∂V, we let the interiorized graph be the graph
G = (V, ∂V − {v}, E); that is, we simply demote v to be an interior node without changing any edges. If
Γ′ = (G′, γ) is an electrical network and if v ∈ ∂V we let Γ be the network with the same conductivities
but with G being the interiorized graph. This notation may seem backwards but it makes the notation
in the proof in the following discussion more consistent. The notation simply means that objects on the
non-interiorized graph are notated with a prime and those on the interiorized graph do not; hence G′ for
instance denotes the original graph.

Let n > 1 be a fixed integer. Consider the following linear map:

Pn =


1 0 . . . 1/(n− 1)
0 1 . . . 1/(n− 1)
...

...
. . .

...
0 . . . 1 1/(n− 1)
0 0 . . . 0

 .

The following is a proof of this claim:

Theorem 3.3. Let Pn be as above, let H ′ ∈Mn be a Neumann-to-Dirichlet matrix for an electrical network
Γ′ = (G′, γ) where G′ = (V, ∂V,E) and vn be the nth boundary vertex in the order implied by H ′. Then the
n− 1× n− 1 sized submatrix involving the first n− 1 rows and columns of the following matrix

H̃ = PnH
′PTn

is the Neumann-to-Dirichlet matrix H of the modified electrical network Γ = (G, γ) where the nth boundary
vertex, call it vn, has been interiorized (i.e. G = (V, ∂V − {vn}, E)).

The intuition behind this is rather straightforward. It is not difficult to see that H already sends currents
over the first n − 1 vertices (and zero on the nth vertex) to valid voltages which solve the Neumann-to-
Dirichlet problem. The only issue is that the row sums of these resulting voltages are not correct and are off
by some constant factor of the voltage of the last vertex; this is what the transformation PnH

′PTn rectifies. It
is quite possible to think of the Pn as the matrix with the last row omitted, in which case it is not necessary
to take submatrices of the product; however, for our purposes it is more convenient to think of the Pns as
square. However, before we embark fully on the proof of this theorem, we require a few lemmas about the
behavior of Pn.

Lemma 3.4. PTn [1n−1, 0]T = 1, where 1n−1 is the corresponding all ones vector of length n− 1.

Proof. This is obvious by inspection.
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Lemma 3.5. For any M ∈Mn, the nth row and column of PnMPTn are zeroes.

Proof. This is again obvious by inspection.

Lemma 3.6. If v is a length n vector with last entry zero and row sum zero, then PTn v = v.

Proof. Write v = [v1, v2, . . . , vn−1, 0]T . By assumption
∑n
i=1 vi =

∑n−1
i=1 vi = 0. But then

PTn v =


v1

v2

...
vn − 1

1
n−1

∑n−1
i=1 vi

 =


v1

v2

...
vn − 1

0

 = v.

Lemma 3.7. Suppose v = [v1, v2, . . . , vn]T has row-sum zero. Then v′ = Pnv also has row-sum zero, the
first n− 1 entries of v′ differ by v by the constant amount of vn/(n− 1), and the nth entry of v′ is zero.

Proof. We calculate.

v′ =


1 0 . . . 1/(n− 1)
0 1 . . . 1/(n− 1)
...

...
. . .

...
0 . . . 1 1/(n− 1)
0 0 . . . 0




v1

v2

...
vn−1

vn

 =


v1 + vn/n− 1
v2 + vn/n− 1

...
vn−1 + vn/n− 1

0


so

n∑
i=1

v′i =

n−1∑
i=1

v′i = vn +

n−1∑
i=1

vi = 0

as v had row-sum zero by assumption.

Proof. of Theorem 3.3 We let the submatrix involving the first n − 1 rows and columns of PnH
′PTn be A.

Then by Lemma 3.5 we can write

PnH
′PTn =

(
A 0
0T 0

)
.

where 0 is the n−1 sized column vector of all zeroes. Consider first of all what A does to the constant vector
1 of length n − 1. Let u be the column vector of length n created by appending a 0 to 1. By Lemma 3.4,
we have that PTn u = 1n. However, H ′1 = 0, so PnH

′PTn u = 0, which implies that A1 = 0, and as H1 = 0,
these two expressions agree in this special case, and indeed, for any v ∈ span{1}, A1 = H1 = 0.

Now let ψ = [ψ1, ψ2, . . . , ψn−1]T be a vector of length n − 1 with row sum zero. We wish to show that
Hψ = Aψ. By the uniqueness of the Neumann problem, there is exactly one set of voltages φ = [vT , δT ] on
G where |v| = n − 1 so that v has row sum zero and Kφ|∂V−vn = ψ. By definition, Hψ = v. Furthermore,
we know that Kφ at vn is zero, because the current at every interior node of a γ-harmonic function is zero.
Hence if we consider ψ′ = [ψT , 0]T , we know that by the uniqueness of the Neumann problem on Γ′ there
exists exactly on set of voltages φ′ = [v′T , δ′T ] on G′ where |v′| = n so that v′ has boundary row sum zero
and Kv′|∂V = ψ′, and moreover since φ also solves this Neumann problem, every entry in φ′ and φ differ by
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some constant amount. Let v′ = [v′1, v
′
2, . . . , v

′
n]T . But then, consider this following calculation:

PnH
′PTn ψ

′ = PnH
′




1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 . . . 0 1 0
1/(n− 1) . . . 1/(n− 1) 1/(n− 1) 0




ψ1

ψ2

...
ψn−1

0





= PnH
′


ψ1

ψ2

...
ψn−1

1
n−1

∑n−1
i=1 ψi

 = PnH
′


ψ1

ψ2

...
ψn−1

0

 = Pnv
′,

but by Lemma 3.7 if we let v′′ be the first n − 1 entries of Pnv
′, these differ only by a constant from the

first n− 1 entries in v′, which differ only by a constant from those in v, but v′′ has row-sum zero (as the last
entry in Pnv

′ is zero and Pnv
′ has row-sum zero) and so does v, so v′′ = v. Then we get that

PnH
′PTn ψ

′ =

(
A 0
0T 0

)(
ψ
0

)
=

(
Aψ
0

)
,

so Aψ = v = Hψ for all ψ with row-sum zero.
But now we are done, as it is well known that Rn−1 = span{1n−1} ⊕ (span{1n−1})⊥. Hence for all

v ∈ Rn−1 we can write v = c1 + u where u has row sum zero, and therefore Av = Au = Hu = Hv.

Repeated Interiorization

We may continue the process shown above as many times as we wish (well, less than n times).

Corollary 3.8. Let H ′′ ∈ Mn be a Neumann-to-Dirichlet map for a network Γ. If vn−1, vn ∈ ∂V are the
last two boundary vertices in the ordering implied by H ′′, then if H ′ is the Neumann-to-Dirichlet map for
the network with vn interiorized, and H is the Neumann-to-Dirichlet map for the network with both vn and
vn−1 interiorized, then H is equal to the (n− 2)× (n− 2) dimensional submatrix of

P ′n−1PnH
′′PTn P

T
n−1′

where P ′n−1 is the n × n dimensional matrix with the (n − 1) × (n − 1) entries are those for Pn−1 and the
last row and column and 0.

Proof. This follows from exactly the considerations as above.

In general, if HK ∈ Mn is some Neumann-to-Dirichlet map and the last k < n boundary vertices in the
order implied by HK are interiorized then if H is the Neumann-to-Dirichlet map for the resulting graph, we
have that H is the (n− k)× (n− k) sized submatrix of the product

H̃ = (P ∗n−kP
∗
n−k+1 . . . Pn)HK(P ∗n−kP

∗
n−k+1 . . . Pn)T (4)

where the P ∗m for m < n are interpreted to be the n-dimensional matrix with the top m×m submatrix being
the original Pm and the remaining entries all zeroes.

It will be useful later on to have a better form for the product of the Pns:

Lemma 3.9. In general, for 0 ≤ k < n− 1 we have that

(P ∗n−kP
∗
n−k+1 . . . Pn) =

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
.
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Proof. We leave this simple inductive calculation to the reader.

For the rest of the paper, we will denote the above product as Pn,k. It is not hard to show by analogy
to Lemma 3.6 PTn,kx = x for all x with row-sum zero and whose last k entries are zero. It is also possible
to think of the Pn,k as non-square matrices by omitting the last k rows, but again it is more useful for our
purposes to think of them as square matrices.

We briefly note here that this form of the Neumann-to-Dirichlet map associated with the response matrix
and the Fan-Pall Theorem ([4]) gives us an easy proof of Corollary 2.2 because we note that if we let

P †n,k =

(
In−k

1
n−k1n−k,k

0k,n−k Ik

)
then H is the top-left hand corner of P †n,kHKP

†
n,k and P †n,k is obviously unitary. By Theorem 2.3 and

manipulating a few indices and reciprocals then it is easy to get Corollary 2.2.

4 Bounds and Expressions for the Trace of the Neumann-to-Dirichlet Map and
Response Matrix

A concept now useful is the concept of the trace of a matrix:

Definition 4.1. The trace of a matrix M ∈ Mn, denoted trM, is defined to be the sum of the diagonal
entries in M ; that is, trM =

∑n
i=1Mii.

It is not difficult to see that the trace operator is commutative and linear. But that implies that the trace
is similarity invariant, and so by Schur’s unitary decomposition theorem ([3],) we get that if {λ1, . . . , λn}
are the eigenvalues of M, then trM =

∑n
i=1 λi. There are some straightforward bounds, given previous

estimates:

Proposition 4.1. If K is a Kirchhoff matrix with associated Neumann-to-Dirichlet map HK , and Λ is
a response matrix arising from taking the Schur complement of a principle submatrix of K with K, with
associated Neumann-to-Dirichlet map H, then

trK ≥ trA ≥ trΛ (5)

and
trHK ≥ trH. (6)

where A is as in Equation 1.

Proof. The first bound follows directly from Corollary 2.5 and the fact that BC−1BT is positive semi-definite
as in the proof of Corollary 2.5, and the second bound follows immediately from Proposition 3.1 and Theorem
2.1.

With notation as in Equation 4, by analogy with Lemma 3.5 we see that the last k rows and columns of
A are zero; hence trH = trH̃. But

tr(A) = tr
(
Pn,kHKP

T
n,k

)
= tr

((
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
HK

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)T)

= tr

[
HK

((
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)T (
In−k

1
n−k1n−k,k

0k,n−k 0k,k

))]
.

9



Another elementary calculation shows that(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)T (
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
=

(
In−k,n−k

1
n−k1n−k,k

1
n−k1k,n−k

1
n−k1k,k

)
.

Write

HK =

(
AH BH
BTH CH

)
where AH is (n− k)× (n− k) dimensional. Then

HK

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)T (
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
= HK

(
In−k,n−k

1
n−k1n−k,k

1
n−k1k,n−k

1
n−k1k,k

)
=

(
AH BH
BTH CH

)(
In−k,n−k

1
n−k1n−k,k

1
n−k1k,n−k

1
n−k1k,k

)
=

(
AH +BH

1
n−k1n−k,k 0n−k,k

BTH + CH
1

n−k1k,n−k 0k,k

)
.

as HK has row-sum zero. Hence:

Proposition 4.2. Let HK be decomposed as above. Then trH = tr(AH +BH
1

n−k1n−k,k).

However, we cannot find any way to bound trH in terms of only trAH because the non-diagonal entries
of HK are not necessarily non-positive.

5 ”Expressions” for the Eigenvalues of the Response Matrix

An ”Expression” for the Eigenvalues of the Interiorized Matrix

Here we give an actual expression for the eigenvalues of the interiorized matrix in terms of the eigenvalues
and eigenvectors of the original matrix, although the expression is pretty horrible and probably useless. We
use notation as above. Assume v is an eigenvector of H with eigenvalue λ 6= 0 (which corresponds to the
reciprocal of an eigenvalue for the response matrix with the last vertex interiorized). We make it a vector
of length n by appending a 0 to it. Let {φ1 = 1, φ2, . . . , φn} be orthogonal eigenvectors of the original
matrix, with corresponding eigenvalues {0, λ2, . . . , λn} (we note that the last n−1 of these correspond to the
reciprocals of the eigenvalues of the Kirchhoff matrix). Then v =

∑n
i=2 aiφi, as by Corollary 1.2 it has row

sum zero and so the coefficient of 1 must be zero. We also note that as the last row and column of PnH
′PTn

is zero, we have that v (with the added zero) is an eigenvector of PnH
′PTn . Finally, we also let {bj}nj=1 be

the unique scalars so that en =
∑n
i=1 bjφj . By Lemma 3.6, as the nth entry in v is zero, PTn v = v, so

λv = PnH
′PTn v = PnH

′v = Pn

(
n∑
i=2

aiλiνi

)
.

If φi = [φi1, φi2, . . . , φin]T , let φ̃i be the length n− 1 vector [φi1, φi2, . . . , φi(n−2), φi(n−1), 0]; that is, φ̃ is
just the result of replacing the last entry in φ with zero. We note that

Pnφi = φ̃i +
φin
n− 1

1̃;

hence

λv =

n∑
i=2

aiλi

(
φ̃i +

φin
n− 1

1̃

)
.

10



However, φ̃i = φi−φinen = φi− (φin
∑n
j=1 bjφj), so plugging this expression into the top expression, we

get that as φ1n = 1

λv =

n∑
i=2

aiλi

φi −
φin n∑

j=1

bjφj

+
φin
n− 1

1−

 n∑
j=1

bjφj

 .
Rearranging, we get that

λv = 1

(
− nb1
n− 1

n∑
i=2

aiλiφin +
1

n− 1

n∑
i−2

aiλiφin

)
+

n∑
i=2

φi

(
aiλi −

nbj
n− 1

n∑
i=2

aiλiφin

)
.

As v has row sum zero, this gives us that either
∑n
i=2 aiλiφin = 0 or b1 = 1

n ; a curious result, but in any
case the point is that the coefficient of 1 must be zero (because v has row sum zero), so

λv = λ
∑
i=2

aiφi =

n∑
i=2

φi

(
aiλi −

nbj
n− 1

n∑
i=2

aiλiφin

)
,

so by orthogonality

λai = aiλi −
nbj
n− 1

n∑
i=2

aiλiφin

for all 2 ≤ i ≤ n. Hence, if we let Ω be the (n− 1)× (n− 1) dimensional matrix so that

Ωij =

{
−nb(j+1)

n−1 λ(i+1)φ(i+1)n if i 6= j;

λ(i+1) −
nb(j+1)

n−1 λ(i+1)φ(i+1)n if i = j.
(7)

(we have to shift everything by one because previously we were starting with indexing at 2) for 1 ≤ i, j ≤ n−1,
then every non-zero eigenvalue of H is an eigenvalue of Ω, and if v is a non-constant eigenvector for H,
letting v′ be the length n vector whose first n − 1 entries are those in v and whose last entry is zero, then
if v′ =

∑n
i=2 aiφi, then [a2, . . . , an]T is an eigenvector for Ω. It is easy to see that these arguments are

reversible; hence if [a2, . . . , an]T is an eigenvector for Ω so that v =
∑n
i=2 aiφi has last entry zero (it is also

quite trivial that the dimension of the eigenvectors of Ω which do not satisfy this property is exactly 1, as
the other n− 2 dimensions are taken up by the coefficients of eigenvectors of H) with eigenvalue λ, then λ
is an eigenvalue of H and ṽ is its corresponding eigenvector.

An ”Expression” for the Eigenvalues of a General Neumann-to-Dirichlet Map

The same ideas as the ones used in the previous section can actually be used to get a matrix in terms of the
eigenvalues and eigenvectors of the Kirchhoff matrix whose eigenvalues are the eigenvalues are exactly those
for the Neumann-to-Dirichlet map. As can be expected, this matrix is even worse than the one given above,
but nonetheless it gives an almost-closed form expression for the eigenvalues and eigenvectors of the response
matrix in terms of those for the Kirchhoff matrix. Let HK be the Neumann-to-Dirichlet map arising from
the Kirchhoff matrix and H the Neumann-to-Dirichlet map after k vertices have been interiorized. By the
calculations done in 2.1, we get that the non-zero eigenvalues of H are precisely the nonzero eigenvalues of(

In−k
1

n−k1n−k,k
0k,n−k 0k,k

)
HK

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)T
.

Again, let {1, φ2, . . . , φn} be an orthogonal set of eigenvectors for HK , with corresponding eigenvalues {λ1 =
0, λ2, . . . , λn}. Let v be any non-constant eigenvector of H with eigenvalue λ and extend it to be of length
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n by appending k zeroes onto it, and relabel this extended eigenvector to be v. Write v =
∑n
i=2 aiφi, where

again the coefficient of the constant term must be zero because by Corollary 1.2 v has row sum zero. We
note that because its last k entries are zero and it has row sum zero,(

In−k
1

n−k1n−k,k
0k,n−k 0k,k

)T
v = v

just as in the case with one interiorized vertex. Hence as λv = Hv, (these are the n − k sized vs without
zeroes appended) we have that

λv =

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
HK

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
v

=

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
HKv

=

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)( n∑
i=2

aiλiφi

)
.

As before, if w is a vector, let w̃ be the vector with the last k entries zero but with the first n − k
entries matching those in w. Furthermore, let ej =

∑n
l=1 b

j
lφl be its unique representation in terms of the

eigenvectors of HK . Then we note that for all φi, we have that

(
In−k

1
n−k1n−k,k

0k,n−k 0k,k

)
φi = φ̃i +

1

n− k

 n∑
j=n−k+1

φij

 1̃,

but

φ̃i = φi −
n∑

j=n−k+1

φijej = φi −
n∑

j=n−k+1

φij

(
n∑
l=1

bljφl

)
= φi −

n∑
l=1

φl

 n∑
j=n−k+1

bljφij

 .

Let ωil =
∑n
j=n−k+1 b

l
jφij and σi =

∑n
j=n−k+1 φij . Then(

In−k
1

n−k1n−k,k
0k,n−k 0k,k

)
φi = φ̃i +

1

n− k
σi1̃

= φi −
n∑
l=1

ωilφl +
1

n− k
σi

(
φ1 −

n∑
l=1

ω1lφl

)
,

so (
In−k

1
n−k1n−k,k

0k,n−k 0k,k

) n∑
i=2

aiλiφi =

n∑
i=2

aiλi

[
φi −

n∑
l=1

ωilφl +
1

n− k
σi

(
φ1 −

n∑
l=1

ω1lφl

)]
.

Rearrange the above so that it is in a standard basis representation for v in terms of the eigenvectors of HK .
As the above expression is equal to λv the coefficient for φ1 = 1 must be zero, and for i ≥ 2 the coefficient
of φi is

aiλi −
n∑
p=2

apλpwpi −
σiw1i

n− k

n∑
p=2

apλp

12



so for all i,

λai = aiλi −
n∑
p=2

apλpwpi −
σiw1i

n− k

n∑
p=2

apλp.

Hence if we consider the (n− 1)× (n− 1) dimensional matrix Ω given by

Ωij =

 −λ(i+1)

(
ω(i+1)(j+1) +

σ(j+1)w1(j+1)

n−k

)
if i 6= j;

λ(i+1) − λ(i+1)

(
ω(i+1)(j+1) +

σ(j+1)w1(j+1)

n−k

)
if i = j.

(8)

for 1 ≤ i, j ≤ n − 1 then the non-zero eigenvalues of Ω are eigenvalues of H, and if [a2, . . . , an] is an
eigenvector of Ω with the last k entries of v =

∑n
i=2 aiφi zero (which must occur for a set of eigenvectors of

Ω of dimension n− k), then the first n− k entries of v form an eigenvector of H and the last k entries are
zero. Hence:

Theorem 5.1. Let K be a Kirchhoff matrix with eigenvectors {φ1 = 1, φ2, . . . , φn} and corresponding
eigenvalues {ν1 = 0, ν2, . . . , νn}. Let λi = 1/νi for all 2 ≤ i ≤ n, and let Ω be as in Equation 8. Then
every eigenvalue of the response matrix for the network with the last k vertices in the order induced by the
Kirchhoff matrix being interior vertices is a nonzero eigenvalue of Ω, and if λ is an eigenvalue of Ω with
corresponding [a2, . . . , an] with the last k entries of

∑n
i=2 aiφi zero, then 1/λ is an eigenvalue of the response

matrix.

It would be nice to see how the eigenvalues of Ω which are not eigenvalues of H relate to anything;
however, because of the complicated nature of the matrix, even for just one interiorizing step, the author
cannot find a good relation.

6 A Green’s Function Representation

Let n = |V | and {φ1, φ2, . . . , φn} the orthonormal eigenvectors of K so that if {λ1, λ2, . . . , λn} are the
corresponding eigenvalues, λ1 = 0. We primarily use a Borg-Levinson-like result due to Ian Zemke (the
source paper contains a typo although the proof is unchanged; the sum should be from i = 2 to n, not i = 1
to n):

Lemma 6.1. [7] Suppose f : ∂V → R be so that
∑
y∈∂V f(y) = 0. Then if we define u : V → R by

u(x) =
∑
y∈∂V

f(y)G(x, y)

where

G(x, y) = φ1(x)φ1(y) +

n∑
i=2

φi(x)φi(y)

λi

then u is γ-harmonic and Ku|∂G = f.

Suppose φΛ is an eigenvector of Λ with eigenvalue λΛ 6= 0. Then if we let ψ be so that v = [φΛ, ψ]
T

is

γ-harmonic, we have that Kv = [λΛφΛ, 0]
T
.

In the notation of Lemma 6.1, let f = λΛφΛ. By Corollary 1.2, this has row-sum zero, and so u is a
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γ-harmonic function with current f on the boundary. Furthermore, we see that

u(x) =
∑
y∈∂V

λΛφΛ(y)G(x, y) = λΛ

∑
y∈∂V

φΛ(y)G(x, y)

= λΛ

∑
y∈∂V

φΛ(y)

(
1

n
+

n∑
i=2

φi(x)φi(y)

λi

)

= λΛ

 1

n

∑
y∈∂V

φΛ(y) +
∑
y∈∂V

φΛ(y)

(
n∑
i=2

φi(x)φi(y)

λi

)
= λΛ

∑
y∈∂V

φΛ(y)

(
n∑
i=2

φi(x)φi(y)

λi

)

= λΛ

n∑
i=2

φi(x)

λi

∑
y∈∂V

φΛ(y)φi(y)

 .

Remark 6.1. Another way to get formula (4) above is by the calculation made in section 1.4. Indeed, we note
that the coefficient of each φΛ(y) is merely the corresponding entry in the Neumann-to-Dirichlet map when
we interpret the Kirchhoff matrix as a response matrix, as by Proposition 3.1 the eigenvectors are preserved
and the eigenvalues are inverted (except the zero eigenvalue, which remains unchanged).

By the uniqueness of the solution to the Neumann problem, we know that u is the unique γ-harmonic
function which satisfies Ku|∂V = λφ up to a constant. As we know that φΛ is an eigenvector for Λ with
eigenvalue λΛ so v also solves the Neumann problem, we have the following:

Proposition 6.2. If u is as above we have that u = v + c1, for some scalar c ∈ R. In particular, we have
that if x, y ∈ V then u(x)− u(y) = v(x)− v(y).

It is quite difficult, it seems, to get a good estimate for the c in Proposition 6.2. However, we do note
that by the fourth line above we get that

∑
x∈V

u(x) = λΛ

∑
y∈∂V

φΛ(y)

(
n∑
i=2

φi(y)

λi

(∑
x∈V

φi(x)

))
= 0,

so u has row sum zero; therefore in general it is not the case that c = 0. However, that implies that if we let

c =
∑

x∈intV

u(x) = λΛ

∑
y∈∂V

φΛ(y)

 n∑
i=2

φi(y)

λi

 ∑
x∈intV

φi(x)


then ũ = u+ (c/|∂V |)1 does in fact have boundary row sum zero. Hence:

Proposition 6.3. ũ = v is the unique solution of the Neumann problem with
∑
x∈∂V v = 0. Hence ũ|∂V =

φΛ.

A Resulting Bound

Let a ∈ ∂V and {bj}kj=1 ⊂ V with abj ∈ E and abj being the only connections for a, with conductance γj .
With notation as above, we now assume that φΛ is normalized, and we note that as φΛ is an eigenvector for
Λ, we have that

k∑
j=1

γj(φΛ(a)− ψ(bj)) =

k∑
j=1

γj(u(a)− u(bj)) = λΛφΛ(a).
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Using the expression derived above for u, we get that the above implies that

∑
j=1

γj

λΛ

n∑
i=2

φi(a)− φi(bj)
λi

∑
y∈∂V

φΛ(y)φi(y)

 = λΛφΛ(a)

so if we cancel the λΛs and let γ =
∑
j γj , we get that

φΛ(a) =

k∑
j=1

γj

 n∑
i=2

φ(a)− φi(bj)
λi

∑
y∈∂V

φΛ(y)φi(y)


so

|φΛ(a)| = λΛ

∣∣∣∣∣∣
k∑
j=1

γj

 n∑
i=2

φi(a)− φi(bj)
λi

∑
y∈∂V

φΛ(y)φi(y)

∣∣∣∣∣∣ (9)

≤
k∑
j=1

γj

n∑
i=2

∣∣∣∣∣∣ (φi(a)− φi(bj))
λi

∑
y∈∂V

φΛ(y)φi(y)

∣∣∣∣∣∣ (10)

≤ λΛ

k∑
j=1

γj

n∑
i=2

2

λi
|φΛ||φi| (11)

≤
k∑
j=1

γj

n∑
i=2

2

λi
= 2γ

n∑
i=2

1

λi
(12)

by normality and the fact that conductances and the eigenvalues are positive. I’m not sure how useful this
bound is, however.

7 Work in Progress

Here we present several ideas the author had which did not result in anything; however, the author thinks
that these ideas probably warrant future research.

7.1 Characterizing the Eigenvalues of Kirchhoff Matrices

Here we consider this problem: Let {φ2, φ3, . . . , φn} be n − 1 orthonormal eigenvectors with all row-sums
zero. What {λ2, . . . , λn} would, after diagonalizing with respect to 1 and the above collection of eigenvectors,
create a valid Kirchhoff matrix?

Proposition 7.1. Let H be as in Proposition 1.3. For each i, j, there exists a k ≥ 2 so that φkiφkj 6= 0.
Hence Hij changes linearly with λk (if we keep every other λj constant) with slope φkiφkj.

Proof. Suppose φkiφkj = 0 for all k ≥ 2. Let Vi = {φk : φki = 0} and define Vj = {φk : φki 6= 0, φkj 6= 0}.
For each φ ∈ Vi, Vj make the n − 2-length vector vk created by omitting both φki and φkj , and redefine Vi
and Vj to be their projections onto this space. By their constructions, every vector in Vi is orthogonal to
every vector in Vj ; hence as their spans are independent vector spaces on an (n − 2) sized vector space, if
every vector in Vi is linearly independent of every other vector in Vi, and similarly for Vj , then this is a n−1
dimensional spanning set for a n − 2 dimensional vector space, which is impossible. Suppose then without
loss of generality v1 ∈ Vi and v1 =

∑k
r=1 avv for some scalars av, where k = |Vi|. But as for any v ∈ Vi we

have that if φ is the corresponding eigenvector it came from as φi = 0 by assumption and φ is orthogonal to
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1, it must be the case that φj = −
∑
p 6=i,j φp = −

∑n−2
p=1 vp. Plugging this into the linear dependence we see

that as

n−2∑
p=1

v1p =

k∑
r=1

av

n−2∑
p=1

vrp,

so therefore as φi = 0 for all φ ∈ Vi, we have that φ1p =
∑k
r=1 avφrp for every p; hence the φ were originally

linearly independent, which is impossible as the original eigenvectors were orthogonal and hence linearly
independent. The same argument for Vj shows that Vj is also linearly independent. This is a contradiction;
hence we are done.

Corollary 7.2. Let H be as in Proposition 1.3. If Hij = 0 for some i, j, there is some λk so that increasing
λk forces Hij < 0, and similarly there is a λk so that increasing λk forces Hij > 0.

Proof. By Proposition 7.1, there is a k ≥ 2 so that φkiφkj 6= 0. If φkiφkj < 0, we are done, as then increasing
λk decreases Hij by Proposition 1.3. If φkiφkj > 0, as λk > 0 for all k, this implies there must be some other
k′ ≥ 2 so that φk′iφk′j < 0. Hence we are done. The symmetric argument shows the second claim.

Hence if K is a Kirchhoff matrix for some network Γ = (G, γ), every edge in the complementary graph
of G imposes a bound on how we can vary some of the eigenvalues of matrices with the same eigenvectors
as K while keeping them valid Kirchhoff matrices.

A related idea to the above considerations is considering the type of eigenvectors are possible given a set
graph topology. If ij is in the complementary graph, for instance, then

Hij =

n∑
k=2

λkφkiφkj = 0;

therefore if α1β1, α2β2, . . . , αkβk are all edges in the complementary graph, we can construct the matrix
P with entries Pij = φi(αj)φi(βj) (we are switching into the functional notation), then the values in the
null-space of P correspond to lists of eigenvalues which preserve the graph topology given the eigenvectors.
In particular, if P is non-singular, then the only eigenvalues are the zero eigenvalues, which means that the
graph induced is the graph with no edges, which does not preserve the graph topology; hence P cannot be
non-singular; otherwise the vectors used to construct the matrix cannot be eigenvectors of a graph with the
desired graph topology. However, the author cannot find any good results about the nature of this matrix
P even in the special case when it is square, and in the general case, when it is not square (i.e. when there
are not exactly n edges in the complementary graph) then the situation is even worse.

7.2 Bounds on the Dirichlet Eigenvalues on Special Graphs

A more detailed discussion of the ramifications of Dirichlet eigenvalues is given in [5]. Here we will just
consider the problem of finding eigenvalues of C when K is block decomposed as in Equation 1. Any
eigenvalue of C we will call a Dirichlet eigenvalue and any associated eigenvector a Dirichlet eigenvector.
As C is positive definite ([2]), symmetric and real-valued, we have that all the eigenvalues of C are nonzero.
For some time the author attempted to find good expressions for these eigenvalues in terms of anything;
however, the only positive result he found was the following.

Proposition 7.3. Let G be a graph with no interior nodes which have only edges to other interior nodes.
Then if we let B be as in Equation 1, then if bi = maxj{−Bij} is the maximum for the absolute values of
the values in the ith column of B, then if λ is a Dirichlet eigenvalue, we must have λ ≥ mini{bi}.

Proof. Suppose to the contrary we had λ < mini{bi}. For the ith column of B let σ(i) be a value so that
Biσ(i) > λ. As Cii is the sum of the absolute values of the Cij for j 6= i plus the sum of the absolute values
of the Bij , we have that Cii−λ+

∑
j 6=i Cij = ξi > 0 still because λ < mini{bi} and thus is less than the sum
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of any column of B. But then note that if we construct the diagonal matrix D whose entry in the (i, i)th
place is ξi, we get that C† = C − λI − D is symmetric, has positive diagonal entries, row sum zero, and
non-diagonal entries negative; in short, C† is a Kirchhoff matrix, and C − λI = C† + D. But then for all
u ∈ Rn

uT (C − λI)u = uTC†u+ uTDu;

but uTDu ≥ 0 for all u and uTC†u ≥ 0; hence this matrix is positive definite, and so in particular det(C −
λI) > 0; so λ cannot be an eigenvalue of C.

We note that the above proof definitely fails to have any meaning if any interior node has only edges to
other interior nodes; while the proof still works, it merely states that every eigenvalue of C is nonnegative,
which we already know.
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