
A Computer Algorithm for Finding the Dual of a Polar Network.

Sreekar M. Shastry

June 19, 2003

1 Introduction

In this paper I will discuss the problem of tiling a rectangle by squares and provide an algorithm
for creating a tiling given a certain type of graph called a polar network. This algorithm will use
the facilities provided by Mark Hoefer’s DrawNetwork package and will be implemented in the Java
programming language.

The algorithm works by taking the incidence relations and circular ordering of edges emanating
from each vertex in the given polar network and producing its polar dual. Once the Kirchoff matrix
of the dual is found, the Dirichlet problem can be solved on both the given network and the dual
to produce the tiling. See [3] for details.

2 Electrical Networks

An electrical network Ω consists of a graph Γ and a function γ. The graph consists of a set
of nodes (denoted V) and a set of edges (denoted E) which connect nodes. The set of nodes is
further divided up into a set of interior nodes (denoted int-Γ) and a set of boundary nodes (denoted
∂Γ). The function γ associates a number to each edge pq ∈ E, the conductance between two
nodes. Define a function v(p) to be the electric potential at node p and another function I(pq) as
the current flowing across the edge pq. Allow p ∼ q to mean q is a neighbor of p. By this I mean
that p and q are connected by only one edge.

By Ohm’s Law the relation I(pq) = γ(pq)(v(p) − v(q)) holds. If p ∈ int-Γ, by Kirchhoff’s
Law notice the following summation:

∑

q,p∼q

I(pq) =
∑

q,p∼q

γ(pq)(v(p)− v(q)) = 0

A function v(p) which satisfies the above equation for all p ∈ int-Γ is said to be γ − harmonic
or to have the averaging property.

1

2.1 Dirichlet Problem

I will be concerned with the forward or Dirichlet Problem. The problem is stated as follows:
given a potential function φ defined everywhere on ∂Γ, what is the γ−harmonic function v which
satisfies v(p) = φ(p) for all p ∈ ∂Γ? It is shown by [2] that there indeed is a solution and it is
unique. This problem can be solved directly by a system of equations.

2.2 The Solution of the Dirichlet Problem

Suppose Ω is a connected electrical network with n nodes numbered x1, ..., xn. The Kirchhoff matrix
K associated with Ω is constructed as follows.

(i) If i 6= j then Ki,j = −
∑

γij where we sum the conductance of all edges directly
connecting xi and xj . Thus if there is only one edge connecting xi and xj then Ki,j =
−γij . Or if xi is not a neighbor of xj then Ki,j = 0.

(ii) Ki,i =
∑

xi∼xj
γij , where we sum the conductance of all edges emanating from xi.

The Kirchhoff matrix is a mapping from voltages to currents. If we give a special ordering to
the nodes x1, ..., xn where the first sequence of nodes x1, ..., xd are all of the boundary nodes and
xd+1, ..., xn are all of the interior nodes, then the Kirchhoff matrix associated with these nodes can
be written as follows.

K =

[

A B
BT C

]

Given a potential function φ defined everywhere on the boundary given by

φ =

φ1

.

.

.
φd

we wish to find the function u defined everywhere on the interior given by

u =

ud+1

.

.

.
un

If we append u to φ, then we have a γ − harmonic function

v =

[

φ
u

]

which is the unique solution to the Dirichlet problem.

2

Remembering that K takes voltages to currents, we can multiply K by the γ − harmonic
function v and get the following current.

Kv =

[

A B
BT C

] [

φ
u

]

=

[

?
0

]

The lower portion of the current vector is zero because there are no sources of current in the interior
of the network. Doing matrix block multiplication we have

BTφ+ Cu = 0 or Cu = −BTφ

Let y = −BTφ then we wish to solve the linear system Cu = y. In [2], they showed that C is
a symmetric, positive definite matrix. Choleski factorization can now be used on C thus giving
C = LLT where L is a lower triangular matrix. Solve the linear system as follows.

LLTu = y

LTu = L−1y = z

y = Lz

Using forward substitution, we can quickly solve for z. Thus leaving

LTu = z

which can be solved quickly using backward substitution, thus we have obtained u and therefore v
is the unique solution to the Dirichlet problem.

3 Tiling Rectangles by Squares

3.1 Introduction

A dissection of a rectangle R into a finite number n of non–overlapping squares is called a squaring

of R of order n. The n squares are the elements of the dissection. “Element” also denotes the
length of the sides of the elements.

The problem of characterizing how the elements fit together is overcome by associating a graph
(called the “polar net”) with each squared rectangle. The placement of the elements of the rectangle
are found to be determined by the flow of electric current through this network.

3.2 The Network Associated with a Squared Rectangle

Given a squared rectangle R, consider the point–set formed by the horizontal sides of the elements of
R. Its connected components will be horizontal line–segments (each consisting of a set of horizontal
sides of elements of R); enumerate them as l1, l2, . . . , ln, where l1, ln are the upper and lower edges
of R. Place a point vi on the midpoint of li. For each element E in R, its upper edge will lie in

3

some li and its lower edge in some lj (i 6= j). Join the points vi, vj by an edge e. The points v1, vn
are the poles of the network. Let the north pole be vN = v1 and the south pole be vS = vn. This
graph is the polar network (p–net) of the rectangle R. It is clear that every p–net is planar and
that no circuit encloses a pole.

p–nets cannot contain loops, multiple edges connecting two vertices, or vertices with degree 1
or 2.

3.3 Construction of the Dual Network

Let P be the p–net associated with a rectangle R. The dual network P ′ is constructed as follows.
For each edge e ∈ P, draw the dual edge e′ as the perpendicular bisector of e. In each face fi in P,
place a vertex ui. Connect every edge e′ which has an end in fi to ui. Draw a circular boundary
around P which contains its poles. Even though the boundary does not consist of edges, consider
the regions defined by the boundary and the edges from pole to pole to be faces. Place two more
vertices in these faces and join the remaining unconnected endpoints of edges to these vertices.
These vertices are the poles of the dual network. See Fig. 1 for an example of a p–net and its dual.

Fig. 1. P with P ′ in dashed lines.

Let P = ({vi}, {ej}) and P
′ = ({uk}, {e

′

j}). If P has F faces then it is clear that |{e′j}| = |{ej}|
and |{vi}| = F + 2 is not necessarily equal to |{uk}|.

Let e = vrvs ∈ P, and have potentials Vr, Vs, and conductivity γrs, then the current flowing
across e is Irs = γrs(Vr − Vs). Let the potentials at the endpoints of e′ be Ir and Is such that
Irs = Ir − Is. The conductivity of e′ will then be 1/γrs.

4

Let C be a first cofactor of the Kirchhoff Matrix for P. It is known that all first cofactors
are equal and that the total current flowing in P is given by this first cofactor. Let the potential
drop between the poles of P be V and the total current and potential drop in P ′ be C ′ and V ′

respectively. Then C = V ′ and C ′ = V.
If all of the conductivities are taken to be unity, then C is also the number of spanning trees in

P. This is the well known Matrix–Tree Theorem.

3.4 The Correspondence between p–nets and Squared Rectangles

In a p–net for which the only sources and sinks of current are at the poles, it is easy to see that
the potential of each interior vertex lies between that of the poles. This fact implies that for every
interior vertex, all of the incoming currents are contained in an angle (in the plane) and all outgoing
currents are contained in the reflex of that angle. Suppose that at interior vertex vi, two outgoing
currents separate (in the plane) two ingoing ones. By Kirchhoff’s Law, since there are outgoing
currents there is a vertex at a lower potential, and similarly, since there are incoming currents,
there is a vertex at higher potential. Since potential reaches its maximum and minimum values at
the poles, each of the chains of higher and lower potential emanating from vi can be continued to
the poles. As the graph is planar, this means that a chain of increasing potential crosses a chain
of decreasing potential, i.e. that there exists a vj (i 6= j) such that its potential is both higher and
lower than the potential at vi. This is a contradiction, which proves that there do not exist saddle
points of current at a vertex in a p–net.

To show that p–nets correspond to squared rectangles, we first take all conductances to be one.
Suppose an edge e ∈ P has its endpoints at potentials V1, V2 and its dual e′ has its endpoints at
potentials V ′1 , V

′

2 . If V1 < µ < V2 then e comprises (, µ). If V ′1 < λ < V ′2 then e comprises (λ,).
If both relations hold, then e comprises (λ, µ).

Since the conductance is unity, V2−V1 = current in e = current in e′ = V ′2 −V ′1 . In a rectangle
R of height V and base C, for each edge e in P draw a square whose horizontal sides are at a
height V1, V2 above the base and whose vertical sides are at a distance V ′1 , V

′

2 to the right of the
left–hand vertical side. In [1] it is shown that the non–existence of saddle points of current implies
that for any given λ which is not equal to the potential of any node in P, there is a unique chain
of wires in P comprising (λ,). Similarly, there is a unique chain of wires in P comprising (µ,).
Thus for every (λ, µ) such that 0 < λ < C, and 0 < µ < V , with λ 6= the potential of any vertex
in P ′ and µ 6= the potential of any vertex in P, there is exactly one edge comprising (λ, µ). Thus,
the rectangle R is tiled completely and without overlap (except at the boundaries of the squares).

The intuitive reason that p–nets correspond to tiled rectangles is that the top and bottom sides
of the rectangle can be considered as sources of length and in the interior of the rectangle, length
is conserved, just as current would be in a network with two poles.

4 The Algorithm

Each vertex vi of P has associated with it a circular ordering of edges Ci = (e1, e2, . . . , edeg vi
). The

successor of an edge in Ci is defined as

5

succ(ej) =

{

ej+1, if 1 ≤ j < deg vi
e1, if j = deg vi

.

Ci is obtained by looking at the rectangular coordinates of the vertices {vj} adjacent to vi.
Graphically, a vertex vj is represented in the computer by a pair of rectangular coordinates (xj , yj),
relative to some fixed origin. First, write down a set of pairs Θ = {(vj , θj)} such that

θj = arctan

(

yj − yi
xj − xi

)

where vi = (xi, yi) is the vertex about which we want to find the circular ordering. Next sort Θ on
the θj and read off Ci. The ordering is arbitrary and is chosen to be counterclockwise.

If P = ({vi}, {ej}) and P
′ = ({uk}, {e

′

j}), then let the jth edge of both P and P ′ be represented
in the program by a quadruple of integers Xj = (p, q, p′, q′) such that e = vpvq and e′ = up′uq′ .
When P is input by the user the p and q fields of the Xj are set. The p

′ and q′ fields are initialized
so that Xj = (p, q, 2j − 1, 2j) See below.

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

Fig. 2. The initial state of the example of Fig. 1.

Edges in P are isomorphic to edges in P ′ so that each edge has a dual edge. This is not the
case for vertices, but I want to define the dual vertex of a vertex for the purposes of this algorithm.
Given an edge Xj = (p, q, p′, q′), the label of the dual vertex of a vertex in an edge is dv(vp, ej) = p′

and dv(vq, ej) = q′, and the label of the other dual vertex is by odv(vp, ej) = q′ and odv(vq, e) = p′

(Fig. 3). In this way, each edge is arbitrarily oriented according to which vertices are considered
the head and tail.

6

vp q

*v

v

vp

q

*

Fig. 3. Dual vertices.

To construct P ′, we first visit a vertex vi in the interior of P. Initially, vi would look like the
left side of Fig. 4. For every pair of edges ej , ek incident to vi such that ek = succ(ej), rename all
occurrences of dv(vi, ek) in the third or fourth fields of the the Xj to odv(vi, ej). After the loop
terminates, vi would look like the right side of the figure. We continue this process for each interior
vertex.

u

u

uu

u

u
1

2

34

5

6

v

e

j

k

e

je

ek= dv(v,)

= odv(v,)

uu

u

24

6

v

e

j

k

e

i i

Fig. 4. Action of the algorithm at an interior vertex.

This algorithm works because even though dv(v, e) arbitrarily assigns a dual vertex, it consis-
tently considers v to be the tail of a directed edge and does so at each vertex.

To construct the poles of the dual we first connect the north and south poles of P with two
edges. This new network is no longer a p–net but this procedure will result in the creation of the
polar dual of the original p–net, P. The edges will be denoted eN (north edge) and eS (south edge)
and will be placed into the circular orderings CN , CS about the poles as on the right side of Fig.
5. The graphical input of P will be restricted at the north pole as in the left side of Fig. 5 (the
north pole is at the origin). Similarly for the south pole. This will allow eN and eS to be inserted
correctly into CN by choosing the angles they make with vN to be between π−δ

2
and π+δ

2
. Similarly

for CS .

7

e NS
e

N

S
v

v

(π − δ)/2

δ

0π

(π + δ)/2

Fig. 5. Placement of eN and eS .

Now that eN , eS have been properly placed about the poles, we perform the same algorithm
about vN and vS that was performed at interior nodes except when eS = succ(eN) at vN and
eN = succ(eS) at vS . For our example, the result appears in Fig. 6 on the next page.

At this point P ′ has been constructed and all that remains is to identify uN ′ and uS′ . Initially,
eN = (N,S, α, β) and eS = (N,S, ω, ϕ), where the Greek letters denote arbitrary vertex labels.
After the algorithm has terminated, uN ′ will be uα (recalling that {uk} are the vertices of P ′)
because dv(vN , eN) = odv(vS , eN) = α. Similarly, uS′ will be uϕ.

Initially, |{uk}| = 2|{vi}|. When the algorithm is finished, many of the uk will have been
deleted. Let U = {uk1

, uk2
, . . . , ukm

} be the final set of vertices and {e′j} be the final set of edges
of P ′. The Kirchoff matrix of the dual is then

(K ′)ij =

deg uki
, if i = j

−1, if uki
ukj

∈ {e′j}

0, otherwise

.

8

N’S’u u

Fig. 6. Completely constructed dual.

5 Source Code

5.1 Dual.java

// Unfinished...

import java.*;

import Network;

import Edge;

import Matrix;

public class Dual

{

private static final int maxfaces = 100;

private static final int Graph = 0;

public Network D; // Dual

public int numEdges; // number of edges in N and NStar, number of squares

pubic int northnode, southnode, northedge, southedge;

public Edge[][] circOrder;

public int[] incCount; // these two go together

9

public int[][] adj;

public int[] indices;

public int[] imap;

public Edge[] edges;

public int numNodes, // number of vertices in N

numFaces; // number of faces in N, #V* = numFaces+2

public int numDualNodes;

// will be a numEdges x 3 array such that coords[i][1] will be the x

// coordinate of the upper left corner of the ith square,

// coords[i][2] will be the y coordinate, and coords[i][3] will be

// the length of the side of the square. this will be accessed by

// DrawNetwork when the user chooses to display the tiling

public int[][] coords;

public Dual(Network N, Point[] P)

{

// the N passed in already has the Dirichlet problem solved in it

numNodes = N.numNodes();

numEdges = edgecount(N);

findNSnodes(); // initializes northnode and southnode

initEdges(N); // prepare edges array

getOrdering(P); // initializes and puts ordering in circOrdering[][]

makeDual(); // stores results in edges[]

solveDualDirichlet();

makeTilingCoords(N);

}

public findNSnodes(Network N)

{

int node1, node2;

for (int i = 0; i < numNodes; i++)

if (N.onBoundary(i)) {

node1 = i;

break;

}

for (int j = i+1; j < numNodes; j++)

if (N.onBoundary(j)) {

10

node2 = j;

break;

}

if (N.volts(node1) > N.volts(node2)) {

northnode = node1;

southnode = node2;

} else {

northnode = node2;

southnode = node1;

}

}

public edgecount(Network N)

{

int num = 0;

// are arrays indexed starting at zero or one???

// visit every entry in the upper triangular part of the adjacency matrix

// and see if it is nonzero.

for (int i=0; i < numNodes; i++)

for (int j=i+1; j < numNodes; j++)

if (N.connected(i,j))

num++;

return num;

}

public initEdges(Network N)

{

edges = new Edge[numEdges+2];

adj = new int[numNodes][numNodes];

northedge = numEdges;

southedge = numEdges+1;

for (int i = 0; i < numNodes; i++)

for (int k = 0, int j = i+1; j < numNodes; j++)

if (N.connected(i,j)) {

edges[k].v1 = i;

edges[k].v2 = j;

edges[k].label = k; // looks superfluous, but isn’t

11

edges[k].connection = true;

adj[i][j] = adj[j][i] = k;

k++;

} else adj[i][j] = 0;

edges[northedge].v1 = edges[northedge].dv1 = northnode;

edges[northedge].v2 = edges[northedge].dv2 = southnode; // this will be N’

edges[northedge].connection = true;

edges[southedge].v1 = edges[southedge].dv1 = southnode;

edges[southedge].v2 = edges[southedge].dv2 = northnode; // this will be S’

edges[southedge].connection = true;

}

public getOrdering(Network N, Point[] P)

{

int i,j,k;

double theta;

circOrder = new Edge[numNodes][maxInc];

incCount = new int[numNodes];

for (i = 0; i < numNodes; i++)

{

k = 0;

for (j = 0; j < numNodes; j++)

if (N.connected(i,j) &&

(!(i == northnode && j == southnode) &&

!(i == southnode && j == northnode)))

{

theta = atan2(P[j].x-P[i].x, P[j].y-P[i].y)+PI;

circOrder[i][k].theta = theta;

circOrder[i][k].label = adj[i][j];

circOrder[i][k].v1 = i;

circOrder[i][k].v2 = j;

k++;

}

incCount[i] = k;

SortOnTheta(circOrder[i], incCount[i]);

}

// new Edge(edges[northedge]) ???

circOrder[northnode][incCount[northnode]+1] = edges[northedge];

circOrder[northnode][incCount[northnode]+2] = edges[southedge];

12

circOrder[southnode][incCount[southnode]+1] = edges[southedge];

circOrder[southnode][incCount[southnode]+2] = edges[northedge];

incCount[northnode] += 2;

incCount[southnode] += 2;

}

public SortOnTheta(Edge[] e, int num) // insertion sort

{

int lo = 0, up = num;

int i, j;

Edge temp;

for (i=up-1; i>=lo; i--) {

temp = e[i];

for (j=i+1; j<=up && (temp.theta > e[j].theta); j++)

e[j-1] = e[j];

e[j-1] = temp;

}

}

public makeDual()

{

connectDualEdges();

numDualNodes = getNumDualNodes();

makeIMap();

makeDualNetwork();

}

public connectDualEdges()

{

int i,j,p,q;

for (i = 0; i < numNodes; i++)

for (j = 0; j < incCounts[i]; j++)

{

p = circOrder[i][j].label;

q = circOrder[i][(j+1) % incCounts[i]];

if (!(p == northedge && q == southedge) &&

!(p == southedge && q == northedge))

updateDual(dv(i,p), odv(i,q));

}

}

13

public updateDual(int dv, int odv)

{

for (int i = 0; i < numEdges+2; i++) // +2 for boundary edges

if (edges[i].dv1 == dv)

edges[i].dv1 = odv;

else if (edges[i].dv2 == dv)

edges[i].dv2 = odv;

}

public int dv(int v, int j) { return edges[j].v1 == v ? dv1 : dv2; }

public int odv(int v, int i) { return edges[i].v1 == v ? dv2 : dv1; }

// N’ := S, S’ := N

public makeIMap()

{

indices = new int[MAXSIZE];

for (int i = 0; i < 2*numEdges; i+=2) {

indices[i] = edges[i].dv1;

indices[i+1] = edges[i].dv2;

}

sortIndices(indices, 2*numEdges);

fillMapArray();

}

public sortIndices(int[] array, int num) // insertion sort

{

int lo = 0, up = num;

int i, j;

int temp;

for (i = up-1; i >= lo; i--) {

temp = array[i];

for (j=i+1; j<=up && (temp > array[j]); j++)

array[j-1] = array[j];

array[j-1] = temp;

}

}

}

14

public fillMapArray()

{

int imap = new int[numDualNodes];

int j = 1;

imap[0] = indices[0];

for (int i = 1; i < 2*numEdges; i++)

if (indices[i] != indices[i-1]) {

imap[j] = indices[i];

j++;

}

// must put make the boundary nodes the 0 and 1 entry of the array

putBoundaryAtStart();

}

public int getNumDualNodes()

{

int x = new int[numNodes];

int num = 0;

for (int i = 0; i < numNodes; i++) x[i] = 0;

for (i = 0; i < numEdges+2; i++) // +2 for boundary edges

{

x[edges[i].dv1]++;

x[edges[i].dv2]++;

}

for (i = 0; i < numNodes; i++)

if (x[i] != 0)

num++;

return num;

}

// this takes the labels of the dual which are unordered to

// {1,2,...,numDualNodes}

public int getLabel(int n)

{

for (int i = 0; i < numDualNodes; i++)

15

if (imap[i] == n)

return i;

}

public makeDualNetwork() {

D = new Network;

D.addNode(true); // N’

D.addNode(true); // S’

for (int i = 2; i < numDualNodes; i++)

D.addNode(false);

for (int j = 0; j < numEdges; j++)

connect(getLabel(edges[i].dv1), getLabel(edges[i].dv2), 1.0);

}

public solveDualDirichlet() // Due to M. Hoefer

{

//this function determines interior voltages of network

//put boundary voltages into network

int n = D.numInterior();

int m = D.numBoundary();

//Create C

Matrix C = new Matrix(n,n);

for(int i=m;i<D.numNodes();i++)

for(int j=m;j<D.numNodes();j++) {

if(i == j) {

//check all nodes if they are neighbors

for(int l=0;l<D.numNodes();l++)

if(D.connected(i,l)) {

C.set(i-m,j-m,C.get(i-m,j-m)+D.conductance(i,l));

}

}

else {

//if nodes representing row i and column j are connected, then

//their entry in K is the negative of the conductivity between

//them, otherwise it is zero

if(D.connected(i,j))

C.set(i-m,j-m,-D.conductance(i,j));

}

16

}

//create b

Matrix Bt = new Matrix(n,m);

for(int i=m;i<D.numNodes();i++)

for(int j=0;j<m;j++) {

if(i == j) {

//check all nodes if they are neighbors

for(int l=0;l<D.numNodes();l++)

if(D.connected(i,l)) {

Bt.set(i-m,j,Bt.get(i-m,j)+D.conductance(i,l));

}

}

else {

//if nodes representing row i and column j are connected, then

//their entry in K is the negative of the conductivity between

//them, otherwise it is zero

if(D.connected(i,j))

Bt.set(i-m,j,-D.conductance(i,j));

}

}

Matrix phi = new Matrix(D.numBoundary(),1);

for(int i=0;i<D.numBoundary();i++)

phi.set(i,0,-D.volts(i));

Matrix b = new Matrix(Bt.mult(phi));

//since C is symmetric, positive definite, we can factorize C into LLt

//by Choleski factorization

Matrix L = new Matrix(C.choleski());

//solve LLt*x=b

double sum;

Matrix y = new Matrix(n,1);

Matrix x = new Matrix(n,1); //this will be the solution

y.set(0,0,b.get(0,0)/L.get(0,0));

for(int i=1;i<n;i++) {

sum = 0;

for(int j=0;j<i;j++)

sum += L.get(i,j)*y.get(j,0);

y.set(i,0,(b.get(i,0)-sum)/L.get(i,i));

}

x.set(n-1,0,y.get(n-1,0)/L.get(n-1,n-1));

for(int i=n-2;i>=0;i--) {

sum = 0;

17

for(int j=i+1;j<n;j++)

sum += L.get(j,i)*x.get(j,0);

x.set(i,0,(y.get(i,0)-sum)/L.get(i,i));

}

//x is solution to Dirichlet problem, put voltages in network

for(int i=D.numBoundary();i<D.numNodes();i++)

D.setVolts(i,x.get(i-D.numBoundary(),0));

repaint();

}

public makeTilingCoords(Network N)

{

int C = Det(N);

coords = new int[numEdges][3];

// will be a numEdges x 3 array such that coords[i][0] will be the x

// coordinate of the upper left corner of the ith square,

// coords[i][1] will be the y coordinate, and coords[i][2] will be

// the length of the side of the square. this will be accessed by

// DrawNetwork when the user chooses to display the tiling

for (int i = 0; i < numEdges; i++)

{

coords[i][0] = round(C *

min(D.volts(getLabel(edges[i].dv1),

D.volts(getLabel(edges[i].dv2)))));

coords[i][1] = round(C * max(N.volts(edges[i].v1),

N.volts(edges[i].v2)));

coords[i][2] = round(C * N.current(edges[i].v1, edges[i].v2));

}

}

}

5.2 Edge.java

import java.*;

public class Edge

{

public int v1, v2, label;

public int dv1, dv2;

18

public double theta;

public boolean connection;

public Edge()

{

theta = 0.0;

label = noedge;

v1 = v2 = dv1 = dv2 = 0;

connection = false;

}

public boolean connected()

{

return (connection);

}

}

References

[1] R. L. Brooks, C. A. B. Smith, A. H. Stone, W. T. Tutte, The Dissection of Rectangles Into

Squares, Duke Math. J., 7, 312–340.

[2] E. B. Curtis, D. Ingerman, J. A. Morrow, Circular Planar Graphs and Resistor Networks,
submitted.

[3] M. Hoefer, A Graphical User Interface for the Creation, Manipulation, and Calculation of

Electrical Networks, REU Report, 1996.

19

