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Abstract

In this paper we investigate the sometimes pathological-seeming be-
havior of paths in CCCP graphs. We first demonstrate that there are
in fact CCCP graphs which do not have any circular pairs which induce
unique connections, something which seemed should have been true. How-
ever, in this paper we show that it is the case that if certain circular pairs
which are ”effectively adjacent” exist on a CCCP graph then it does in
fact induce a connection which must be unique. We define and explore
the conceps ”minimal cycles” and ”imposing sets of cycles” as well in the
process, and we give some corollaries of this result and further directions
for research.
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1 Introduction

Although we have seen that it is not true that there always exists unique paths
for circular pairs, for special graphs for which special circular pairs we can get
positive results. I use the definitions always adopted, with the notable exception
that circular pair implies that there is a connection, and CCCP being Connected
CCP.
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• We will denote the set of vertices by V and the set of edges E, and further
partition the vertices into ∂V , the set of boundary nodes, and intV to be
set of interior vertices.

• Two boundary nodes s, t are connected through the interior if there exists
a set of edges e1, e2, e3 · · · , en so that if j 6= 1, n then ej does not use any
boundary nodes. Such a connection we call a path.

• It is rather difficult to talk about graphs without some convention of order-
ing. Let E = (E1, E2, E3, · · · , En), in ascending order, S = (s1, s2, s3, · · · , sn)
in ascending clockwise order and T = (t1, t2, t3, · · · , tn), in counter-clockwise
ascending order, such that we know just by the Jordan Curve Theorem
that E1 must be the connection between s1 and t1. We will consistently
use this notation throughout this section.

• A circular pair (S, T ) are two sets of nodes of the same cardinality such
that S, T ⊂ ∂V and S ∩ T = φ, S and T both form an arcs through the
circle that do not intersect, and they are connected throught the interior,
which means there exists a set of set of edges E such that the sets of edges
are disjoint and for every si ∈ S and ti ∈ T there exists a unique E ∈ E
such that E forms a connection through the interior for si and ti. We then
denote E as a connection of (S, T ), and the set of such connections P. We
say that (S, T ) induces the connection E . We also say that the connection
is unique if there is only one member of the set P. I use this definition
because I only care about connected circular pairs for my spiel

• We then define a maximal circular pair to be a circular pair (S, T ) such
that if s′ is any boundary node adjacent to S and t′ is any boundary node
adjacent to T, then (S ∪ s′, T ∪ t′) is not a circular pair. We will omit
the maximal part and assume that the circular pairs we talk about are
maximal unless explicitly stated otherwise.

Now these are slightly non-standard definitions which are worth emphasizing
a little more and therefore not putting in a list.

Definition Two boundary nodes s1, s2 ∈ S in S surround n ∈ ∂V with respect
to S if by drawing an arc A from s1 to sk such that all the sj ’s are on the arc,
we can form a sub-arc A′ ∈ A such that s1 and s2 are on the boundary of that
arc with respect to the embedding circle and n ∈ A′ as well. We do not consider
s1 and s2 to be surrounded by s1 and s2 with respect to S.

Definition An adjacent circular pair (S, T ) of a circular planar graph G is a
circular pair for all adjacent nodes si, si+1 ∈ S,(resp. tj , tj+1 ∈ T ) the only
boundary nodes surrounded by si and si+1 with respect to S (resp. tj and tj+1

with respect to T ) are si and si+1 (resp. tj and tj+1) themselves.

Definition A effectively adjacent circular pair (S, T ) of a circular planar graph
G is a circular pair such that for all paths P = p1, p2, · · · , pk, for all adjacent
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nodes si, si+1 ∈ S and tj , tj+1 ∈ T, the paths pi and pi+1 (resp. paths pj
and pj+1) use all nodes (interior and boundary) which any boundary node n
surrounded by si and si+1 with respect to S (resp. surrounded by tj and tj+1

with respect to T) has an edge to.

Definition A open subgraph G′ of a graph G is a subgraph with boundary such
that if v ∈ intG′, then all the neighbors of v in G are in G′.

Will noticed that if G is recoverable, then imagining G′ as a little black box
inside G, it must follow that G′ is recoverable as well. Peter has some more
technical proof but this makes sense and Will’s never been wrong before.

It will also be useful to notate consistently cycles within graphs, as non-
unique paths can only exist if there are cycles present. We will consider cycles
to be subgraphs without boundary. Suppose Ek has a cycle for which it is the
lowest bound. Then we will associate that cycle below with Ek, and if Ek is the
upper bound of a cycle, we will associate that cycle above with Ek. Perhaps with
a slight abuse of notation, we will use C ∩ Ek to denote the largest subgraph
of C that is in Ek, and C \ Ek to be the largest subgraph of C which does not
intersect Ek.

In section 2 we demonstrate rather briefly that there is a CCP graph which
does not induce unique connections. In section 3 we develop the tools necessary
for the proof for the claim that all effectively adjacent circular pairs induce
unique connections which use all of thei interior nodes given in this paper,
while in section 3 we proceed with the proof for well-connected graphs and the
inductive step, and in section 5 we discuss easy implications of this result and
possible future research.

2 Non-Unique Connections on CCP Graphs

In the spirit of bad new first, we present this following theorem which I hoped
to be false.

Theorem 2.1 There exist critical circular planar graphs which do not have any
circular pairs which admit unique connections.

Proof We can directly produce a counter-example: take the rectangular graph
with five vertical boundary spikes and five horizontal boundary spikes and con-
tract the middle boundary spikes on the top, bottom, left and right. We will
call this grid with contracted spikes Gc. Because we could create this graph
bounary spike contraction from a critical graph, it is critical as well. We will
show that there is no maximal circular pair which admits a unique connection
on this graph. The most straightforward way to do this is to notice that the
four interior nodes circled in Figure 2 are ”disconnecting;” that is, if we delete
any one of these interior nodes, it disconnects the interior completely.

We define the four quadrants of boundary nodes; that is, the four on the top
left, the four on the top right, etc., which do not include the middle boundary
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Figure 1: Gc with boundary nodes colored in and interior nodes hollow

Figure 2: Gc with four disconnecting interior nodes circled
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nodes on the top, left, bottom, or right. Furthermore, we define the middle
boundary nodes to be the ones in between the quadrants. Consider a circular
pair (S, T ) for which we need to connect one boundary node v1 in one quadrant
Q1 to another boundary node v2 in a different quadrant Q2. Because those
four nodes are disconnecting these quadrants from each other, the path which
connects v1 to v2 must go through two of those four nodes; furthermore, if there
were no other paths starting or ending in either of those quadrants, it is evident
that this path cannot be unique. Therefore, (S, T ) must have at least one path
starting or ending in Q1 and starting or ending in Q2; however, then as the
connection from v1 to v2 used the disconnecting nodes for Q1 and Q2, these
other paths can at most start and end at the middle boundary nodes for that
quadrant, but then (S, T ) cannot be a circular pair.

Therefore no circular pair which admits an unique connection can have a
path which must start and stop in different quadrants. Now consider the circu-
lar pairs which have paths which start at middle boundary nodes, and assume
without loss of generality we are dealing with a path which starts at the top
middle boundary node. If it had to terminate at a boundary node at the bottom,
then it could potentially pass through both top disconnecting nodes, so paths
which use those disconnecting nodes or other nodes in the part which would be
disconnected by removing the disconnecting nodes must exist. These nodes can-
not be forced to pass below the top half of the graph, as they cannot terminate
below the middle nodes by above, and if they terminate at the middle nodes
there is no way the path could be forced to descend below. But then we see
we cannot add any paths which start and end in the bottom without breaking
circularity, so the path starting at the top middle node will be non-unique.

Suppose it must terminate at a boundary node in the upper quadrants or
the left central or right central boundary node. This path would if unfettered be
able to go through the disconnecting nodes for the upper left and the upper right
quadrants, so clearly some other paths must prevent that from happening. The
path on the left msut start in the top left quadrant, so can at most terminate
at the left-middle node, and similarly for the path on the right. But this means
that without breaking circularity we cannot add any paths starting and stopping
in the bottom half of the graph, so the bottom-most path starting or stopping
in the top-left hand quadrant can always have an alternate path.

Thus, the only circular pairs which can admit unique connections have paths
which all start and stop in the same quadrant. However, that means paths can
only involve two of the quadrants, but we can see that then we can add another
pair of boundary nodes; namely one middle node between the two quadrants
and the other middle node adjacent to one of the quadrants while maintaing
circularity and still having a path; therefore this final type of circular pair is
not maximal, and to make it maximal we must make the paths it induces to be
non-unique.

5



3 Minimal Cycles and Imposing Sets

The more annoying type of cycle for our purposes will be the type of cycle C
associated with Ek such that C\Ek is not part of any other cycle, as it introduces
no new nodes. We will call this type of cycle a minimal cycle associated with
the connection C and we require some ideas which in conjunction allow us to
ignore them.

Definition Let (S, T ) be a maximal circular pair which induces a connection
C = {C1, C2, . . . , Cn}. Then a cycle K1 whose lower bound is Ck will impose
a cycle K2 whose upper bound is Ck if K2 ∩ Ck ⊂ K1 ∩ Ck, and a set of
cycles {Kr,Kr+1, . . . ,Kp} in ascending order are imposing if the upper bound
of Ki is Ci+1 which is the lower bound of Ki+1 and Ki+1 imposes on Ki for all
r leqi ≤ p− 1, and Kp is minimal with respect to Cp.

Lemma 3.1 Suppose there is a set of cycles K = {Kr,K2, . . . ,Kp} which are
emposing on a connection C = {C1, C2, . . . , Cn} for an effectively adjacent max-
imal circular pair (S, T ). Then it cannot be that there is a boundary node n 6∈ S
surrounded by nodes in S with respect to S (or in T with respect to T, but it is
symmetric) such that it has an edge to Ki ∩ Ci−1.

Proof Suppose such a node existed between Cj−1 and Cj . Then, for all p ≥
i ≥ j, take Ci until it hits Ki, at which point follow Ki; these paths are disjoint
with each other and the original paths which we did not change because K is
imposing; and furthermore, this connection allows n to have an edge to an node
not used in the connection from (S, T ); hence (S, T ) is not effectively adjacent,
which contradicts the hypothesis.

Similarly, we can also easily prove the following lemma, along the same lines,
so we omit the proof.

Lemma 3.2 Suppose there is a set of cycles K = {K1,K2, . . . ,Kp} which are
emposing on a connection C = {C1, C2, . . . , Cn} for a maximal circular pair
(S, T ). Then it cannot be that there is a boundary node n 6∈ S, T between S and
T which has a connection to another boundary node n′ 6∈ S, T which requires
only nodes not used in C and K1 ∩ C1.

These are all the tools necessary for our proof.

4 Proof by Hugging Paths

The idea of a hugging path I think goes back to Tom. It is constructed for
our purposes thusly: given an effectively adjacent circular pair (S, T ), we will
construct the bottom hugging connection by, after adopting the conventions from
section 1, for s1 to t1, take the path such that if we remove all the nodes and
edges above this path, then there is no path from s1 to t1 through the interior.
Then, we proceed downwards: after having constructed the path from si to ti,
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take the path from si+1 to ti+1 such that if we remove all the nodes below and
including the path from si to ti previously constructed, and all the edges that
lead into it, as well as all the nodes above the path from si+1 to ti+1, there is
no other path through the interior from si+1 to ti+1. Each of these we will call
a bottom hugging path. It is quite evident that this notion is well-defined.

Now we show that there cannot be any minimal cycles on this path.

Lemma 4.1 If (S, T ) is an effectively adjacent circular pair on a CCCP graph
G, then there exist no minimal cycles associated with the bottom hugging con-
nection embedded below any of the bottom hugging paths.

Proof Take the bottommost instance such a minimal cycle could appear. Then
the bottom hugging connection would have used that, so it could not have been
a bottom hugging connection.

Although this may seem obvious, this is the key to the next, more difficult,
lemma, about minimal cycles on the other side.

Lemma 4.2 If (S, T ) is an effectively adjacent circular pair on a CCCP graph
with convention as above, then if C = {C1, C2, . . . , Cn} is the bottom hugging
connection in ascending order, then there exist no minimal cycles embedded
above Cj , for any 1 ≥ j ≥ n.

Proof Suppose there was a cycle Kj embedded above Cj . By criticality, there
exists some other circular pair (S′, T ′) which induces a connection C′ = {C ′1, C ′2, . . . , C ′ν}
which must use Kj \Cj . Denote the path which goes through Kj \Cj C ′mj

. Then
another path C ′mj−1

must have forced it to use this minimal cycle by using nodes
in Kj ∩Cj . This path must intersect Cj−1 to enter Cmj

∩Cj : if it starts above
or at sj , it cannot use a minimal cycle on Cj to enter Kj ∩ Cj as then by the
Jordan Curve Theorem that minimal cycle would have to be embedded below
Cj , which by 4.1 cannot happen. If it starts at a node surrounded by sj and
sj−1 with respect to S then again by 4.1 it cannot use a minimal cycle to enter,
and if it had an edge directly into Kj ∩ Cj , by treating {Kj} as an imposing
set, by 3.1 this cannot happen, and if it starts at or below sj−1 again by 4.1 it
cannot enter by a minimal cycle. By this same logic, to exit Kj ∩ Cj , it must
intersect Cj−1, and at a different node. Now we will begin to construct an im-
posing set, with Kj being the cap. The next one starts where C ′mj−1

intersects
Cj−1 to enter Kj ∩Cj , (which we just showed must happen) and is composed of
the path on Cj−1 between the two nodes used to enter and exit Kj ∩Cj , as well
as the path that Cmj−1 takes after it enters Kj ∩ Cj until it exits, and denote
this Kj−1. This is imposed on by Kj by construction.

We now proceed inductively downwards. Suppose we have made this impos-
ing set capped by Kj and so far with its bottom at Kk, which is bounded above
by Ck. Suppose also that there is a path C ′mk

which must use Kk \Ck. Then we
will show there is another one so embedded below Ck. We have already shown
the base case. Now now show the inductively case. The only reason why C ′mk

could not have used Kk ∩ Ck is because the next one C ′mk−1
must have used
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some nodes in it. By the same logic as above if it starts at or above sk or at or
below sk−1 because there are no minimal cycles below Ck it must enter Kk∩Ck
by Ck−1; if it starts embedded between sk and sk+1 by again this same logic
it could not use a minimal cycle to enter, and by 3.1 it could not use an edge
directly into Kk ∩ Ck, so it too must intersect Ck−1 once to enter, and again
once to exit, so constructing the cycle as we did before, we see that we have
proven the inductive step.

Hence, by this logic, there is an imposing set Q = {K1,K2, . . . ,Kj} which is
capped by Kj , and whose bottom-most member is bounded below by C1, and
C ′m1

must use K1 \C1. The only reason it must use that is that part of K1 ∩C1

must be used by another path C ′f . This new path cannot start at or above s1,
as then it would have to use a minimal cycle below C1 to enter K1 ∩C1, which
it can’t. It must therefore start and end (the logic is symmetric) below s1 and
t1, respectively. Furthermore, C ′f cannot intersect C1 at any point outside of
K1 ∩ C1 because again, if it did, it would have to use a minimal cycle to enter
K1∩C1. Hence by 3.2 (S, T ) cannot be maximal, which is a contradiction.

Now as there cannot be any minimal cycles, we have reduced the pathologies
which can occur on these hugging paths.

Corollary 4.3 If (S, T ) is an effectively adjacent circular pair on a CCCP
graph, then the bottom hugging connection is the only connection between S and
T.

Proof If there is any other path, by taking the symmetric difference between
the two we see that this can only occur if this new path uses cycles. There are
no minimal cycles, so all these cycles must intersect at least two bottom hugging
paths. In particular, there are no cycles below the bottom-most hugging path
and no cycles above the topmost bottom hugging path, so the alternate path
from s1 to t1 must intersect C2, so s2 to s2 in this alternate connection must
intersect C3, and continuing inductively sn−1 to tn−1 must intersect sn to tn,
so the alternate path from sn to tn must use some cycle above that, which does
not exist.

Hence we have uniqueness of connections. Now it is easy to show that every
interior node must be used.

Corollary 4.4 If (S, T ) is an effectively adjacent circular pair on a CCCP
graph then the unique connection uses every interior node.

Proof Suppose there are some nodes not used by that connection. By partition-
ing the graph into pieces that are between the paths used by E , for each j create
the open subgraph whose interior nodes are the interior nodes bounded and
not used by Ej and Ej+1 and which does not have any boundary-to-boundary
edges. Call that Nj , with Nn being the open subgraph whose interior vertices
are all which are above En, and N0 the open subgraph whose interior vertices
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are all below E1, both times excluding boundary-to-boundary nodes. By con-
sidering connected subgraphs of this open subgraph Nj we will assume that Nj
is connected.

If j 6= 1, n, we know that Nj must have at least two boundary nodes, oth-
erwise there would be a resistor attached to nothing which we know is not
recoverable. Because the maximal pair is effectively adjacent, Nj cannot con-
nect to any boundary nodes in G other than possibly the ones in Ej and Ej+1. If
N joins Ej twice, then there is a cycle of nodes not used by E , so the connection
is not unique, so N must join Ej once and Ej+1 once. Furthermore, we know
that it cannot join Ej or Ej+1 anywhere else for again we would have a cycle
(as Nj is connected and has no boundary-to-boundary edges) which would im-
ply non-uniqueness, which by 4.3 cannot happen, hence Nj has at exactly two
boundary nodes. But as Nj is recoverable and the only critical graphs with only
two boundary nodes have only two nodes total. Therefore Nj cannot have any
interior nodes at all, which contradicts the construction.

If j = 0, n, note that no two boundary vertices not in S or T can be connected
through Nj by maximality, so we can assume by taking connected subgraphs
that Nj only uses one of the boundary nodes not in (S, T ). Now if Nj had three
boundary vertices, again there would not be a unique connection, so it can have
at most two, and again this implies that Nj has no interior vertices, so the
partitioning (that is, the path from (S, T )) must use all the interior vertices.

5 Conclusion

There is an obvious consequence of this, which is what I had wanted to show
initially.

Corollary 5.1 All adjacent circular pairs induce unique connections which use
all the interior nodes.

Proof All adjacent circular pairs are effectively adjacent.

Furthermore, we can finally show that minimal cycles, which cause so much
pain, do not exist on effectively adjacent circular pairs.

These two corollaries were very cathartic for the author. It is unclear at
the moment exactly what implications this has for recoverability, still, it is
an interesting result. It is unclear exactly how to generalize these results. The
author would be curious if there were a condition on critical graphs which would
guarantee the existance of a unique connection; this remains to be seen. If it
is a condition on the existance of circular pairs it must be stronger than just
effective adjacency; many graphs for instance that are Y-∆ equivalent to those
with effectively adjacent circular pairs only have circular pairs whcih are not
effectively adjacent but do induce unique connections.

Another possible area of research would be non-circular pairs; this seems
much harder as the crucial tool of the Jordan Curve Theorem goes away. Naive
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suggestions of generalizing this notion hugging paths which literally just hug
the top do not work unfortunately to produce nice behaving connections, and
it is unclear at least to the author how then one should proceed.
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