
The Construction of 2n to 1 Graphs

Cynthia Wu

University of Washington Mathematics REU 2012

Abstract. Independent cycles are created due to the presence of special quadri-
laterals called independent connectors in the R-Multigraph. It will be shown
that an independent cycle generates 2 sets of positive conductivities. It is
demonstrated as to how to create a 2n to 1 graph by forcing its R-Multigraph
to have n independent cycles.

Contents

1 Preliminaries 1

2 The Curtain Algorithm 9

3 The Layering Algorithm 15

4 The Compact Rectangle Algorithm 17

5 Further Research 18

1 Preliminaries

Definition 1. Given a R-Multigraph, let f0(x), f1(x), ..., fi(x), ...fn(x) satisfy
the response matrix condition for λj,k. So λj,k = f0(x) + f1(x) + ... + fi(x) +
... + fn(x). A cycle is a path starting at f0(x) = x and going through a con-
nected sequence with at least 1 quadrilateral to fi(x) (where i 6= 0) only using
the response matrix condition and quadrilateral rules starting with f0(x) = x.
No other unknown edge in the R-Multigraph can be determined uniquely by
knowing f0(x) = x and the response matrix. See [1] for another definition.

Definition 2. The length of a cycle is the number of quadrilaterals in its path.
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Example 1. Here is an example of a cycle beginning at f0(x) and ending at
f5(x).

A cycle of length 3

The cycle starts at f0(x) and goes through 3 quadrilaterals to f5(x) using the
response matrix condition and the quadrilateral rules generated by f0(x) = x.

f0(x) = x

f1(x) =
λ0,2λ1,4

f0(x)

f2(x) = λ2,4 − f1(x)

f3(x) =
λ2,3λ4,5

f2(x)

f4(x) = λ3,5 − f3(x)

f5(x) =
λ0,3λ1,5

f4(x)

Example 2. Here is an example of two cycles both of length 3.

Two cycles both of length 3
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Cycle One

f0(x1) = x1

f1(x1) =
λ1,2λ0,4

f0(x1)

f2(x1) = λ2,4 − f1(x1)

f3(x1) =
λ2,5λ3,4

f2(x1)

f4(x1) = λ3,5 − f3(x1)

f5(x1) =
λ1,3λ0,5

f4(x1)

Cycle Two

f6(x2) = x2

f7(x2) =
λ1,2λ0,4

f6(x2)

f8(x2) = λ1,4 − f7(x2)

f9(x2) =
λ4,6λ1,7

f8(x2)

f10(x2) = λ6,7 − f9(x2)

f11(x2) =
λ2,6λ0,7

f10(x2)

By the quadrilateral rule, it is also true that f1(x1) =
f6(x1)f7(x1)

f0(x1)
. However, this

equation cannot be used in cycle 1 since f1(x1) cannot be determined uniquely
by knowing f0(x1) = x1 and the response matrix.

Lemma 1. A cycle is always of length at least 3.

Proof. Suppose it is possible to have cycles of length less than 3. By definition,
a cycle must have length at least 1 quadrilateral. This leaves us to consider
cycles of length 1 and 2.

A cycle of length 1 has 1 quadrilateral in its path. However, since f0(x) and
f1(x) satistfy the response matrix condition, this contradicts with the very shape
of the quadrilateral.
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Since the vertices 0 and 1 appear twice in the same figure, this is not a
quadrilateral at all.

A cycle of length 2 has 2 quadrilaterals in its path.

All edges are unknown.

However, we cannot uniquely determine the fj(x)’s by just knowing the response
matrix and that f0(x) = x. This contradicts the definition of cycle.

Definition 3. Two cycles are independent if their paths share no fj ’s.

In example 2, cycle 1 and cycle 2 are independent. Although some λ’s are
shared, there are no fj ’s in common.

Independent cycles in R-Multigraphs are created by the presence of special
quadrilaterals called independent connectors.

Definition 4. An independent connector is a quadrilateral involved in the con-
struction of at most 2 independent cycles. An independent connector that is
involved in the construction of 2 independent cycles is called a 2-connector

whereas one that is involved in the construction of 1 independent cycle is called
a 1-connector.

Example 3. Examples of 2-connectors and 1-connectors are shown.

A 2-connector
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1-connectors

Note that other independent connectors can be formed from these examples by
a simple relabeling of vertices. For example,

These 1-connectors are the same after a relabeling of vertices.

These 1-connectors are the same after a relabeling of vertices.

Theorem 1. Suppose a graph’s R-Multigraph is a single cycle. Then the graph
is 2 to 1.

Proof. Suppose that the cycle is of length m ≥ 3. We label the cycle in the
following fashion:

The cycle is of length m.

Assume that f0(x) = x and obtain the following system of equations for the
cycle using the response matrix condition and the quadrilateral rules.
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Sign of Derivative Equation
+ f0(x) = x

− f1(x) =
λ0,2m−1λ1,m

f0(x)

+ f2m−1(x) = λ1,2m−1 − f1(x)

− f2(x) =
λ1,2m−2λ2,2m−1

f2m−1(x)

+ f2m−2(x) = λ2,2m−2 − f2(x)
.
.
.
− fm−2(x) =

λm−3,m+2λm−2,m+3

fm+3(x)

+ fm+2(x) = λm−2,m+2 − fm−2(x)

− fm−1(x) =
λm−2,m+1λm−1,m+2

fm+2(x)

+ fm+1(x) = λm−1,m+1 − fm−1(x)

− fm(x) =
λm−1,mλ0,m+1

fm+1(x)

Thus, Σ(x) = f0(x) + fm(x) = x + fm(x) = λ0,m. Assume fm(x) is a linear
term over a linear term. Thus, Thus, limx→∞ Σ(x) = limx→∞ x + f7(x) = ∞.
Similarly, limx→−∞ Σ(x) = −∞. Due to the assumption, a horizontal line can
only cross Σ(x) 0, 1, or 2 times throughout the whole graph.

Denote the singularity of fm(x) as y0. Any singularity of fm(x) is also a singu-
larity of Σ(x). It is explained in [1] why Σ(x) must have a positive singularity,
and since we only have y0 as the singularity for Σ(x), y0 must be positive.

Σ(x) is heavily dominated by fm(x) near its singularity, y0. Since fm(x) has a
negative derivative, Σ(x) must have a negative slope close to y0. Thus, we have
the following possible graph for Σ(x).

Behavior of Sigma

We call the area to the right of y0 Sector II and the area to the left Sector I.
Note that, at this point, this may not be the exact graph of Σ(x). We do not
know if Σ(x) is ever actually positive in Sector I. There is also the possibility
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that Σ(x) may have some negative values in Sector II.

To prove that the graph giving rise to the R-Multigraph with only one cy-
cle is 2 to 1, we must show that there exists a positive λ0,m (represented by
a horizonal line) which crosses Σ(x) exactly two times and both times within
the same sector. The crossings must also occur in the same sector for which all
fj(x)’s are positive. ([2])

From observation of the graph of Σ(x) above, one can draw a positive hori-
zontal line representing λ0,m in such a way that it crosses Σ(x) only twice and
in the same sector. We will suppose that these two crossings occur at x0 and
x1 where x0<x1.

Behavior of Sigma

Note that in Sector I, we have no guarantee that the positive horizontal line
represeting λ0,m would ever cross Σ(x) because we don’t know if Σ(x) will ever
actually be positive in Sector I.

What remains left to show is that all fj(x)’s are positive in Sector II.
Obviously, f0(x) = x is positive in Sector II since the x’s in Sector II are pos-
itive (recall y0 is positive). If f0(x) is positive in Sector II, it follows that

f1(x) =
λ0,2m−1λ1,m

f0(x)
is positive in Sector II also since λij ’s are positive.

The remaining equations take two alternating forms: a fraction form and a
subtraction form. If the λij ’s in the subtraction equation forms can be chosen
in a way such that each subtraction equation is positive in Sector II, the frac-
tion equations will be positive also in Sector II due to the dependency of the
equations.

Take an arbitrary equation in subtraction form. We will, for now, ignore the
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last two equations in the cycle.

fq(x) = λi,j − fr(x)

Note that fr(x) must be an equation in fraction form, so its derivative sign is
negative. Let λi,j = fr(y0)+Ci,j where Ci,j is some positive number. Since fr(x)
has a negative derivative, it must have a negative slope. Thus, fr(y0)>fr(x) if
y0<x. Thus, fq(x) is positive in Sector II.

Now we consider the last two equations in our cycle. Our choice of y0 as the
singularity will determine λm−1,m+1. Since y0 is the singularity of fm(x) =
λm−1,mλ0,m+1

fm+1(x)
, fm+1(y0) = 0. Now fm+1(x) = λm−1,m+1−fm−1(x). So fm+1(y0) =

λm−1,m+1 − fm−1(y0) = 0. Thus, λm−1,m+1 = fm−1(y0). By substitution,
fm+1(x) = fm−1(y0)−fm−1(x). So, in order for fm+1(x)>0, we need fm−1(y0)>fm−1(x).
Now fm−1(x) has a negative slope because it has a negative derivative. Thus,
fm−1(y0)>fm−1(x) if y0<x. Thus, fm+1(x) is positive in Sector II. It follows

then that fm(x) =
λm−1,mλ0,m+1

fm+1(x)
is positive in Sector II also since λij ’s are pos-

itive.

Thus, all fj(x)’s are positive in Sector II. The graph giving rise to the R-
Multigraph with only 1 cycle is 2 to 1.

It will be demonstrated that this theorem can be generalized. If we can con-
struct the graph such that its R-Multigraph consists of exactly n independent
cycles, then the graph is 2n to 1.

We will begin by showing various ways to construct R-Multigraphs with n in-
dependent cycles.
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2 The Curtain Algorithm

To construct a R-Multigraph with n independent cycles using the curtain algo-
rithm, the form of the R-Multigraph will be that of a curtain with a runner and
n− 1 drapes.

The runner is one cycle and the remaining cycles are drapes.

Suppose n is the number of independent cycles desired for the R-Multigraph.

Case 1: n = 1

There is only one runner and no drapes. The runner length must be at least 3.
Labeling on the left and right ends of the runner must be identical. All other
vertices must be labeled differently.

The one cycle is the runner.

The graph giving rise to this R-Multigraph is 2 to 1 by Theorem 1.
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Case 2: n = 2

There is one runner and one drape. The runner length must be at least 3.
The drape length must be at least 3 also (including the quadrilateral at the
intersection of the drape and runner). Labeling on the left and right ends of the
runner must be identical. Labeling on the top and bottom of the drape must
be identical. All other vertices must be labeled differently.

Although the drape intersects the runner at the leftmost quadrilateral in this
picture, the drape may be placed anywhere along the runner.

Note that the runner cycle and the drape cycle are independent cycles since there
would be no fj ’s in common if we were to write equations for each cycle. By
Theorem 1, the graph giving rise to this R-Multigraph is 22 to 1 because there
are two sets of positive conductivities per cycle and there are two independent
cycles to consider.
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Case 3: n = 3

There is one runner and 2 drapes. The runner length must be at length at
least 3. Each drape must be of length at least 3 (including the quadrilateral at
the intersection of the drape and runner). Labeling on the left and right ends
of the runner must be identical. Labeling on the top and bottom of each drape
must be identical. All other vertices must be labeled differently.

Although the drapes intersect the runner at the leftmost and rightmost
quadrilateral in this picture, the drapes may be placed anywhere along the
runner. Also, although this picture depicts the drapes to be of the same

length, drapes may be of different lengths.

If there is at least one quadrilateral separating the drapes, it is obvious that the
runner and drape cycles are independent. However, if the drapes are connected
to each other, it is not so obvious if they are independent.
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The drapes are connected together.

At first, it appears as if the drape cycles may not be independent due to the
fj ’s on the edges that connect the drapes such as f6 and f8. However, upon
careful examination, it is realized that f6 and f8 are completely determined by
our choices for λj,m, λp,g, λj,p, λh,m, λg,q, and λh,q.

By the quadrilateral rule,

f6 =
λj,mλp,g

λj,p

and

f8 =
λh,mλg,q

λh,q

Similarly, all the fj ’s on the edges that connect the drapes are completely de-
termined by our choices for certain λ’s. Thus, the drape cycles are indepen-
dent since they share no fj ’s. By Theorem 1, the graph giving rise to this
R-Multigraph is 23 to 1 because there are two sets of positive conductivities per
cycle and there are three independent cycles to consider.
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Case 4: n>3

There is one runner and n − 1 drapes. The runner length must be at least
n − 1. Each drape must be of length at least 3 (including the quadrilateral at
the intersection of the drape and runner). Labeling on the left and right ends
of the runner must be identical. Labeling on the top and bottom of each drape
must be identical. All other vertices must be labeled differently.

There may be gaps between drapes or there may not.

If there is at least one quadrilateral separating the drapes, it is obvious that the
runner and drape cycles are independent. By the previous case, we know that
if two drapes are connected to each other, they are still independent. But what
if more than two drapes are connected? Are the drapes still independent?

We will consider the case where three drapes are connected together. The
process of showing that these drapes are independent is similar for any number
of drapes that are connected together.
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Drapes may be of different length.

f6 and f17 are completely determined by our choices for λj,m, λp,g, λj,p, λh,t,
λq,s, and λs,t.

By the quadrilateral rule,

f6 =
λj,mλp,g

λj,p

and

f17 =
λh,tλq,s

λs,t

Once f6 and f17 are determined, however, it is easy to determine f8 and f17 by
the response matrix conditions.

f8 = λg,m − f6

and
f15 = λh,q − f17

Similarly, all the fj ’s on the edges that connect the drapes are completely de-
termined by our choices for certain λ’s. Thus, the drape cycles are indepen-
dent since they share no fj ’s. By Theorem 1, the graph giving rise to this
R-Multigraph is 2n to 1 because there are two sets of positive conductivities per
cycle and there are n independent cycles to consider.

14



3 The Layering Algorithm

Although the layering algorithm is similar to the curtain algorithm, the main
difference is the lack of a runner. Suppose n is the number of independent cycles
desired for the R-Multigraph.

Case 1: n = 1

There is only one layer. The layer length must be at least 3. Labeling on
the top and bottom ends of the layer must be identical. All other vertices must
be labeled differently.

There is one layer for one cycle.

The graph giving rise to this R-Multigraph is 2 to 1 by Theorem 1.
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Case 2: n ≥ 2

There are n layers. Each layer must have length at least 3. Labeling on the
top and bottom ends of the layers must be identical. All other vertices must be
labeled differently.

n layers for n independent cycles

At first, it appears as if the layer cycles may not be independent due to the fj ’s
on the edges that connect the layers. However, these layer cycles are independent
from one another by the same reasoning provided in the curtain algorithm. By
Theorem 1, the graph giving rise to this R-Multigraph is 2n to 1 because there
are two sets of positive conductivities per cycle and there are n independent
cycles to consider.
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4 The Compact Rectangle Algorithm

It is important to note that this algorithm can only be applied in the case that
we consider R-Multigraphs with 6 or more cycles. Suppose n is the number of
independent cycles desired for the R-Multigraph.

The R-Multigraph is a s x t rectangle where n = s + t and s, t ≥ 3. The
labeling on the left and right ends of rows are identical. The labeling on the top
and bottom ends of columns are identical. All other vertices must be labeled
differently. See the (3,3)-torus in [4] for an example of a R-Multigraph with 6
independent cycles constructed using this algorithm.

The number of rows is greater than or equal to 3. The number of columns is
greater than or equal to 3 also.

Although many λ’s are shared between cycles, these λ’s only show up in the
numerator portion of all fractional equations, thus not affecting the positivity
of the fj ’s. Although the cycles do not appear to be independent, they are
independent by the same reasoning provided in the curtain algorithm.
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5 Further Research

We have demonstrated various ways to construct R-Multigraphs with n inde-
pendent cycles so that the graphs giving rise to these R-Multigraphs are 2n to
1. It appears that there should be a similar way to construct R-Multigraphs so
that the graphs giving rise to them are 3n to 1, 4n to 1, and so forth.
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