
RECOVERING NETWORKS WITH SIGNED CONDUCTIVITES

MICHAEL GOFF

Abstract. It is known that a critical circular planar network can be recovered

if conducitivies are restricted to positive real numbers. If the range of conduc-

tivities is extended to all nonzero real numbers, we are still able to recover the

network if the network response exists.
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Introduction

Let G = (V, Vb, E) be a graph for which V is the set of vertices, Vb is a subset of
V denoting boundary vertices, and E is the set of edges. Let γ be the conductivity
function on E, which assigns each edge e to a nonzero real number, not necessarily
positive. Γ is the resistor network that is G combined with γ. The Kirchoff matrix
K is the matrix defined as follows. Ki,j = −γ(i, j), where γ(i, j) is the conductivity
of the edge joining nodes i and j, and i 6= j. Ki,j = 0 if no edge joins nodes i and
j. Ki,i =

∑
j 6=i γ(i, j).

∂ refers to the set of boundary nodes, and int refers to the interior nodes. K has
the block structure:

(1) K =

[
A(∂ × ∂) B(∂ × int)

BT (int× ∂) C(int× int)

]
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As before, Λγ denotes the response matrix, which is the linear map which sends
the voltage to a current on the boundary nodes. We compute Λ = K/C, that is,
we take the Schur complement of K with respect to the entries corresponding to
the interior nodes. Λ is defined if and only if det(C) 6= 0. This identity holds if
γ > 0 for all edges. However, when γ is allowed to range over nonzero real numbers,
we are not always able to define Λ. The simplest example is a network with two
boundary nodes, labeled 1 and 2, and one interior node, labeled 3. Let γ(1, 3) = 1,
γ(2, 3) = −1, and γ(1, 2) = 0. Then Λ cannot be defined.
The cells of G will be bounded by the edges of G as well as the boundary

circle. In this paper we will only consider critical circular planar networks, unless
otherwise specified. We will prove that a critical circular planar network, with either
positive or negative, but nonzero, conductivities is recoverable if detK(I; I) 6= 0
in the Kirchoff matrix, so we can define a response matrix. We will see that the
boundary edge and boundary spike formulas may be used for networks with signed
conductivities, and they may also be used when the broken connection is not a
circular pair. The only requirement for using a connection (P,Q) to recover a
boundary edge or boundary spike is detΛ(P ;Q) 6= 0 before the deletion of the edge
or contraction of the spike, and detΛ(P ;Q) = 0 after the deletion or contraction.
The connection (P,Q) we use will have the feature that it can be formed through
only one permutation τ of Pi to Qτ(i), it can only be connected with one set of
paths, and the paths use every interior node in a connected component of interior
nodes. We will give an algorithm for building this connection and prove that it
has the desired properties. Then we offer a procedure for continuing the recovery
algorithm in the event that a recovered boundary spike cannot be contracted.

Suppose p and q are boundary nodes on a graph G. Then (̂p, q) refers to the
counter-clockwise arc from p to q on the boundary circle. This notation will be
used throughout the paper. Two boundary nodes p and q will be called consecutive
if q is immediately before or after p in clockwise circular order. If p is immediately
after q in clockwise circular order, p is clockwise consecutive to q, and q is counter-
clockwise consecutive to p. Also, always assume a circular planar graph G is given
with a fixed embedding.

1. Important Formulas

To recover critical circular planar networks with signed conductivities, we first
need the determinental identity from [1]. P and Q are disjoint sets of boundary
nodes, each of size k. The first summation is over the permutation group Sk, and
the second is over all paths α in a connection from Pi to Qτ(i). Eα is the set of edges
used in α. Jα is the set of interior nodes not used in α, while Dα is detK(Jα, Jα).

(2) detΛ(P ;Q) · detK(I; I) = (−1)k
∑

τ∈Sk

sgn(τ)





∑

α
τα=τ

∏

e∈Eα

γ(e) ·Dα





We also need the boundary edge and boundary spike formulas. In a network
Γ, Let P = (p1, . . . , pk), Q = (q1, . . . , qk), P

′ = (p, p1, . . . , pk), Q
′ = (q, q1, . . . , qk),

and pq be a boundary edge. Suppose detΛΓ(P ;Q) 6= 0. Let Γ
′ be the network

with the edge pq deleted, and suppose detΛΓ′(P ;Q) = 0. (P ;Q) is not necessarily
a circular pair. Then,
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(3) γ(pq) = −Λ(p; q) + Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; q)

Similarly, in a network Γ, let pr be a boundary spike between boundary node p
and interior node r. Suppose there are disjoint sets of boundary nodes P and Q
such that detΛΓ(P ;Q) 6= 0. Let Γ

′ be the network obtained after the contraction
of pr, and suppose detΛΓ′(P ;Q) = 0. Again, (P,Q) is not necessarily a circular
pair. Then,

(4) γ(pr) = Λ(p; p)− Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; q)

We will see that, for a critical network, we can recover a boundary edge or a
boundary spike if we merely know that the conductivities are nonzero. Unlike the
case of all positive conductivities, the existence of a connection between a circular
pair (R;S) does not imply detΛ(R;S) 6= 0. Using the determinental identity above,
we have detΛ(R;S) 6= 0 if the following three conditions are satisfied on the sets
(R;S).

• There is only one τ so that there is a set of paths α from Ri to Sτ(i).
• For the fixed τ , there is only one α joining (R,S).
• Dα 6= 0.

One way to insure the third condition is Jα = ∅. Alternately, suppose there are
two subsets of interior nodes I1 and I2 such that there is no edge joining a node of
I1 to a node of I2. Then K(I; I) has the following form:

(5) K(I; I) =

[
A 0
0 B

]

A = K(I1; I1) and B = K(I2; I2). Then detK(I; I) = detA · detB. So, detB 6=
0, which means it is sufficient that Jα = I2.
If we have a method of constructing the connection (P,Q), we can use a pro-

cess similar to the process for recovering a circular planar network with positive
conductivities. Recover the boundary edges and boundary spikes using the given
formulas, then remove the edges and contract the spikes, performing the appropri-
ate operations on the response matrix. Because the network is critical, the process
will terminate with every edge recovered.
Suppose we adjoin a boundary edge of conductivity ξ between boundary nodes

1 and 2. If the old response matrix looks like this:

(6) Λ =



λ1,1 λ1,2 a
λ2,1 λ2,2 b
d e C




The new response matrix looks like this:

(7) Λ′ =



λ1,1 + ξ λ1,2 − ξ a
λ2,1 − ξ λ2,2 + ξ b

d e C




This operation can be performed for any value ξ. A boundary edge of known
conductivity ξ can be deleted by adjoining a boundary edge of conductivity −ξ.
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Suppose we adjoin a boundary pendant of conductivity ξ at node 1. The new
boundary node is labeled 1 and all other boundary nodes are incremented. If the
original response matrix has the following form,

(8) Λ =

[
λ1,1 a
b C

]

Then, after the pendant is adjoined, the new response matrix has the following
form,

(9) Λ′ =




ξ −ξ 0
−ξ λ1,1 + ξ a
0 b C




Suppose we adjoin a boundary spike of conductivity ξ to boundary node 1. If
the old response matrix looks like this:

(10) Λ =

[
λ1,1 a
b C

]

The new response matrix looks like this, with δ = λ1,1 + ξ:

(11) Λ′ =

[
ξ − ξ2

δ
aξ
δ

bξ
δ

C − ab
δ

]

This operation can be performed for any value ξ, except ξ = −λ1,1. A boundary
spike of known conductivity ξ can be contracted by adjoining a boundary spike of
conductivity −ξ. We will deal separately with the case that we want to contract a
boundary spike of conductivity ξ at node p and ξ = λp,p.

2. Removal Number

Suppose G is a circular planar graph. A vertex u is considered near a vertex v
if u and v are on the boundary of the same cell in G. We use the notation u ./ v.
We will define the removal number of u with respect to v, or rem(u, v), recur-

sively. For any vertex u, rem(u, u) = 0. If u 6= v, we use the following formula:

(12) rem(u, v) = 1 + min
w./u

rem(w, v)

Suppose a path α = (p0, p1, . . . , pn) joins boundary nodes p0 and pn through the
interior. Suppse u is any node in G. Then we define rem(u, α) as follows.

(13) rem(u, α) = min
0≤i≤n

rem(u, pi)

A cell c is considered adjacent to a path α if some vertex on the boundary of c
is on α. The region Z(α) is the union of all cells adjacent to α. Note that if u is a
vertex of a cell c ∈ Z(α), then rem(u, α) = 0 or 1.
We also define the removal set of α, R(α), as follows. A vertex u ∈ R(α) if

and only if rem(u, α) = 1. In words, R(α) is the set of all nodes u that lie on the
boundaries of cells adjacent to α, not including α itself.
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3. Boundary Antennas

Definition 3.1. An boundary antenna, or just antenna, is a pair of boundary spikes
that share a common vertex.

A boundary antenna is adjoined in the following manner. Suppose p is a bound-
ary node. First adjoin a boundary pendant at p with a fixed conductivity ξ. Then
adjoin a boundary spike of fixed conductivity ω at p. The resulting graph will have
two boundary spikes at node p, and p becomes an interior node.

Fact 3.2. Adjoining an antenna to a critical graph results in a critical graph.

This can be observed by studying the effects of adjoining an antenna on the
medial graph.

4. Minimal Paths

Suppose a graph G with boundary has boundary nodes p and q that can be
joined by possibly many paths through the interior. Consider a directed path α
from p to q to divide G into two components.

Definition 4.1. The minimal oriented path from p to q, denoted min(pq) is the
path α joining p and q through the interior that minimizes the number of cells to
the right of α, oriented from p.

Theorem 4.2. The minimal oriented path min(pq) is unique.

Proof. Suppose there are two distinct paths min(pq), α1 and α2, that have the same
number of cells to their right. Construct a new path P as follows. Start at p and
follow whichever path is farther to the right, assumed without loss of generality
to be α1. Whenever α1 and α2 intersect, continue P by following whichever path
is farther to the right after the intersection point. Continue until P reaches q. P
must follow α2 at some point, or α1 would have fewer cells to its right than α2.
The number of cells to the right of P will be fewer than the number of cells to the
right of either α1 or α2, and α1 and α2 are not minimal oriented paths. ¤

Definition 4.3. The minimal vertex path through interior node b with respect to
a path α or a boundary node a is the path between two boundary nodes through
the interior that passes through b, does not intersect α or end in a, and minimizes
the number of cells of the component of the graph containing α or a. It will be
denoted min(b, α) or min(b, a).

Note that min(b, α) exists if and only if there is a path between two boundary
nodes through the interior that intersects b but does not intersect α.

Theorem 4.4. Suppose α is a path between two boundary nodes through the in-

terior, and b is an interior node not on α. If the minimal vertex path min(b, α)
exists, it is unique.

Proof. Suppose there are two distinct paths min(b, α), β1 and β2. Suppose the
endpoints of α are p and q. Label the endpoints of β1, p1 and q1 so that p, p1, q1, q
are in circular order. Similarly label the endpoints of β2, p2 and q2. Without loss
of generality, assume p, p1, p2 are in clockwise order if p1 and p2 are not the same
point.
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Construct a new path β beginning at p1 and follow β1. Whenever β1 and β2
intersect, follow whichever path is farther to the right after the intersection point.
The two paths have at least one intersection point, namely b. β must follow β2 at
some point, or β1 have fewer cells to its right than β2. Then β has fewer cells to
its right then either β1 or β2. ¤

Theorem 4.5. Suppose a is a boundary node. If the minimal vertex path min(b, a)
exists, it is unique.

Proof. The proof is very similar to the case of min(b, α). ¤

5. Maximal Connection

Suppose we are given a critical circular planar graph G. We will build a maximal
connectionM with respect to consecutive boundary nodes p and q, or a boundary
spike sr, with s as the boundary node. We will use a restricted portion of G as
follows. Suppose there is a boundary edge between two non-consecutive boundary
nodes p′ and q′. The edge p′q′ divides G into two regions. One region, G′, contains
the boundary nodes p and q, or the boundary spike sr. G′ will include p′, q′, and
the edge p′q′ as well. Taken as a graph, with the boundary nodes of G′ exactly
those which were boundary nodes in G, is circular planar and therefore critical by
[2]. The interior nodes in G′ will be denoted I1, while the interior nodes in G but
not in G′ will be denoted I2. It is sufficent that M use all of I1 and none of I2
because no there is no edge between a member of I1 and I2. This restriction will
be relevant in the next section.

Definition 5.1. The maximal connection of a graph, with respect to consecutive
boundary nodes p and q or with respect to boundary spike sr with s as the boundary
node, is the set of paths α constructed by the following process. It is denotedM(pq)
orM(s). It is assumed in this section that p is clockwise consecutive to q.

We will build M inductively, creating a set of minimal vertex paths Li at step
i. Suppose we are building M(pq) with respect to consecutive boundary nodes p
and q. The first set of minimal paths, L1, is the singleton {min(pq)}. Put p ∈ P
and q ∈ Q. If we are building M(s) with respect to boundary spike sr, L1 is the
singleton {min(r, s)}. The endpoints of min(r, s) are labeled p and q so s, p, q are in
clockwise circular order. Put p ∈ P and q ∈ Q. We will also consider L0 = {s}, even
though s by itself is a single boundary node instead of a path. For the remainder
of this paper, the endpoints of the single path of L1 will be denoted p0 and q0 so
that p0 ∈ P and q0 ∈ Q.
Suppose Li is constructed and contains the paths αi1, αi2, . . . , αin. Do the follow-

ing for every path αij ∈ Li. Consider αij to divide G into two regions, and consider
the set of interior nodes α+ij on the region not including p0q0. For every interior

node b ∈ R(αij)∩α+ij , construct αi+1,k = min(b, αij), where k− 1 is the number of
paths already constructed in Li+1. Let pi+1,k and qi+1,k be the endpoints of αi+1,k,
and assume p, pi+1,k, qi+1,k, q are in circular order. Put pi+1,k ∈ P , qi+1,k ∈ Q, and
αi+1,k ∈ Li+1. The process terminates when no more paths can be constructed in
this manner.

Theorem 5.2. Suppose αij1 and αij2 ∈ Li intersect at an interior node. Then

αij1 = αij2 .
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Proof. Assume the maximal connectionM has been constructed. Suppose αij1 =
min(u, αi−1,k) and αij2 = min(v, αi−1,k) for interior nodes u, v and αi−1,k ∈ Li−1.
The endpoints of αij1 and αij2 will respectively be called p1, q1, p2, and q2, with
p1, p2 ∈ P and q1, q2 ∈ Q. Without loss of generality, assume p, p1, p2 are in
clockwise circular order if p1 6= p2. Construct a new path α as follows. Follow αij1

from p1 until the first intersection point of αij1 and αij2 . At every intersection point,
follow whichever path is farther to the right after the intersection point. Because
u, v ∈ R(αi−1,k), u and v both lie on α. Every cell to the right of α, oriented from
p1, is also to the right of αij1 and αij2 . Therefore, αij1 = αij2 = α. ¤

P Q

P Q

P

Q
P

Q
L

3
L

3

L2

L 1

Figure 1. Example of branching paths

It is possible that αij1 and αij2 ∈ Li share a boundary endpoint r, which will
lead to problems in constructing (P ;Q). In that case, adjoin a boundary antenna
with known, fixed conductivities to r, which causes r to become an interior node.
Then modify the given response matrix Λ to obtain Λ′ as in equations (9) and (11).
If Λ has dimension n× n, then Λ′ has dimensions (n+ 1)× (n+ 1). Then combine
αij1 and αij2 into one path. See Figure 2 for an example.

Lemma 5.3. Suppose sr is a boundary spike, with s as the boundary node. Then

no boundary antenna is adjoined at s.

Proof. Suppose two paths αij1 and αij2 ∈ Ln have an endpoint at s. Then both
paths use r. By Theorem 5.2, αij1 = αij2 , so only one path has an endpoint at s.
So, no boundary antenna will be adjoined at s. ¤

Definition 5.4. The nth level in the maximal connection M is the set of paths
created on the nth step of the construction ofM. We taken the nth level to be ∅
if the construction terminated in fewer than n steps. The nth level is denoted Ln,
and is identical to the Ln used above.

A path α ∈ Ln joining boundary nodes p
′ ∈ P and q′ ∈ Q through the interior

divides a graph G into two regions. The region to the right of α, oriented from p′, is
considered below α, while the region to the left of α, oriented from p′, is considered
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P Q

P Q

P

?

Q

P

P

P

Q

Q

Q

Unused

L 3

L 2

L 1

L3

L 2

L 1

Figure 2. Example of adjoining a boundary spike

above α. If level Li consists of many paths, the paths will divide G into many
regions. The region that is below every path in Li is considered below Li, while a
region that is above any path in Li is considered above Li.

Lemma 5.5. Suppose pk ∈ P is the endpoint of a path α ∈ Ln and p∗ is clockwise
consecutive to pk. Then no boundary antenna is adjoined at p∗ in the construction

of M.

Proof. Suppose α1 and α2 ∈ Ln+1 have p
∗ as a common endpoint. Call their other

respective endpoints q′ and q′′. Without loss of generality, suppose p, q′, q′′ are in
clockwise circular order. Because q′ and q′′ are both above α, pk, q

′, q′′ are also in
clockwise circular order, as are p∗, q′, q′′. Then either the region above α1 is entirely
above α2, or α1 and α2 intersect in the interior. The latter possibility contradicts
Theorem 5.2, and the former implies α1 ∈ Lj and α2 ∈ Lk, with j > k. Then α1
and α2 could not have a common endpoint. So, p

∗ is not the endpoint of two paths
inM, and no boundary antenna is adjoined at p∗. ¤

Suppose qk ∈ Q is the endpoint of a path α ∈ Ln, and q∗ is counter-clockwise
consecutive to qk. By the same argument as the previous lemma, no boundary
antenna is adjoined at q∗ in the construction ofM.

Theorem 5.6. Suppose α1 and α2 ∈ Ln+1 are distinct paths. Let their re-

spective endpoints be p1, q1, p2, q2 with p1, p2 ∈ P and q1, q2 ∈ Q. Also assume

p0, p1, q1, p2, q2 are in clockwise circular order. Then no path joins p1 and q2 with-
out intersecting Ln.

Proof. Suppose there is a path α joining p1 and q2 that does not intersect Ln. If α
is entirely to the right of α1, travelling from p1, then α1 6∈ Ln+1, so α is not entirely
to the right of α1. However, q2 ∈ α is to the right of α1, so α and α1 intersect in
the interior. Construct a new path β as follows. Start at p1, and follow whichever
path between α and α1 is farther to the right. At every intersection point, follow
whichever path between α and α1 is farther to the right after the intersection point.
Eventually β will follow α to q2. β does not intersect Ln and lies entirely on or
to the right of α1, so α1 is not a minimal vertex path with respect to Ln. The
contradiction is reached, so no path joins p1 and q2 without intersecting Ln. ¤
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Note that it is possible for a path to join p2 and q1

Corollary 5.7. Suppose v1 and v2 are interior vertices in α1 and α2 respectively.
Then v1 and v2 cannot be connected by a path through the interior that does not

intersect Ln.

Proof. If u and v can be connected through the interior without using Ln, then
there would be a path joining p1 and q2 that does not use Ln. ¤

6. Characterizing M

Let a path α ∈ Ln ∈ M be given on a graph G with endpoints p′ and q′. As
defined in section 2, Z(α) is the region formed by the union of all cells adjacent to
α. We will consider Z+(α) to be the portion of Z(α) that is above α. Note that if
a vertex u ∈ Z+(α), then u ∈ α or u ∈ R(α).
Consider ∂(Z+(α)), the boundary of Z+(α). ∂(Z+(α)) includes α, the portion of

the boundary circle immediately clockwise to p and immediately counter-clockwise
to q, and possibly more. We will consider ∂ ′(Z+(α)) = ∂(Z+(α))−α. We will use
the abbreviation ∂′ when α is clear from context.
We will consider a sequence U of vertices on ∂ ′, labelled (p′ = u0, u1, . . . , un =

q′), labeled clockwise from p′ to q′. U is a path, though not through the interior.
Some of the ui’s may be boundary vertices of G and some may be interior vertices.
Let pi and qi be the ith pair of boundary vertices in U such that there is an interior
vertex and no boundary vertex between pi and qi in U , and pi is before qi in U .
Note that qi and pi+1 might be the same vertex. Let pi = uxi and qi = uyi , with
xi < yi. By the construction of ∂

′, uxi , uxi+1, . . . , uyi form a path αi between two
boundary nodes through the interior of G.

Lemma 6.1. Let vi be an interior vertex of αi as constructed above. Then αi =
min(vi, α).

Proof. By the construction of ∂′, αi does not intersect α. We need to verify that
any cell to the right of αi, oriented from pi, is necessarily on the side of min(vi, α)
containing α. The cells to the right of αi can classifed as one of the following.

• Below α
• Z+(α)
• To the left of some αj , oriented from pj , and i 6= j

The cells below α are clearly on the same side of min(vi, α) as α. Suppose a cell
c in Z+(α) is not on the same side of min(vi, α) as α. Because c shares a vertex
with α, min(vi, α) shares a vertex with α, a contradiction.
Suppose a cell c is to the left of some αj , oriented from pj , i 6= j, and c is on

the same side of min(vi, α) as α. Then min(vi, α) intersects αj . Then there is a
path through the interior joining pi and qj . However, such a path contradicts qi
and pj ∈ R(α) by the planarity of G, so c is not on the same side of min(vi, α) as
α. We conclude αi = min(vi, α). ¤

Following from Lemma 6.1, we have an alternate characterization of Ln+1.

Theorem 6.2. In the following equation, the αi’s are created as above, for every

α ∈ Ln.

Ln+1 =
⋃

α∈Ln

⋃

i

αi
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Proof. By the construction of Ln+1, αi = min(vi, α) ∈ Ln+1 for all α ∈ Ln. Fur-
thermore, the set of all αi exhausts R(α), so the above identity holds. ¤

Corollary 6.3. The region between Ln and Ln+1 is
⋃

α∈Ln

Z+(α)

Proof. It follows from Theorem 6.2. ¤

If there is an interior node above α, then there is an interior node on the boundary
or in the interior of Z+(α). This follows because we restricted G not to include any
boundary edges between non-consecutive boundary nodes.

7. Unique Permutation

Let M be constructed as before. The first of the three conditions we need to
verify, to conclude Λ(P ;Q) 6= 0, is that (P ;Q) can only be formed through one
permutation.

Theorem 7.1. Suppose the sets of boundary nodes P and Q are constructed as

described in section 5. Then the only τ such that there exists a set of paths α
joining Pi to Qτ(i) for all i is the τ generated by the construction.

Proof. We will consider pairings in a (P ;Q) connection. We will prove the theorem
by induction on the levels. Suppose we start with boundary node q0 and look for
a member of P with which q0 may be paired. It can be paired with p0 by the
construction ofM. Now we will traverse the graph clockwise in search of another
boundary node with which q0 may be paired. Define a counter C on the boundary
as follows. C(p0) = 0. As we traverse the graph clockwise, add 1 to C every time
we encounter an element of P . Subtract 1 from C every time we encounter an
element of Q. Suppose p∗ ∈ P , and we can pair q0 to p∗ in (P ;Q). Consider the

counter-clockwise arc p̂∗, q. Let P ∗ be the number of elements of P on p̂∗, q0, and

Q∗ the number of elements of Q on p̂∗, q0. C(p∗) = P ∗ − Q∗. If C(p∗) > 0, there

are elements of P in p̂∗, q0 that cannot be paired with elements of Q. This is true

because there will be more elements of P than Q on p̂∗, q0, and therefore one of the
elements of P will have to cross the path between p∗ and q0, violating the Jordan
Curve theorem.
Let v be a boundary node, and v̂, q0 be the counter-clockwise arc from v to q0.

By construction, every element of Q on v̂, q0 has a corresponding element of P
because we placed the first endpoint of every path clockwise from p0 in P . Then
C(v) ≥ 0. Suppose p∗ ∈ P and p∗ 6= p0. Then C(p∗) > 0 because p∗ has no

corresponding element of Q on p̂∗, q0. Then a connection (P ;Q) cannot join q0 and
p∗. Then p0 is the only boundary node with which q0 may be paired.
Suppose we have verified that the endpoints of the paths of the first n levels must

be paired in the manner constructed. Label the paths on Ln+1: α1, α2, . . . , αm.
Label the endpoints of αi, pi and qi so pi ∈ P and qi ∈ Q. By Theorem 5.6 and

Corollary 5.7, p1 can only be paired in (P ;Q) with a vertex on ̂(q1, p1). Then, we
verify p1 and q1 are paired by the same argument which showed p0 and q0 were
paired. Similarly, pi and qi are paired for 1 ≤ i ≤ m. Then, we see inductively that
only one τ ∈ Sk will be nontrivial in (2). ¤
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8. Subgraph H(u, v)

We need to verify that no interior nodes were skipped in the process of construct-
ingM on a critical circular planar graph G. Suppose there is an omitted interior
node b above Ln and below Ln+1. Consider the regions bounded by Ln, Ln+1, and
the boundary circle. There may be more than one such region if Ln consists of
more than one path; in that case, consider only the region containing b, and call it
Rb. Let ∂

∗
b = ∂(Rb) ∩ (Vb ∪ Ln+1).

Lemma 8.1. An omitted interior node b has a path to at most one point on ∂∗b .

Proof. Suppose b has paths to two points on ∂∗b . Then Figure 3 typifies the four
possibilities for these two paths.
Case 1: In the leftmost diagram, the two points on ∂∗b are in Vb. An additional

path would have been constructed on Ln+1.
Case 2: In the next diagram, the two points on ∂∗b are on different paths of Ln+1.

The two paths on Ln+1 would have been modified to make one path.
Case 3: In the third diagram, one point of ∂∗b is on Ln+1 and the other is on Vb.

Then the shown path on Ln+1 would have been constructed lower.
Case 4: In the fourth diagram, the two on ∂∗b are on the same path in Ln+1.

Then the path shown on Ln+1 would have been constructed lower.
Therefore, b can have a path to at most one point on ∂∗b . ¤

If there is an omitted interior node, G is not critical. The proof of this will
occupy the rest of this and the next section.

b b b b
L n

L

L n

L

L n

L

Ln

L
n+1

n+1 n+1 n+1

Figure 3. Why interior nodes can’t have two paths to the top.
New or modified path in each case

Lemma 8.2. There is no interior node below L1.

Proof. Suppose interior node b is below L1. If b has paths to two distinct points
on L1, then L1 would have been constructed differently by Lemma 8.1. If M is
built with respect to a boundary spike sr, with s as the boundary node, b cannot
connect to s except through r. Therefore, b has no path to the boundary except
through L1. If b has a path to only one point on L1, then b is an interior pendant
and the network is not critical. We conclude that b does not exist. ¤

Suppose a path α, specified by a sequence of nodes (v0, v1, . . . , vn), is a path
through the interior between boundary nodes with v0 ∈ P and vn ∈ Q. Node vj is
considered strictly between vi and vk if i < j < k or between vi and vk if i ≤ j ≤ k.
If i < j, vi is considered before vj in α, and vj is considered after vi in α. If vj
is strictly between vi and vk, and vi and vk are joined by an edge vivk, vivk is a
shortcut in α. The following subgraph will be used to prove several facts.
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Construction 8.3. SupposeM has been constructed in a critical graphG, starting
with consecutive boundary nodes p and q or boundary spike sr. Suppose u and v
are two vertices, either interior or boundary, on the same path α ∈ Ln. Then a
subgraph H(u, v) will be constructed as follows. First, include all the nodes in α
that are between u and v. The nodes of Ln−1 are included in two steps. First, add
those nodes in Ln−1 which connect to a node in Ln already included in H(u, v).
Then, add those nodes in Ln−1 which are between those included in the first step.
Continue adding levels in this manner until no more levels can be added.
We will define the boundary of H(u, v) as follows: (Vb in G) ∩H(u, v) together

with all nodes in H(u, v) that connect with a node in G −H(u, v). All edges are
included that join two nodes in H(u, v). Note that H(u, v) is a Simon-subgraph,
as defined in [2]. See Figure 4.

L
3

L
3

L2

L 1

v

u
u v

Figure 4. A sample subgraph H(u,v). Left Figure: Nodes of
H(u,v) circled. Right figure: H(u,v) displayed with levels stacked
vertically.

Lemma 8.4. Suppose u and v are on Ln in M, and no omitted interior nodes

or shortcuts in M occur before Ln. Then H(u, v) has no more than two boundary

nodes on every level in M, except possibly Ln.

Proof. Suppose w1, w2, and w3 are three nodes on Li for some i < n with w1 before
w2, and w2 before w3. We will show w2 is not a boundary node in H(u, v). Because
w2 is not the endpoint of a path in Li, w2 is not on the boundary of G. Because
there are no omitted interior nodes inM before Ln, w2 has only neighbors that are
in Li−1, Li, or Li+1. The neighbors of w2 in Li are between w1 or w3 because there
are no shortcuts, so they are included in H(u, v). The neighbors of w2 in Li−1 are
included in H(u, v) by construction. Suppose a and b are the first and last nodes
of Li+1 ∩H(u, v) that connect to nodes in Li ∩H(u, v). Then they connect to the
first and last nodes of Li∩H(u, v); call them c and d. Because w2 is between c and
d, a neighbor e ∈ Li+1 of w2 is between a and b. By construction, e ∈ H(u, v). All
neighbors of w2 are in H(u, v). So, w2 is an interior node in H(u, v). ¤

Lemma 8.5. Suppose u, v ∈ α ∈ Ln ∈ M, and no omitted interior nodes or

shortcuts in M occur before Ln. Then H(u, v) is circular planar.
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Proof. All boundary nodes of H(u, v) are on Ln or either the first or last of Li ∩
H(u, v). Therefore, they can be embedded in a disk with the interior of H(u, v) in
the interior of the disk. ¤

By [2], H(u, v) critical if G is critical because H(u, v) is circular planar.

9. No Omitted Interior Nodes

The following three lemmas work together. Inductively, they imply that there
are neither shortcuts nor omitted interior nodes inM.

Lemma 9.1. Suppose M has been constructed. Suppose on a path α ∈ Ln, there

are two nodes u and v, possibly interior or boundary, that are not consecutive nodes
in α. Also suppose there are no shortcuts or omitted interior nodes before Ln. Then

u and v are not adjacent.

Proof. Suppose u is adjacent to v, and there is an edge uv. Without loss of general-
ity, assume u is before v in α. The edge uv must be above Ln, or Ln would have been
constructed differently. Construct the subgraph H(u, v). The existence of edge uv
will prevent any node strictly between u and v on Ln from being adjacent to a
node on Ln+1 because H(u, v) is planar. So u and v are the only boundary nodes
of H(u, v) on Ln. We will show that H(u, v) is not critical, contradicting that G is
critical. To do so, we will show that no circular pair (R;S) = (r1, . . . , rk; s1, . . . , sk)
in H(u, v) that can be connected through H(u, v) needs to use the edge uv, so uv
can be deleted without breaking the connection.

Let m be the first index, if there is such an index, such that ̂(rm, sm) in H(u, v)

contains (̂v, u). Suppose ri and si are in Lai and Lbi , not respectively. We will
choose bi ≥ ai for every pair (ri, si). If f < g < m, then bf < bg. This can be seen

because ̂(rf , sf ) ∈ ̂(rg, sg), and (̂v, u) 6∈ ̂(rg, sg). Alternately, if m ≤ g < f , then
bf < bg.
Let βi be the path joining ri and si in the (R;S) connection. Then β1 only needs

to use the levels c in G such that c ≤ b1. To see this, suppose β1 uses a level above
Lb1 . Then β1, constructed from r1 to s1, goes above Lb1 at a node x and returns
to Lb1 at a node y. A new path β′1 could have been formed that is identical to β1,
except x is joined to y along Lb1 instead of going above Lb1 .
Then, we see inductively that βi only needs to use the levels c in G such that

c ≤ bi. To see this, observe that if βi−1 is constructed before βi and i < m, then
the removal of nodes on βi−1 will not require that βi use a node above Lbi . The
same is true if βi+1 is constructed before βi and i ≥ m. Then, no path in (R;S)
needs to use a portion of H(u, v) above Ln, and in particular no path in (R;S)
needs to use uv, so we can delete uv without breaking any connection in H(u, v).
So, we have reached the desired contradiction. ¤

Construction 9.2. Suppose b is an omitted interior node between Ln and Ln+1.
Also suppose b is above α for some α ∈ Ln. We will construct a new subgraph
H∗(b) as follows. First, include b and every node that can be joined to b with a
path through the interior that does not intersect Ln or Ln+1. Second, if b has a
path to a node a on ∂∗b , include a in H∗(b). There is no more than one such a by
Lemma 8.1. Third, include every node on Ln that is adjacent to a node included
in the first step. Let u and v be the first and last nodes in α that were included in
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u v

s
1

2 s
3

s
4

s
5

s
6

r1

r
2

r
3

r
4

r
5

r 6

s

Figure 5. A circular pair in H(u, v). The horizontal lines repre-
sent levels in G. In this example m = 5, and (ri, si) are connected
in this order: i = 1, 2, 3, 4, 6, 5.

the third step. Fourth, include H(u, v). The boundary nodes and edges of H∗(b)
are chosen so that H∗(b) is a Simon subgraph as in [2].

The boundary of H∗(b) is the first and last vertex in Li ∩ H∗(b) for all i ≤ n,
and a if a ∈ H∗(b). Therefore, H∗(b) is circular planar.

Lemma 9.3. SupposeM has been constructed. Also suppose there are no shortcuts

or omitted interior nodes before Ln. Then for every α ∈ Ln and for every b above
α and below Ln+1, min(b, α) exists.

Proof. Suppose there is an interior node b above some α ∈ Ln and below Ln+1, and
min(b, α) does not exist. Construct the subgraph H∗(b) as above. We will reach
a contradiction by showing H∗(b) is not critical with two cases. In the first case,
b has a path to a ∈ ∂∗b that does not intersect Ln. In the second case, b does not
have a path to ∂∗b that does not intersect Ln.
Case 1: Suppose a circular pair (R;S) in H∗(b) is given. Using the technique

of the previous proof, (R;S) can be constructed in such a way that only at most
one path β is in part above Ln, and β has a as an endpoint. If a is the end of
a boundary spike, we can contract the boundary spike at a without breaking the
connection (R;S). If more than one edge in H∗(b) ends at a, we can delete one of
the one of the edges ending in a.
Case 2: The boundary in H∗(b) is the same as the boundary in H(u, v). Again

using the argument of the previous theorem, no circular pair in H∗(b) requires any
edge above Ln. So, H

∗(b) is not critical.
In either case, we see that H∗(b) is not critical, and therefore G is not critical.

We have reached the desired contradiction. ¤

Lemma 9.4. SupposeM has been constructed. Also suppose there are no shortcuts

or omitted interior nodes before Ln. Then there is no omitted interior node between

Ln and Ln+1.

Proof. Suppose there is an omitted interior node b between Ln and Ln+1. Also
suppose b is above some path α ∈ Ln. By Lemma 9.3, min(b, α) exists. Then
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rem(b, α) ≥ 2; otherwise min(b, α) ∈ Ln+1 by the Theorem 6.2. Because b is
between Ln and Ln+1, b is in the boundary of a cell c ∈ Z

+(α). That implies
b ∈ R(α) and rem(b, α) = 1, a contradiction. ¤

We conclude that every interior node is used inM, and there are no shortcuts.

10. Uniqueness of Paths

Theorem 10.1. Suppose M and (P ;Q) have been constructed on G as in section

5. Then M is the only set of paths that will connect (P ;Q)

Proof. Suppose we restricted the graph G to G′ because of a boundary edge between
two non-consecutive bounadary nodes p′ and q′ as outlined in section 5. G′ consists
of interior nodes I1, and I2 are the interior nodes in G but not in G′. We need to
verify that no nodes in I2 could be used to connect (P ;Q). No path inM can cross
p′q′, so the only way a path α in M could use nodes of I2 is that the endpoints
of α are p′ and q′. Because α was constructed as a minimal vertex path through
a node in I1, the edge p′q′ is a shortcut in α, which is not possible by Lemma
9.1. Therefore, no pair of boundary nodes in M is (p′, q′), and M could not be
reconstructed using nodes in I2.
Let α ∈ Ln with endpoints pk and qk be the first path that might be constructed

differently. First, α cannot be reconstructed with any extra omitted interior nodes,
and no interior node already in use by a path in an earlier level. Also, α has no
shortcuts it may use to connect pk to qk using the same or fewer interior nodes.
Then a modified α must use a higher interior node. Because there are no interior
nodes not used in a path, the modified α uses a vertex on a path α′ ∈ Ln+1. The
necessarily modified α′ uses a vertex on a path α′′ ∈ Ln+2, and so on to the final
level. Suppose there are m levels, so an α∗ on Lm must be constructed differently.
There are no shortcuts or extra interior nodes for α∗ to use, and no further paths
for α∗ to borrow from, so α∗ cannot be reconstructed. So, we conclude there
is no alternate set of paths to join (P,Q) other than the set prescribed by the
construction. ¤

If we buildMpq over a boundary edge pq, deleting pq must break the connection
(P,Q) because pq was necessarily used as a path. If we buildMp over a boundary
spike pr, contracting pr breaks the connection (P,Q) because (P ;Q) necessarily
used what was previously interior node r. Therefore, we have satisfied the condi-
tions to use the boundary edge and boundary spike formulas.

Theorem 10.2. We can recover any boundary edge or boundary spike on a critical

circular planar network.

11. Contracting Boundary Spikes

We have no problem recovering a boundary edge, recovering a boundary spike,
or deleting a boundary edge. Contracting a boundary spike is another matter. If we
recover a boundary spike at boundary node p with conductivity ξ, then we adjoin
a boundary spike with conductivity −ξ to contract the spike. If λp,p = ξ, δ = 0 in
equation (11), and we cannot define a new response matrix. A simple example of
a network with uncontractable boundary spikes is the top-hat network, for which
every conductivity is 1 except that of the edge joining the two interior nodes, whose
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conductivity is −2. We can define Λ for this network and recover it, but we cannot
contract either of the boundary spikes.

Lemma 11.1. Suppose we cannot contract the boundary spike at node p with con-

ductivity ξ. Also suppose λpq 6= 0 for some p 6= q. We may adjoin a boundary spike

of fixed conductivity ω at q and then contract the boundary spike at p.

Proof. Choose ω 6= −λqq. Adjoining a boundary spike of conductivity ω at q
generates a new response matrix Λ′, and has the following effect on λpp, with
δ = λqq + ω.

(14) λ′pp = λpp −
λ2pq
δ

Because λ′pp 6= λpp and ξ has not changed, δ′ = λ′pp− ξ 6= 0, and it is possible to
contract the boundary spike at p. ¤

If a boundary spike of conductivity ε already existed at node q, the process of
adjoining a new boundary spike of conductivity ω changes ε without creating a new
edge. If a boundary spike did not exist at q, then there is a danger that adjoining
a new boundary spike will cause the graph to become non-critical. Instead we will
adjoin an antenna at q.

Theorem 11.2. Let a network Γ with response matrix Λ be given. For a given

p, there exists a series of boundary antenna adjunctions such that row p of the

resulting response matrix Λ∗ is not entirely of 0.

Proof. Suppose q is the boundary node counter-clockwise consecutive to p. Build
Mpq, and create Γ

∗ with response Λ∗ = ΛΓ∗ by adjoining all the boundary antennas
necessary in buildingMpq. P and Q are the endpoints of the paths constructed in
Mpq. As shown before, Λ(P,Q) 6= 0. Because p ∈ P , some entry of row p in Λ∗ is
nonzero. ¤

Note that no antennas were adjoined to a boundary node clockwise consecutive
to p by Lemma 5.5. Also, if p ∈ P , the nonzero entry Λpq∗ guaranteed by the proof
is such that q∗ ∈ Q. Finally, if p∗ is clockwise consecutive to p, then p∗ 6∈ Q by the
labeling of P and Q.

12. Continuing Recovery

Suppose we have a critical circular planar network Γ. We can recover any of
the boundary edges and boundary spikes of Γ. Suppose, after some steps, the
modified Γ′ contains no boundary edges, n unknown edges, and the known edges
are exactly the boundary spikes. We will describe a process whereby we can recover
an additional edge, and then the modified Γ′′ have n− 1 or fewer unknown edges,
no boundary edges, and the known edges of Γ′′ are exactly the boundary spikes.
Furthermore, Γ′′ will be critical. Therefore, the process is guaranteed to fully
recovered Γ.
We are stuck in recovering Γ with graph G and conductivities γ if Γ has no

boundary edges, and we can contract no boundary spike. Consider the graph G′

obtained from G by contracting every boundary spike. G′ has a boundary edge uv.
At least one of u and v is an interior node in G. Then, uv can be made a boundary
edge in G by contracting a boundary spike at whichever of u and v is an interior
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node. If u or v has an antenna, it is sufficient to contract one spike of each antenna
to make uv a boundary edge.
Suppose p and q are boundary spikes in G, p is clockwise consecutive to q,

and contracting the spikes at p and q will result in uv becoming a boundary edge.
Suppose p∗ is clockwise consecutive to p and q∗ is counter-clockwise consecutive to q.
ConstructMp∗p and retain the boundary antennas adjoined in the process. Doing
so will not create a boundary antenna at q by Lemma 5.5, and the construction
will establish some p′ 6= q such that Λpp′ 6= 0 by Theorem 11.2. If a boundary spike
exists at p′, adjoin another boundary spike at p′. Otherwise, adjoin a boundary
antenna at p′. Then contract the boundary spike at p. Simiarly, construct Mqq∗ .
Doing so will not create a boundary antenna at p and will establish some q′ 6= p
such that Λqq′ 6= 0. If a boundary spike exists at q

′, adjoin another boundary spike
at q′. Otherwise, adjoin a boundary antenna at q′. Then contract the boundary
spike at q. A new boundary edge pq is created. Recover and delete pq as well as
any other boundary edges that may have resulted from this process. Also recover
all new boundary spikes resulting from this process.
It is possible that one of p and q is already a boundary vertex. Then it is only

necessary to contract one boundary spike. An example of this is illustrated in figure
6.

p p p p

Step 1: Can’t 
contract a spike

Step 2: Adjoin
antenna at some
other node

Step 3: 
Contract p

Step 4: Recover
boundary edge

Figure 6. Example of branching paths

Lemma 12.1. Suppose Γ is a critical resistor network with no boundary edges, n
unknown edges, and the known edges of Γ are exactly the boundary spikes. Suppose

Γ′ is obtained from Γ by the above process. Then Γ′ is a critical resistor network

with no boundary edges, n− 1 or fewer unknown edges, and the known edges of Γ′

are exactly the boundary spikes.

Proof. Γ′ was obtained from Γ by adjoining boundary spikes to pre-existing known
boundary spikes, adjoining boundary antennas, and deleting boundary edges. Ad-
joining a boundary spike to a known boundary spike of conductivity ξ at node p
effectively changes the value of ξ without adding a new edge, so every step of this
process maintains criticality. Because we recovered a previously unknown edge, the
number of unknown edges decreases. By Lemma 5.3, no antennas in Γ′ were ad-
joined to boundary spikes in Γ, so all boundary spikes in Γ remain boundary spikes
in Γ′. Every boundary edge is recovered and removed, so Γ′ has no boundary edges.
Γ′ has the desired properties. ¤

Theorem 12.2. Suppose Γ is a critical circular planar resistor network with nonzero
signed conductivities, and Γ has a defined response matrix Λ. Then Γ is recoverable.
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Proof. The above process reduces the number of unknown edges in Γ every time it
is applied. Repeated applications will eventually recover every edge in Γ. ¤

13. Future Research

The examination of signed conductivities was motivated by a desire to reduce
non-circular planar graphs to circular planar graphs. For example, suppose a non-
circular planar graph G has the complete graph Kn as a subgraph. It might be
possible to replace the Kn with a well-connected graph with n boundary nodes,
such as the Towers of Hanoi Σn. A sequence of such transformations might make
G circular planar. However, doing so might introduce edges with zero conductivity
even if the Kn did not have an edge with zero conductivity. Even the Y − ∆
transformation has problems. Suppose a ∆ with conductivites 1,−2, and −2 is
replaced with a Y . Then the Y has 0 conductivity for all three edges. Even if
the modified network can be recovered, it will be impossible to uniquely perform a
∆− Y transformation.
However, it seems that problems such as the one outlined above only occur

on thin algebraic varieties of conductivities. Perhaps there is a simple way to
characterize the space of troublesome conductivities for a Kn −Σn transformation
and work around those difficult values.
Also, perhaps the procedure of building a maximal connection can be adapted

for planar graphs that are not circular planar. There is no known analog for the
concept of criticality, but the process of constructing a maximal connection might
produce such an analog.
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