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Abstract. The purpose of this paper is to apply the useful tool of star-K

transformations to recovery questions in several examples to further the un-

derstanding of arbitrary networks. The tools used in this paper are also derived

and exposed in this paper. Attempts to generalize the star-K tool into an al-

gorithm for arbitrary graph recovery can be found in [1].

Special emphasis is given to explaining the nature of known 2− 1 networks

which have gone without clear explanations for too long.
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1. Introduction

The work in [3] outlines a functionally complete solution to the inverse problem
it proposes in the circular planar case. There is very little understood with regard
to this problem in the non-circular planar case. In this paper we will derive and use
star-K transformations, a tool for examining non-circular planar networks. Whether
these techniques can be generalized to form a general recovery algorithm is being
currently examined in [1], and it is there I refer the reader for a more general
exposition.
A motivating example for this technique is the remarkable light that this tool

can shed on known 2− 1 networks. The infamous triangle-in-triangle network has
never been so clearly understood. In general, many of the cases of annular graphs
exposed in [2] have been examined using this tool to various degrees of success.
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Figure 1. quadrilateral and Triangle Conditions

2. The Star-K Transformation with 4 Boundary Nodes

In this section we will examine the Star-K transformation for the case of four
boundary nodes. The star with four nodes is also called the plus. Kn is shorthand
for the complete graph, a graph with n boundary nodes, no interior nodes, where
every node is joined to every other by an edge.
Terms in the response matrix of a star are easily written down by computing

the voltage at the only interior node by the weighted average property. Knowing
this, the ijth entry in the response matrix is simply the negative of the prod-
uct of the two conductors joining nodes i and j divided by the sum of the con-
ductors around the interior node. This sum will often be abbreviated σ. Now
we want to understand the correspondence between the response matrix of the
star and the conductances on K4. First, the ijth entry in the response matrix
is simply the negative of the conductivity on the complete graph joining nodes
i and j. Second, when we transform to a K we necessarily pick up some alge-
braic relations on the conductances. These relations can be thought of as de-
terminants which are zero due to the total lack of two connections in the star,
but [1] has a geometric interpretation that is quite clear and useful. That is,
the products of opposites sides of a quadrilateral in a K that came from a star are equal.
We can quickly prove this with what we have stated thus far. To say

(1) αγ = βδ

is equivalent to saying

st

σ

ar

σ
=

ta

σ

rs

σ
.

If we call (1) the quadrilateral condition we can rightly call (2) the triangle
condition. For any K coming from a star, the product of the legs divided by the
base is a constant for any triangle sharing an apex. The proof of this is quite
straightforward as well. We simply remark that

(2)
δζ

ε
=

αβ

γ
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Figure 2. The Plus-K and a Few Applications

is equivalent to

br

σ

bs

σ

σ
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=

ba

σ

bt

σ

σ

at
.

We can also write down the formula for transforming a star back into a K. If γi
is the conductor with boundary node i in the star, Σi is the sum of the conductors
around node i in the K, and Kij is the conductivity on the corresponding edge in
the complete graph it is easy to showγi is given by the formula

(3) γi = Σi +
KijKik

Kjk

.
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For the case of a four node K-star the transformation is shown below. Note:
roman letters are on the star, Greek on the K, as in the diagram.

a = α+ γ + ζ +
αζ

δ
b = α+ δ + β +

βδ

ε
(4)

c = β + γ + ε+
βγ

α
d = ζ + δ + ε+

ζδ

ε
(5)

We can also write down the quadrilateral relations,

αε = γδ βζ = αε αε = γδ.(6)

These equations let us quickly recover a plus from a K4 as in Figure 2. Figure
2 also shows two plus-graphs joined at two boundary nodes. We see that when
we make the transformation to the K4 on both pluses we get one parallel edge.
However, this edge can be eliminated using the quadrilateral condition which shows
that the graph can still be recovered.
Next in Figure 2, is two pluses joined at three boundary nodes. This is a more

interesting case because the graph is not circular planar so we can not use our
circular planar tools to examine it. When we transform both pluses into K’s we
get three parallel edges. Clearly then, we can not use the quadrilateral condition
to recover all the parallel edges and this graph is not recoverable. Furthermore,
if we fix one parameter the others can be determined; from this we conclude that
the solution space is one dimensional. Lastly, shown is two pluses joined at all
boundary nodes. In this case we get all six parallel edges. We have to specify four
parameters before we can determine all the conductances so the solution space is
four dimensional.

2 3

4

5 6

78

9

1

α

λ−α

1

2 3

4

5 6

Figure 3. The Triangle in Triangle with Three plus-K Transformations

3. The Triangle in Triangle and other Two to One Graphs

Certain graphs have been found in previous years to have the special property
that they could generate the same response matrix for exactly two sets of conduc-
tances. The “Triangle in Triangle” was the first of these and was put forth in [2]
where an explicit quadratic formula for the conductances was found in terms of en-
tries in the response matrix. Using several pages of manipulations worked by hand
the terms in this quadratic formula were approximately 20 terms in length. In this
section we use the plus-K tool to derive a simpler quadratic equation and effectively
explain the nature of this 2− 1 graph. First we draw the triangle in triangle graph
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Figure 4. The Triangle-In-Triangle and Square-In-Square Graphs
Embedded on the Cylinder

to clearly show how it is a sum of three plus-graphs. Then we transform each plus
into a K.
Using the quadrilateral condition we can see that the parallel edges cannot be

found within a single K4 so we assign a parameter to one of the edges, say α. Then
the other edge must be λ25 − α so that the sum of the parallel edges is λ25. The
quadrilateral relation gives us one of the edges joining node 1 to node 4 as the
product of edges 1,2 and 4,5 divided by λ25 − α, or λ12λ45

λ25−α
. As before, the other

edge must be λ14 −
λ12λ45

λ25−α
. In turn, we can solve for the edges joining node 3 to

node 6 with the product of edges 1,3 and 4,6 divided by λ14 −
λ12λ45

λ25−α
. So one edge

is

λ13λ46

λ14 −
λ12λ45

λ25−α

and the other edge is λ36 −
λ13λ46

λ14 −
λ12λ45

λ25−α

.

Applying the quadrilateral condition one final time gives us

(7) λ23λ56 = α(λ36 −
λ13λ46

λ14 −
λ12λ45

λ25−α

).

This quadratic equation can also be written in the more familiar form,

α2[λ13λ46−λ36λ14]+α[λ14λ23λ56+λ36λ14λ25−λ36λ12λ46−λ13λ46λ25]+λ23λ56λ12λ45 = 0.

In this form we can see that we do indeed have a quadratic because the coefficient
of α2 is a non-zero determinant. This determinant corresponds to a connection
which is present in the network.

3.1. The Locus of Degenerate Points. and other interesting characteristics of
this graph have led to previous attempts to understand 2− 1 behavior. Many such
attempts were made before the star-K tool was discovered so we will give some
mention of these here. First, when the discriminant of this quadratic equals zero
we get a locus of points where the conductances can be determined exactly from
the response matrix. This discriminant is given by D = b2 − 4ac, or

D = [λ14λ23λ56+λ36λ14λ25−λ36λ12λ46−λ13λ46λ25]
2−4[λ13λ46−λ36λ14][λ23λ56λ12λ45].

Another way to examine this behavior is from a topological point of view. If we
take a parameterization of α as α = − b

2a
+ t D

2a
with t ∈ [−1, 1] and then compute

the response matrix Λ(t), then Λ(t) forms a closed curve as t varies.
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Figure 5. The Square in Square Graph and the Star-K Equivalent Graph

3.2. Other Two to One and 2n to One Graphs. were also known to exist in
previous years, but without any precise tools to examine them the algebra involved
was very complex and in some cases misleading. For example, some networks that
seem to have every property of a 2−1 network in an algebraic sense can actually be
shown using the star-K tool to be recoverable. The conjecture we may now be able
to prove is that an ”n-gon in an n-gon graph” is 2−1. An ”n-gon in an n-gon graph”
is a graph consisting of n plus-graphs joined at two boundary nodes such that they
form a chain that loops back to the original plus-graph. This can be visualized as
in Figure [4] as n diamonds embedded on the cylinder. Annular graphs like those in
[2] can in general can be embedded on the cylinder (no caps on the top or bottom)
with their boundary nodes on the two boundary circles. Refer to the appendix for
a note on the embedding of these graphs on surfaces with boundary.

3.3. The Square in Square Graph. is also 2−1. We will show this by explicitly
finding the coefficient of the α2 term and showing that it is also a non-zero deter-
minant. By a very close analogy to the triangle-in-triangle calculation we can write
down the terminating continued fraction version of the quadratic for the square-
in-square easily. If we fix the parameter shown in Figure 5 then the quadratic in
continued fraction form is

(8) α



















λ48 −
λ34λ78

λ37 −
λ23λ67

λ62 −
λ12λ65

λ15 − α



















= λ14λ58.

When we clear denominators we can see the coefficient of the α2 term is

(9) [λ48λ23λ67 + λ34λ78λ62 − λ48λ37λ62].

As in the triangle-in-triangle case, this is also a non-zero subdeterminant of
entries in the response matrix. There must be some reason for this, though it is not
yet known. To see that it is so, note that D(2,4,7;3,6,8) = λ23(λ46λ78 − λ76λ48) +
λ34(λ26λ78 − λ76λ28) + λ73(λ26λ78 − λ67λ28) is equal to equation 9 if λ46 and λ28

are zero. They are zero in the response matrix of the square-in-square because
those pairs of nodes are not connected through the interior. There is only one way
to make the connection (2,4,7;3,6,8) so this determinant is non-zero. At this point
we could speculate that the coefficient of the α2 term in the pentagon-in-pentagon
graph shown in Figure 6 will be D(2,8,4,10;7,3,9,5).
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Figure 6. The Pentagon in Pentagon Graph and the Star-K
Equivalent Graph

3.4. The Pentagon-in-Pentagon Graph. shown in Figure 6 has an associated
quadratic that can be easily written down in its terminating continued fraction
form as

(10) α





























λ5,10 −
λ45λ9,10

λ49 −
λ34λ89

λ38 −
λ23λ78

λ27 −
λ12λ67

λ16 − α





























= λ15λ6,10.

Again, we can clear denominators and this will show the coefficient of the α2

term to be

[λ5,10λ49λ38λ27+λ5,10λ34λ89λ27−λ5,10λ49λ23λ78−λ38λ45λ9,10λ27+λ45λ9,10λ23λ78].

That is, in fact, D(2,8,4,10;7,3,9,5) because of the zeros in the response matrix.
There is only one way to make this connection as before which guarantees we do
in fact have a quadratic. This leads us to make the following conjecture.

Theorem 3.1. If you number an n-gon-in-n-gon graph clockwise around the in-

side then clockwise around the outside from the same starting side, then assign a

parameter to one of the edges joining nodes 1 and n+1, then

D(2, n+ 3, 4, n+ 5, ..., n− 1, 2n;n+ 2, 3, n+ 4, 5, ..., 2n− 1, n)

is the coefficient of the quadratic term.

3.5. This section outlines a proof by recursive definition of coefficients of
a Linear Fractional Transformation. which is equivalent to our terminating
continued fraction. First, we need to re-write equations (7), (8) and (10) in the
explicit form of a terminating continued fraction. Figure 7 will be our guide. We
want to write the terminating continued fraction in a form closely analogous to that
in Chrystal’s book so, we use λn equals the product of the actual λ’s in the response
matrix on the top and bottom of the the quadrilateral above λn, and µn is the λ in
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Figure 7. A Chain of Plus Graphs that Result in a Continued Fraction

the response matrix corresponding to the parallel connection which it is labeled in
Figure 7. Using the quadrilateral condition we get a terminating continued fraction
that reads

(11) α = µ4 −
λ4

µ3 −
λ3

µ2 −
λ2

µ1 −
λ1

α

.

We will be relying on the recursive formulas in Chrystal’s book so we will also write
down that his notation for terminating continued fractions is

(12)
pn

qn
= a1 +

b2

a2 +
b3

a3 +
b4

a4 +
b5

a5

. . .

.
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We may also want to stray from this convention and examine what we get if relabel
Chrystal’s a’s and b’s so that the numbering is as follows

(13) a5 +
b5

a4 +
b4

a3 +
b3

a2 +
b2

a1

. . .

.

Chrystal shows that pn and qn can be defined recursively by identical recursion
formulas; pn and qn differ only because of their initial conditions: p0 = 1, p1 =
a1; q1 = 1, q2 = a2. The recursion formulas are

pn = anpn−1 + bnpn−2 and,(14)

qn = anqn−1 + bnqn−2.(15)

When we compare (11) and (12) we find that our α takes the place of Chrystal’s
an. Since an only appears in the pnth and qnth terms, and in equation (11) we
have pn

qn

= α we can write our terminating continued fraction in the form of a linear

fractional transformation (LFT). This LFT is

(16) α =
αpn−1 + λ1pn−2

αqn−1 + λ1qn−2

.

In this form we can easily write down the quadratic that corresponds to this LFT.
Remarkably, the coefficient of α2 is simply qn−1. The discriminant, which we will
also want to examine is

(17) [λ1qn−1 + pn−1]
2 − 4λ1pn−2qn−1.

We can use the work outlined in Chrystal to equate pn and qn to certain de-
terminants. Chrystal defines a continuant denoted by K(i, n) where K(1, n) = pn,
K(2, n) = qn. This is useful because Crystal derives a determinantal expression for
K(1, n);

K(1, n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a1 b2 0 0 0 . . . 0 0
−1 a2 b3 0 0 . . . 0 0
0 −1 a3 b4 0 . . . 0 0
0 0 −1 a4 b5 . . . 0 0
...

...
...

...
...

. . .
...

...
0 0 0 0 0 −1 an−1 bn
0 0 0 0 0 0 −1 an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

In this form we can see that there is no effect in the value of K(1,n) if we reverse
the numbering of the a’s and b’s. This is like the renumbering we did in equation
(13). Now we have an exact analogy, up to a sign, to the continued fraction of
equation (11) that came from our chain of plus-graphs. Now, also note that our
λn’s in equation (11) were the product of two actual λ’s in the response matrix so
we are going to instead write them with one term above and the other term below
the diagonal and state without proof that this does not change the value of the
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determinant. After doing this we can write out K(2,n-1) which we remember is
the coefficient of the α2 term. Thus, for the case of equation (11) representing the
square-in-square graph, with a4 = µ3, a3 = µ2, a2 = µ1, λ3 = b4, λ2 = b3,

K(2, 4) =

∣

∣

∣

∣

∣

∣

a4 b4 0
−1 a3 b3
0 −1 a2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

λ48 λ34 0
λ78 λ37 λ67

0 λ23 λ26

∣

∣

∣

∣

∣

∣

.

This determinant, because λ28 and λ64 are zero, corresponds to the connection
(8, 3, 6; 4, 7, 2) which can also be written as the connection (2,7,4;6,3,8). This con-
nection exists in the original graph, so this determinant is non-zero. This is the
same conclusion as we reached by hand and showed in equation (9), but at that
point it was just coincidence. Now we can write out the coefficient of α2 for an
arbitrarily long chain of n plus-graphs:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ2,n+2 λ2,3 0 0 . . . 0 0
λn+2,n+3 λ3,n+3 . . . 0 0 0 0

...
. . . 0 . . . 0 0

0 0 . . . λi,n+i λi,i+1 0 0
0 0 λn+i,n+i+1 λi+1,n+i+1 . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . λn−1,2n−1 λn−1,n

0 0 . . . 0 0 0 λ2n−1,2n λn,2n

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

This determinant corresponds to the connection

(2, n+ 3, 4, n+ 5, ..., n− 1, 2n;n+ 2, 3, n+ 4, 5, ..., 2n− 1, n),

which we know to be non-zero because the connection exists. This guarantees that
we have a genuine quadratic term in every case. It remains only to be shown that
the discriminant is positive and not always zero to show that we sometimes have
two real, positive solutions.
A topic for future study, besides examining the discriminant, would be to take

the limit as n goes to infinity in the matrix above and see if you can come up
with a meaning associated with the result. This ”circle-in-circle” graph may have
interesting properties.

3.6. The Race Track Graph. also has an associated equation that looks qua-
dratic, but more analysis is needed to show which terms do or do not vanish. Many
other seemingly 2 − 1 graphs can be constructed by joining plus-graphs together
into various chains that loop back on themselves. The method of examining the
terminating continued fraction form of the resultant quadratic equation may prove
useful in these case as well. The difference is that in each case we get a product of
continued fractions, or some more complicated behavior.

4. A Recoverable Flower

can be found with the star-K tool. By flower, I mean to say a graph with
no boundary spikes, and no boundary to boundary connections. Figure 8 can be
shown, using star-K transofrmations to be recoverable.



APPLICATIONS OF THE STAR-K TOOL 11

2 9

4 7

3 8

1 10

5 6

α

Figure 8. The Race Track Graph and Its Star-K Equivalent

Figure 9. A Recoverable Flower and Its Star-K Equivalent

5. Circles and Rays (Incomplete)

The algebra of this section is quickly turning out to be very complex. The goal
is to produce a straightforward exposition of two circles three rays and two circles
four rays. Perhaps it is a task for another day, but we have drawn a sequence of
Star-K transformations on both graphs that could serve as a guide.
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Figure 10. The 2 Circle 3 Ray Graph and Its Star-K Equivalent
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Figure 11. The 2 Circle 4 Ray Graph and Its Star-K Equivalent


