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Abstract. Let G be a circular planar graph with boundary. In [CuMo00], it is shown that the
following three properties of G are equivalent: (a) G is recoverable, i.e., a conductivity function on
the edges of G is uniquely determined by the resulting Dirichlet-to-Neumann map, (b) G is critical,

meaning every edge removal in G breaks a connection between circular sequences P and Q of boundary
vertices, and (c) the medial graph of G is lensless. In this paper we investigate the analogous properties
for a single edge e ∈ G: namely, we study the relation between (a′) whether the conductivity of e
is uniquely determined by the Dirichlet-to-Neumann map, (b′) whether removing edge e breaks a

connection, and (c′) the location of lenses relative to e in the medial graph of G.
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1. Introduction

1.1. Let G = (V, ∂V,E) be a graph with boundary with vertices V , boundary vertices ∂V , and edges
E. A conductivity function on G is a function γ : E → R+ from the edges of G to the positive real
numbers. For any such conductivity function, we get an electrical network Γ = (G, γ) with underlying
graph G and conductivity function γ. The conductivity function γ has the following defining property:
for any edge e with endpoints v1 and v2, and voltage function u on the vertices of G, the current i(e)
along edge e from v1 to v2 is computed by

i(e) = γ(e) · (u(v1)− u(v2)).

After ordering the vertices in ∂V there is a uniquely determined matrix Λ, called the response matrix
or Dirichlet-to-Neumann map, which takes a vector of voltages imposed at the boundary vertices of
this electrical network and maps it to the vector of induced boundary currents into the network. A
basic inverse problem of electrical network theory studied in [CuMo00] and [dVGV96] is to determine
the conductivity function γ from the matrix Λ. To state this more precisely, we recall some definitions.

Definition 1.2. Let G be a graph with boundary, with n edges and k boundary vertices. Then the
space of conductivity functions on G is Rn

+, and the set of response matrices Λ for electrical networks
on G is contained in the set Mk×k of k × k matrices. We let L : Rn

+ → Mk×k denote the map sending
a conductivity function γ to the induced response matrix Λ. We say that G is recoverable if the map
L is injective. For a given edge e ∈ G, we say that e is recoverable if for every matrix Λ ∈ Mk×k, the
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fiber L−1(Λ) is either empty or takes on a unique value on the edge e. In other words, the conductivity
of the edge e is uniquely determined by Λ.

1.3. In this paper we are interested in the question of when a specific edge e ∈ G is recoverable. It is
often the case that the conductivities of some edges are determined by boundary data, but other edge
conductivities are not. A simple instance of this is given by the following graph with boundary, where
all nodes are boundary nodes (in this paper, all graphs will be drawn with boundary nodes filled in
and interior nodes hollow):
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Figure 1. An electrical network with edges e13 and e′13 not recoverable

In this case the edges e12 and e23 are recoverable, but we can only uniquely determine the sum
γ13 + γ′

13 of the conductivities of the two edges e13, e
′
13. So these edges are not recoverable.

Assume that G is a circular planar graph with boundary. One of the main results of [CuMo00] is
the following theorem (see Section 2 for definitions):

Theorem 1.4. (Combining Theorem 6.1 and Proposition 9.3 in [CuMo00]) Let G be a circular planar
graph with boundary. Then the following are equivalent:

(1) G is recoverable.
(2) G is critical, i.e., every edge removal on G breaks some connection set.
(3) The medial graph of G is lensless.

Convention 1.5. We will always assume that a circular planar graph with boundary G is given a
specific circular embedding, so that its medial graph is defined.

Theorem 1.4 gives a very satisfactory answer to the question of which circular planar graphs are
recoverable. However, for non-recoverable graphs it gives no information on which edges are recoverable,
and no information on which edge removals break a connection. These are the questions we intend to
investigate in this paper.

1.6. Overview of Results. For this introduction we assume that the reader is familiar with the
basic terminology on connection-breaking and medial graphs, as in Chs. 2 and 8 of [CuMo00]. This is
briefly reviewed in Section 2. To state our main results, we make some additional definitions.

Definition 1.7. Let G be a circular planar graph with boundary, with medial graph M . A minimal
lens in M is a lens which does not contain any strictly smaller lens.

A typical minimal lens is shown in Figure 2 (in dark color), together with its underlying graph (in
light color). Our basic technique in this paper is to look for minimal lenses in the medial graph, and
then successively remove them from the graph by a process called a pole removal which is defined
below.

Definition 1.8. (Definition 3.4 in text) Let G be a circular planar graph with medial graph M , and
let L be a minimal lens in M . We define the pole removals of L by cases as follows.

(1) Suppose L is a minimal 1-pole lens, corresponding to a geodesic fragment α = ...a−1a0a0a1...
(i.e., a self-loop in the medial graph on vertex a0). Then there is a unique pole removal of lens
L, which replaces geodesic fragment α with α′ = ...a−1a1... and leaves the rest of M unchanged.
See Figure 10.
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Figure 2. A minimal lens (dark color) and its underlying graph (light color)

(2) Suppose L is a minimal 2-pole lens defined by geodesic fragments α = ...a0a1...am... and
β = ...b0b1...bn... with a0 = b0, am = bn, and ai ̸= bj for any other i ̸= j. Then there are two
pole removals of L. The first pole removal replaces geodesic fragments α and β by

α′ = b−1a1a2...amam+1... and

β′ = a−1b1b2...bnbm+1...

(See Figure 11). The second pole removal replaces geodesic fragments α and β by

α′ = a−1a0...am−1bm+1... and

β′ = b−1b0...bm−1am+1...

As defined above, the pole removals are operations on the medial graphM . Each pole removal, however,
corresponds to an edge removal in the graph G, and this edge removal is also called a pole removal of
the lens L.

Remark 1.9. When the minimal lens L is an empty 2-pole lens, it corresponds to either a series or
parallel edge in G. Then the pole removals correspond to contracting one of the two series edges, or
deleting one of the two parallel edges. In Figure 2, the pole removals correspond to the contractions of
the boundary spikes on the left and right.

The effect of a pole removal on the rest of the graph is summarized in the following proposition:

Proposition 1.10. (Corollary 3.8 in text) An edge representing a pole of a minimal lens is not re-
coverable, and any pole removal of a minimal lens is not essential (i.e., removing the edge does not
break any connection in G). A pole removal does not affect recoverability or essentiality of any edge
not intersecting the lens.

As a first approximation, non-recoverable edges correspond to edges which intersect minimal lenses
(either on the interior or the boundary of the lens), while inessential edge removals correspond to pole
removals of minimal lenses. This is complicated by the fact that when one removes a minimal lens via
a pole removal, new minimal lenses may appear in the medial graph (as in Example 4.4). One can take
into account these new minimal lenses by making the following definition:

Definition 1.11. Let G be a circular planar graph with boundary, with medial graph M . Given an
edge e ∈ G, we say that e potentially intersects a minimal lens if there exists a sequence of graphs
G = G0 7→ G1 7→ ... 7→ Gn, with Gi+1 obtained from Gi by a single pole removal of a minimal lens
(e cannot be the edge that is removed), such that e intersects a minimal lens in the medial graph of
Gn. Given an edge removal r in G (see Definition 2.5), we say that r is potentially a pole removal of a
minimal lens if there exists a sequence of graphs G = G0 7→ G1 7→ ... 7→ Gn as above, such that r is a
pole removal of a minimal lens in the medial graph of Gn.

Our main result is then as follows:

Theorem 1.12. (combining Theorems 5.2 and 6.2 in text) Let G be a circular planar graph with
boundary, and e ∈ G an edge. Then e is non-recoverable if and only if e potentially intersects a
minimal lens. An edge removal r in G is inessential (does not break any connection) if and only if r
is potentially a pole removal of a minimal lens.
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This is our local (edge-by-edge) analogue of Theorem 1.4.

1.13. Some comments on this result are in order. As noted above, when one removes a minimal lens
via a pole removal, new lenses may appear. Nevertheless, the process of uncrossing minimal lenses
one at a time must terminate in a lensless medial graph, since each uncrossing reduces the number of
crossings in the medial graph by one, and a medial graph with no crossings is obviously lensless. There
are many possible ways to uncross minimal lenses to arrive at a lensless medial graph, so the following
fact is somewhat surprising:

Corollary 1.14. (Corollary 5.4 in text) Let G = G0 7→ G1 7→ ... 7→ Gn be any sequence of graphs such
that each Gi+1 is obtained from Gi by a single minimal lens uncrossing, and the medial graph of Gn is
lensless. Let Li be the minimal lens uncrossed to obtain Gi+1 from Gi. Then let S be the set of edges
in the original graph G which intersect any of the minimal lenses L0, ..., Ln−1 (this makes sense since
the set of edges of each Gi is a subset of the edges of G). This set S is exactly the set of non-recoverable
edges in G; in particular, S is independent of the way in which minimal lenses are uncrossed.

As explained in Remark 5.5, this leads to an algorithm based on the medial graph for computing the
non-recoverable edges in any circular planar graph with boundary. Unfortunately, the corresponding
statement for edge removals is false; the collection of edge removals which appear as pole removals of
minimal lenses in a sequence G = G0 7→ ... 7→ Gn, with Gn critical, is not independent of the sequence.
Therefore to apply Theorem 1.12 to compute the inessential edge removals in a circular planar graph
with boundary, one must a priori consider all possible sequences of minimal lens uncrossings yielding a
critical graph. There could be many such sequences, so this does not appear to be a computationally
feasible way to compute the inessential edge removals in a circular planar graph.

1.15. Acknowledgements. The authors would like to thank Jim Morrow and the many students
of the mathematics REU at the University of Washington. Our inspiring conversations with several
students, as well as with Jim Morrow, are what led us to pursue the questions studied in this paper.

2. Preliminaries on Medial Graphs

This section introduces the terminology on edge removals and medial graphs that we will need for
this paper. Much of this appears in [CuMo00], and we will use this as a reference when appropriate.
We start by introducing some definitions related to connections and connection breaking, as in Ch. 2
of [CuMo00].

Definition 2.1. Let G = (V, ∂V,E) be a graph with boundary. G is said to be circular planar if there
exists an embedding G ↪→ D into the closed unit disc D in the plane, such that the intersection G∩∂D
is precisely the boundary vertices of G. Such an embedding is called a circular embedding.

Convention 2.2. In this paper all graphs that appear will be circular planar. Whenever we refer to
a circular planar graph G, we will always assume that we have chosen a specific circular embedding
G ↪→ D, along with an ordering ∂V = (v1, ..., vk) of the boundary vertices of G such that these vertices
appear in clockwise order along ∂D.

Definition 2.3. Let G be a circular planar graph with boundary, and let S and T be disjoint subsets
of the boundary vertices of G, with |S| = |T |. We say that (S;T ) form a circular pair if S and T lie on
disjoint (connected) arcs of the boundary circle. We will always assume that S and T are given their
clockwise ordering around the boundary circle.

Definition 2.4. Let G be a circular planar graph with boundary, and let S and T be a circular pair
of boundary vertices, with |S| = |T | = k. A connection from S to T is a collection C of edges of G
satisfying the following conditions:

• The collection C forms a set of k disjoint paths in G containing no cycles.
• Every path has one endpoint in S and one endpoint in T ; in particular, every vertex of S and

T is the endpoint of exactly one path.
• Any vertex used in the path except the endpoints must be an interior vertex.
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Definition 2.5. Let G be a graph with boundary, and let e ∈ G be an edge. An edge removal for e is
one of the following two ways of producing a graph G′ from G with one fewer edge:

(1) Take G′ to have the same vertex set as G, but with edge set E(G′) = E(G)− e. This is called
deleting edge e.

(2) Let G′ be the graph obtained by deleting e and then identifying the two endpoints of e. This is
called contracting the edge e. The vertex v corresponding to the endpoints of e in G is declared
to be boundary in G′ if and only if at least one of the endpoints in G was boundary.

If r is an edge removal on G, then we will denote the graph G′ obtained from applying edge removal r
to G by Gr.

Remark 2.6. Notice that if r and s are edge removals of distinct edges in G, then we can make sense
of applying edge removals r and s in succession. It is clear that the order in which we apply r and s
does not matter, i.e., (Gr)s = (Gs)r. This simple observation will be used often in this paper.

Remark 2.7. Suppose that r is an edge removal on G which is not a boundary-boundary edge con-
traction. Then it is clear that the boundary vertices of G and those of Gr can be identified in a natural
way. This is done implicitly in Definition 2.8 below.

Definition 2.8. Let G be a graph with boundary, and r an edge removal on G. First suppose r is
not a boundary-boundary edge contraction. We say that r is essential on G if there exists a circular
pair (S;T ) of disjoint sets of boundary vertices such that there exists at least one (S;T )-connection
on G, but there does not exist any (S;T )-connection on Gr. In this case we say that r breaks the
(S;T )-connection set. If r is a boundary-boundary edge contraction, we say that r is essential if and
only if the endpoints of the edge e which is to be contracted are distinct.

We say that an edge e ∈ G is essential if both edge removals of e are essential. We say that G is
essential (or critical, as in [CuMo00]) if every edge removal on G is essential.

2.9. (Medial graphs) We refer to [CuMo00, Ch. 8] for the definition of a medial graph. It is convenient
to subdivide the edges of the medial graph into collections called geodesics, as defined in [CuMo00, p.
129]. We typically specify a fragment of a geodesic in M by a sequence u0u1...um of vertices of M ,
such that there are edges u0u1, u1u2, ..., um−1um such that these edges lie in consecutive order along
a geodesic. By smoothing the geodesics in M , we can obtain that each geodesic G in the medial graph
M is a smooth connected arc in the unit disc, either having two endpoints on the boundary of the disc
or forming a closed loop in the interior of the disc.

Given a circular planar graph G, we will denote its medial graph by M(G) or simply M . Then as
explained in [CuMo00, Sect. 8.2], the cells of the embedding M ↪→ D can be 2-colored (say, black and
white) in such a way that the black cells are precisely those containing a vertex of G. Then M together
with this 2-coloring determine G, unless G has isolated interior vertices.

Convention 2.10. In this paper, we will treat two graphs with boundary G and G′ as equivalent if
they only differ in some number of isolated interior vertices. Since isolated interior vertices have no
effect on the electrical properties of G, this identification is harmless. With this convention, the medial
graph M(G) together with the 2-coloring induced by G will uniquely determine G.

Definition 2.11. Let v be a crossing of two geodesics in a medial graph M (i.e., a vertex of M).
Recall that this corresponds to an edge e ∈ G. The two edge removals of e ∈ G then correspond to two
operations on the medial graph M which are called the uncrossings of v. In the typical case, these are
as in Figure 3. For more on uncrossings see [CuMo00, p. 130]. An exceptional case occurs when the
corresponding edge e is a self-loop or (dually) a hanging interior edge, i.e., an interior vertex of degree
1. In this case (up to an isolated interior vertex) deleting and contracting e are the same operation,
and so the two ways of uncrossing M have the same result on the medial graph, which is shown in
Figure 4.

Definition 2.12. Let M be a medial graph, viewed as a collection of smooth arcs (geodesics) in D.
Informally, a lens in M is one of the three configurations shown in Figure 5. More precisely, it is one
of the following three configurations in the medial graph M :
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Figure 3. The two uncrossings of v corresponding to deleting and contracting an
edge e in the typical case

Figure 4. The uncrossing of v corresponding to deleting an edge leading to a hanging
interior vertex, and its effect on the medial graph (dark color)

0−pole 1−pole

2−pole

Figure 5. The three types of lenses in a medial graph (0-pole lens in upper left, 1-pole
lens in upper right, and 2-pole lens on bottom)

(1) (0-pole) a complete geodesic α = u0u1...um such that um = u0 and ui ̸= uj for any other pair
0 ≤ i ̸= j ≤ m.

(2) (1-pole) a geodesic fragment α = u0u1...um, where um = u0 and ui ̸= uj for any other pair
0 ≤ i ̸= j ≤ m, and such that α is not a full geodesic (i.e., edge um−1um has a direct extension
umum+1 which is not the edge u0u1.) The repeated vertex u0 = um is called the pole of L.

(3) (2-pole) two geodesic fragments α = u0u1...um and β = v0v1...vn such that u0 = v0, um = vn,
and for no other i ̸= j do we have ui = vj . The vertices u0 = v0 and um = vn are called the
poles of L.

Note that in [CuMo00, Ch. 8], the first two configurations would have been referred to as degenerate
lenses. Note that there may be other geodesics intersecting a lens in M . If the region contained in a
lens does not intersect any geodesic, then the lens is said to be empty.
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Figure 6. An empty triangle in the medial graph (corresponds to either a Y or ∆ in G)

Figure 7. An arc switch (Y -∆ transformation)

Remark 2.13. An empty 2-pole lens in a medial graph M corresponds to either a series or parallel
edge in G. An empty 1-pole lens corresponds to a hanging interior vertex (i.e., the edge leading to an
interior vertex of degree 1) or to a self-loop from a vertex to itself. An empty 0-pole lens cannot exist
in the medial graph of any graph with boundary.

Definition 2.14. Let M be the medial graph of G. An empty triangle in M is a configuration
topologically equivalent to that shown in Figure 6. The corresponding configuration in the graph G is
called a Y or a ∆. There is a well-known procedure for converting a graph G with a Y into a graph G′

with a ∆ and vice-versa, called a Y -∆ transformation. The corresponding modification to the medial
graph is called an arc switch (see Figure 7). See [CuMo00, Sect. 8.3] for more details.

3. Uncrossing minimal lenses

3.1. As usual, fix a circular planar graph with boundary G, and let M be its medial graph. Our
main tool for proving an edge-by-edge analogue of Theorem 1.4 will be to successively uncross lenses
in M , attempting to reduce to the case where M is lensless so that we can apply Theorem 1.4. A
lens uncrossing is done via an edge removal called a pole removal, and this section is devoted to the
definition and basic properties of pole removals of lenses. For example, if M contains an empty 2-pole
lens L (corresponding to a series or parallel edge in G), then a pole removal of L will correspond to
contracting one of the two edges in series, or deleting one of the two edges in parallel. In general, pole
removals only have good properties for a certain class of lenses, namely, the minimal lenses.

Definition 3.2. Let M be a medial graph. A minimal lens in M is a lens which does not contain any
strictly smaller lens.

Obviously any medial graph with a lens contains a minimal lens. The following proposition shows
that the only interesting minimal lenses are the minimal 2-pole lenses:

Proposition 3.3. Let L be a minimal lens in a medial graph M which has at most one pole. Then L
is empty, and so must be an empty 1-pole lens.

Proof. Suppose to the contrary that L is not empty, and first suppose that no geodesics intersect the
boundary of L. Then (since L is non-empty) there must exist a geodesic α strictly contained in L,
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αβ

Figure 8. The lens produced by a geodesic passing through a 1-pole lens

Figure 9. A minimal 2-pole lens

which must therefore have no endpoints. This implies that either α is a 0-pole lens or some sub-arc of
α forms a 1-pole lens. In either case, this contradicts minimality of L.

The other possibility is that there is at least one geodesic intersecting the boundary of L. Let
α = a0...am be a geodesic fragment defined by crossings a0, ..., am such that a0 and am represent
vertices of M on the boundary of L, and all other ai are in the interior of L. Suppose that ai ̸= aj for
i ̸= j. Let β = b0...bn be the geodesic fragment of L with b0 = a0 and bn = am. Then α and β form
a 2-pole lens strictly contained in L, contradicting the assumption that L is minimal (See Figure 8).
Otherwise, if ai = aj for some i ̸= j, then some sub-fragment of the arc fragment α forms a 1-pole lens
strictly contained in L, again contradicting minimality of L. �

The most interesting minimal lenses are therefore the nonempty minimal 2-pole lenses. See Figure
9 for an example. The poles of such a lens can be thought of as defining two cut points along the
circle defining the interior of the lens. Then the requirement for the lens to be minimal is that (1)
every geodesic entering one side of the cut must exit on the other side, and (2) the medial graph in the
interior of the graph must be lensless. We can summarize this by saying that the interior of the lens
constitutes a permutation chord diagram from one side of the cut defined by the poles to the other
side.

Definition 3.4. Let G be a circular planar graph with medial graph M , and let L be a minimal lens
in M . We define the pole removals of L by cases as follows.

(1) Suppose L is a minimal 1-pole lens, corresponding to a geodesic fragment α = ...a−1a0a0a1...
(i.e., a self-loop in the medial graph on vertex a0). Then there is a unique pole removal of lens
L, which replaces geodesic fragment α with α′ = ...a−1a1... and leaves the rest of M unchanged.
See Figure 10.

(2) Suppose L is a minimal 2-pole lens defined by geodesic fragments α = ...a0a1...am... and
β = ...b0b1...bn... with a0 = b0, am = bn, and ai ̸= bj for any other i ̸= j. Then there are two
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Figure 10. The unique pole removal of an empty 1-pole lens

Figure 11. Pole removals of a minimal 2-pole lens

pole removals of L. The first pole removal replaces geodesic fragments α and β by

α′ = b−1a1a2...amam+1... and

β′ = a−1b1b2...bnbm+1...

(See Figure 11). The second pole removal replaces geodesic fragments α and β by

α′ = a−1a0...am−1bm+1... and

β′ = b−1b0...bm−1am+1...

As defined above, the pole removals are operations on the medial graphM . Each pole removal, however,
corresponds to an edge removal in the graph G, and this edge removal is also called a pole removal of
the lens L.

Remark 3.5. If L is an empty 2-pole lens, then in G, L corresponds to either a series or parallel edge.
The pole removals of L correspond to either contracting one half of the series edge, or deleting one half
of the parallel edge. If L is an empty 1-pole lens, then in G, L corresponds to either a self-loop or a
hanging interior vertex. In both of these cases, up to an isolated interior vertex, deleting and contracting
the edge have the same effect, and the pole removal of L corresponds to this deletion/contraction.

Our overall strategy for studying circular planar graphs will be to look for minimal lenses in the
medial graph, and then successively remove one minimal lens at a time by applying a pole removal.
Note that uncrossing one lens in a graph might create new lenses; nevertheless, the process of uncrossing
minimal lenses must terminate in a lensless graph since there are only finitely many crossings in total,
and every pole removal reduces the number of crossings in M by one. The rest of this section is devoted
to the key technical properties of minimal lens uncrossings which we will need in the rest of the paper.

Lemma 3.6. Let M be a medial graph, L a minimal 2-pole lens in M , and p one of the two poles of
L. Then L can be emptied by a sequence of arc switches never involving the pole p.

Proof. A careful reading shows that this follows from the proof of [CuMo00, Lemma 8.2]. For the
reader’s convenience we include the proof here.
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Figure 12. Expressing a single pole removal as a composition of Y -∆ transforms (arc
switches) and one series/parallel edge removal

We start by showing that all crossings in the interior of L can be removed by a sequence of arc
switches using neither of the poles p, q. Suppose therefore that there is at least one crossing in the
interior of L. Let N and S be the two halves of the lens L defined by its poles. Since L is minimal, every
arc fragment which intersects L must cross both N and S. Let F = {αi} be the geodesic fragments
passing through L; to be precise, each αi is a geodesic fragment a0a1...am where a0 is a vertex on N ,
am is a vertex on S, and each ai, 0 < i < m is a vertex in the interior of L. For each i, let vi be the
point of intersection of αi with S. Let wi be the first intersection point of αi with another member of
F after vi inside L (if it exists). Let W = {wi} be the set of points obtained in this way. Since L was
assumed to have at least one interior crossing, W is nonempty. For a given w ∈ W , suppose that w
is formed by the crossing of geodesic fragments αi and αj . Then the geodesic fragments αi, αj , and
S form a triangular region R in the interior of L. By the construction of the points wi ∈ W , there
must exist at least one w′ ∈ W such that the interior of the corresponding region R′ is empty (does
not contain any geodesic fragments), and therefore R′ forms an empty triangle. Then an arc switch
will move the crossing w′ to the exterior of L, and hence reduce the number of crossings in the interior
of L by one. Repeating this process, we will eventually remove all crossings from L by a sequence of
arc switches.

We have therefore reduced to assuming that the lens L has no crossings in its interior. Then the
arc fragment closest to q forms an empty triangle with parts of N and S, and by an arc switch we
can remove this arc fragment from the interior of L. Repeating this process, we eventually remove all
geodesic fragments from the interior of L by arc swtiches via the pole q. �

This immediately implies the following:

Proposition 3.7. Let r be an edge removal in a graph G which represents a pole removal of a minimal
2-pole lens in M . Then r can be expressed as a sequence of Y -∆ transformations not involving the
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edge removed by r, then a singe series/parallel edge removal, and finally another sequence of Y -∆
transormations.

Proof. Let L be the minimal 2-pole lens with pole removal r. By Lemma 3.6, we can empty L of
all geodesics by a sequence of arc switches not involving r. This gives the first sequence of Y -∆
transformations. Then the edge removal r corresponds to either a series or parallel edge removal in
G. After applying r, we can apply the initial sequence of Y -∆ transformations in reverse order to
arrive at the graph resulting from just applying edge removal r. See Figure 12 for an example of this
process. �

Corollary 3.8. An edge representing a pole of a minimal lens is not recoverable, and any pole removal
of a minimal lens is not essential. A pole removal on G does not affect recoverability or essentiality of
any edge not intersecting the lens.

Proof. The statement is obvious if the minimal lens is empty. Otherwise suppose L is a 2-pole minimal
lens, fix an edge p representing one of the poles of the lens, and let r be the pole removal of p. Then
the proposition above shows that one can wye-delta transform p to be part of a series or parallel edge,
without using the edge p in any of these wye-delta transformations. This corresponds to emptying the
lens via arc switches only involving the other pole of the lens. Since wye-delta transformations not
involving an edge e do not change recoverability or essentiality of e, we see that p is non-recoverable
and r is inessential. If e is an edge not intersecting the lens L, then uncrossing L at p can be written
as a composition of wye-delta transformations and series/parallel edge removals not involving the edge
e. These don’t change recoverability/essentiality of e, so the second statement is proved. �

The following two lemmas are our key lemmas for dealing with crossings intersecting a minimal
2-pole lens L.

Lemma 3.9. Let e be an edge representing a crossing on the boundary of a minimal 2-pole lens L,
but which is not a pole of L. Let α be the geodesic fragment through L containing e. Then L can be
emptied of all geodesics except α, by a sequence of arc switches not involving e.

Proof. LetN and S be the geodesic fragments defining the lens L, and suppose without loss of generality
that e is a crossing on N (see Figure 13). Let {βi}ni=1 be the set of geodesic fragments besides α passing
through the interior of L. Assume that at least one βi intersects α in the interior of L (if not, proceed
to the next paragraph). Then let βj be the geodesic fragment which intersects α closest to the fragment
S. Note that βj must intersect S at some point. Then subfragments of the geodesics βj , α, and S then
define a region R contained in L as shown in Figure 13. The boundary of R can be naturally divided
into

∂R = β′
j ∪ α′ ∪ S′,

where β′
j , α

′, and S′ are arc fragments contained in βj , α, and S respectively. By our construction, no
geodesics intersect α′. Therefore R can be emptied of all geodesics by a sequence of arc switches: to
see this, consider the region R obtained by contracting α′; R is a minimal 2-pole lens since no geodesic
intersects α′. By Lemma 3.6, the lens R can be emptied by a sequence of arc switches not using the
pole of R defined by the contracted edge α′. The corresponding arc switches in R will empty the region
R, turning R into an empty triangle. We can then apply an arc switch to remove region R from the
lens L. This reduces the number of arcs intersecting α by 1; we can repeat this process until no arcs
intersect α.

So we’ve reduced to assuming that no arcs in L intersect α in the interior of L. Then let W and
E be the two halves of L defined by the arc α. As in the previous paragraph, let W and E be the
regions obtained by contracting α. Because no geodesics intersect α, W and E are minimal 2-pole
lenses. By Lemma 3.6, W and E can be cleared by a sequence of arc switches not using the crossing
defined by the contraction of α. The corresponding arc switches in L will empty W and E of all arcs,
which completes the proof of the lemma. �
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Figure 13. Diagram for proof of Lemma 3.9

Lemma 3.10. Let e be an edge representing a crossing in the interior of a minimal 2-pole lens L.
Then L can be emptied of all geodesics in the interior of L except those defining e, by a sequence of
arc switches not involving the edge e.

Proof. Let N and S be the arc fragments defining the lens L. Let α and β be the arc fragments in L
containing edge e. Then e separates α and β into two halves; we write α = α1 ∪ α2 and β = β1 ∪ β2

in such a way that α1 and β1 intersect N (See the Figure 14). Finally, note that the geodesics α and
β subdivide the interior of L into 4 regions A, B, C, D, as in Figure 14. Let {γi}ni=1 be the other arc
fragments in L. If no γi intersects α1 or β1, proceed to the next paragraph. Otherwise, assume without
loss of generality that some γi intersects α1, and let γj be the arc fragment intersecting α1 closest to
N . γj must intersect the arc fragment N in one of regions A, B or C. If γj intersects N in region A
or region B, then parts of geodesics γj , N and α1 form a triangle R with no geodesic crossing the part
of α1 defining the boundary of R. Using Lemma 3.6 in the same manner as in the proof of Lemma
3.9, we can empty R of all geodesics by a sequence of arc switches, turning R into an empty triangle,
and then remove R itself from L by another arc switch. The other possibility is that γj intersects N in
region C, which implies that γj intersects arc fragment β1 as well. If γj is the arc fragment intersecting
β1 closest to N , then parts of γj , β1, and N form a triangular region which can be emptied and then
removed by arc switches, using Lemma 3.6. If not, then there is some geodesic γk ̸= γj which intersects
β1 closest to N . Since γj is the geodesic intersecting γ1 closest to N , γk must intersect N in region B
or region C, and then parts of γk, N , and β1 form a triangular region which can be emptied and then
removed by arc switches, using Lemma 3.6. This last case is illustrated in the lower half of Figure 14
(here j = 3) In any case, we have reduced the total number of crossings along α1 and β1 by one.

By repeating the process in the above paragraph, a sequence of arc switches reduces us to a lens
L with no geodesics crossing α1 or β1. Repeating the argument with respect to arc fragment S and
fragments α2, β2 reduces us to a lens L with no geodesics crossing α1, β1, α2, or β2. At this point
the regions A and D of L must be empty. Let B and C be the regions obtained by contracting α1
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Figure 14. Diagram for proof of Lemma 3.10

Figure 15. We will often be able to reduce our analysis to these two medial graphs

and β2 to a point, and β1 and α2 to a point. Then B and C must be minimal 2-pole lenses since no
geodesics cross α1, α2, β1, β2. An application of Lemma 3.6 allows us to empty regions B and C, and
the corresponding arc switches in L will empty B and C using the poles p and q respectively. �

The previous two lemmas will reduce our analysis in many cases to the medial graphs shown in
Figure 15. In the next section we study the graphs inducing these medial graphs in some detail.

4. Examples

Recall the main theorem of [CuMo00]:

Theorem 4.1. Let G be a circular planar graph with boundary. Then the following are equivalent:

• G is recoverable.
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2

3

1

4

Figure 16. G (light color) and M (dark color)

• G is critical.
• The medial graph of G is lensless.

We will call this the main global theorem, as it relates properties of the entire graph G. A local
theorem would be one relating the recoverability of a single edge e to geometric properties of the graph.
This situation turns out to be more complicated than the global situation. For example, it is not true
that an edge e in a circular planar graph is recoverable if and only if it is essential, and the relation of
both of these properties to the location of lenses in the medial graph is a little subtle.

It is good to consider a few examples to see what is going on. Moreover, the calculations we make
in these examples will be used in the proof of our main theorems, as we will reduce the proof to these
special cases.

Example 4.2. Consider the graph G in Figure 16 (in light color), with its corresponding medial graph
M in dark color. Notice that G is self-dual, so G is the only circular planar graph with boundary
having M as medial graph.

Let us check which edge removals are essential. It is easy to check that a Y and a ∆ are well-
connected graphs, i.e., all possible connections between circular pairs exist. Therefore, since deleting
edge 13 and contracting edge 24 leave a Y and ∆, respectively, they cannot break any connections.
Therefore these two edge removals are not essential. All other edge removals are essential:

• 13 is critical for contraction since its endpoints are distinct.
• Deleting 14 breaks the (1; 2)-connection; contracting it breaks the (2;3)-connection.
• Deleting 24 breaks the (1; 2)- and (2; 3)-connections.
• Deleting 34 breaks the (2; 3)-connection; contracting it breaks the (1; 2)-connection.

Notice that the two inessential edge removals correspond precisely to the 2 pole removals of the unique
(minimal) lens in M .

Next we compute the recoverable edges of G. By the main global theorem, there is at least one
non-recoverable edge. In fact, every edge in this graph is non-recoverable. To see this, first apply a
Y -∆ transformation to the Y to obtain the following graph shown in Figure 17.

In this figure we have parametrized the fiber over a response matrix Λ with independent entries a,
b, c. Here t ∈ (0, a) is an arbitrary parameter. Now we apply the inverse Y -∆ transformation to obtain
the parametrization of the fiber over Λ shown in Figure 18. No edge has a constant conductivity as t
varies, so none of the edges are recoverable. We will eventually see that this is because every edge in
G intersects the lens of M (i.e., every crossing in M intersects the lens).

Example 4.3. Consider the medial graph in Figure 19, and the two graphs G, Gd which have it as
medial graph. Here it is more complicated to check which edge removals are essential and which edges
are recoverable. We leave the computations to the reader; the results are as follows:

• The only inessential edge removals in G are the contractions of edges 15 and 26.
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Figure 17. Parametrization of the fiber over a response matrix Λ with independent
entries a, b, c
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bt + bc + tc
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Figure 18. Parametrization of fiber over Λ for original graph G

• The only inessential edge removals in Gd are the deletions of edges 12 and 34.
• In both G and Gd, all edges are non-recoverable. The easiest way to see this is by applying a

sequence of three Y -∆ transformations transforming G (resp. Gd) into a graph with a parallel
edge (resp. with a series edge), parametrizing the conductivities of the resulting edges, and
then applying the inverse Y -∆ transforms. This is the same process as in Example 1, except
that one requires three Y -∆ transforms instead of one. Figure 20 shows the sequence of Y -∆
transformations used for G to obtain a graph with a parallel edge. If we parametrize the the
edges in the resulting graph (with parameter t) and then invert these Y -∆ transformations
we get the one-parameter family in Figure 21 of conductivity functions on G yielding the
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same response matrix. Since the conductivity of each edge varies as t varies, all edges are
non-recoverable. A similar calculation on Gd shows that every edge on Gd is non-recoverable.

Notice that in both cases, there are exactly two inessential edge removals in M , corresponding to
the pole removals of L. On the other hand, every edge in each graph is non-recoverable. One might
guess from this that inessential edge removals in M should correspond to pole removals of minimal
lenses, while non-recoverable edges should correspond to edges which intersect minimal lenses. This is
not quite right, as the following example illlustrates:

Example 4.4. Consider the graph G (light color) and medial graph M (dark color) shown in the
upper left half of Figure 22. Consider the edge labeled e. Notice that this edge does not intersect any
minimal lens in M . Nevertheless, we leave it to the reader to check that this edge is not recoverable,
and that contracting e is inessential.

To understand what is happening, consider the unique minimal lens L. After uncrossing L at pole p,
we get the medial graph shown in the lower half of Figure 22. Notice that after uncrossing L, e becomes

1

2

2

1

3

3

4

4

5

5

6

6

GG d

Figure 19. A medial graph M (dark color) and the graphs G, Gd (light color) which
have it as medial graph

f−t

b e

c d
t

a

Figure 20. The sequence of Y -∆ transformations used to transform G to a graph
with a parallel edge, and a parametrization of the conductivities on the resulting graph
yielding the same response matrix
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(bc + bt + ct)(ed + (e+d)(f − t))
acd + d(bc + bt + ct) + c(ed + (e+d)(f−t))

bc + bt + ct
t

bc + bt + ct
b

ed + (e+d)(f−t)
f−t

ed + (e+d)(f−t)
e

ad(bc + bt + ct)
ac(ed + (e+d)(f−t))

acd + d(bc + bt + ct) + c(ed + (e+d)(f−t))
acd + d(bc + bt + ct) + c(ed + (e+d)(f−t))

Figure 21. A one-parameter family of conductivity functions on G (parametrized by
t) with the same response matrix

a pole of a new minimal lens L′ which did not exist in the original medial graph M . In general, our
theorems will have to keep track of the new lenses which can appear when uncrossing a minimal lens
in M . After doing so, we will see that non-recoverable edges correspond to edges intersecting minimal
lenses, and inessential edge removals correspond to pole removals of minimal lenses.

5. Recoverability of an edge e

Definition 5.1. Let e be an edge in circular planar graph G, with medial graph M . We say that e
potentially intersects a minimal lens if these exists a sequence of graphs G = G0 7→ G1 7→ G2 7→ ... 7→
Gn with each Gi+1 obtained from Gi by a single pole removal of a minimal lens (e cannot be the pole
that is removed), such that e intersects a minimal lens in Gn.

We can now state and prove our main theorem characterizing recoverability of an edge in terms of
the medial graph.

Theorem 5.2. An edge e in a circular planar graph G is non-recoverable if and only if e potentially
intersects a minimal lens.

Proof. First suppose e does not potentially intersect a minimal lens. Then fix a sequence G = G0 7→
G1 7→ ... 7→ Gn, where Gn has a lensless medial graph and each Gi 7→ Gi+1 is obtained by a single pole
removal of a minimal lens Li. By assumption e does not intersect Li, so Corollary 3.8 tells us that the
recoverability properties of e are the same in Gi as in Gi+1. By Theorem 1.4, e is recoverable in Gn

since the medial graph of Gn is lensless. Therefore e must have been recoverable to start with.

Now suppose that e does potentially intersect a minimal lens. Take a sequence G 7→ G1 7→ ... 7→ Gn

of minimal lens uncrossings, such that in graph Gn, e intersects a minimal lens, and it did not intersect
a minimal lens at any earlier stage in the sequence. Then e is recoverable in Gn if and only if it is



18 OWEN BIESEL AND PETER MANNISTO

p

L

e

e

Figure 22. The graph and medial graph for Example 4.4. Edge e becomes a pole of
a minimal lens after uncrossing at p

recoverable in G. So we reduce to showing that if e intersects a minimal lens, then e is not recoverable.
We have already shown that the poles of minimal lenses are not recoverable, so suppose e is not a pole of
the minimal lens. By Lemmas 3.9 and 3.10, we can empty the rest of the lens by Y -∆ transformations
not involving e. These do not change recoverability of e, and hence we are reduced to considering the
case where the lens L containing e looks like one of the medial graphs of Examples 4.2 and 4.3. Let C
be a simple closed curve in D drawn sufficiently close to L so as to not intersect any geodesics which
do not cross L, as seen in Figure 23. We can then consider the graph with boundary H consisting of
the black cells (defining vertices of G) contained inside C, with a vertex of H declared boundary if and
only if it intersects the curve C. Examples 4.2 and 4.3 show that when e is thought of as an edge of H,
e is not recoverable. The lemma below shows that since e is not recoverable in H, it is not recoverable
in Gn either, so that lemma will complete the proof. �

Lemma 5.3. Let G be a circular planar graph with boundary, and M its medial graph. Suppose that H
is a graph with boundary obtained as follows: draw any simple closed curve C strictly contained inside
the boundary circle of the medial graph M , and let MH be the medial graph consisting of the part of
M contained inside C. Let H be the (unique) subgraph with boundary of G corresponding to the cells
contained in MH , with a vertex of H declared as boundary if and only if the corresponding cell in M
intersects the simple closed curve C. Now let e ∈ H be any edge of H. If e is recoverable as an edge of
G, then it is recoverable as an edge of H.
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C e

Figure 23. The subgraph H defined by the closed loop C, with medial graph MH

Proof. The key point is that H can be obtained from G by repeated application of the following three
operations:

(1) Promoting an interior vertex of G to a boundary vertex.
(2) Deleting a boundary-boundary edge.
(3) Deleting an isolated boundary vertex.

To see this, first use operation (1) promote all of the interior vertices not intersecting the medial graph
MH to boundary vertices. Then all edges outside of H are boundary-boundary edges, since any vertex
which is interior in H has the property that H contains all of the edges leading out of it in G. Thus one
can apply operation (2) to delete all of these, and then the vertices outside of H are isolated boundary
vertices, which we can delete by operation (3). So it suffices to prove the proposition when H is a
subgraph obtained by applying one of the three operations above. We handle these case-by-case:

(1) Suppose that H is obtained from G by promoting the vertex v ∈ Int G to boundary. Let
LG : Rn

+ → Mk×k and LH : Rn
+ → Mk+1×k+1 be the Dirichlet-to-Neumann maps on G and

H, respectively. Then by standard properties of Schur complements, we have a commtutive
diagram

Rn
+

LH−−−−→ Mk+1×k+1y=

yf

Rn
+

LG−−−−→ Mk×k



20 OWEN BIESEL AND PETER MANNISTO

where the right-hand vertical map f is obtained by applying a Schur complement along the
row and column corresponding to vertex v. Then for any Λ ∈ Mk+1×k+1, we have

L−1
H (Λ) ⊆ L−1

G (f(Λ)),

and in particular, if L−1
G (f(Λ)) takes on a unique value on the edge e, then so does L−1

H (Λ).
(2) Suppose that H is obtained by deleting boundary-boundary edge pq, for p, q ∈ ∂G. The

lemma follows in this case from the fact that the response matrix Λ depends linearly on the
conductivity γpq (because of the expression of Λ as a Schur complement [CuMo00, 3.9]). To be
more explicit, suppose that we have a pair of conductivity functions γH , γ′

H on H with equal
response matrices, i.e., LH(γH) = LH(γ′

H), such that γH and γ′
H take on different values on

edge e. These can be thought of as defining ‘conductivity functions’ on G with γpq = 0 in each
case. We can define true conductivity functions γG, γ

′
G on G by setting γG(a) = γH(a) for any

edge e ∈ H, and setting γpq = 1. Define γ′
G similarly relative to γ′

H . Then, since the response
matrix depends linearly on γpq, we have LG(γG) = LG(γ

′
G) since we have the same relation on

H. Since γG(e) ̸= γ′
G(e), the edge e is not recoverable as an edge of G.

(3) The recoverability of e ∈ G is obviously not changed upon deleting an isolated boundary vertex.

�

The following corollary to Theorem 5.2 is somewhat surprising to the authors; it indicates that there
is a severe restriction on where new lenses in a medial graph can appear upon uncrossing a minimal
lens.

Corollary 5.4. For any sequence of minimal lens uncrossings G = G0 7→ G1 7→ ... 7→ Gn with Gn

critical, let Li be the minimal lens uncrossed to obtain Gi+1 from Gi. Then let S be the set of edges
in the original graph which intersect any of the minimal lenses L0, ..., Ln−1. This set S is exactly the
set of non-recoverable edges in the graph; in particular, S is independent of the way in which minimal
lenses are uncrossed.

Proof. This follows easily from the proposition above. Fix a sequence G 7→ G1 7→ ... 7→ Gn of minimal
lens uncrossings of G resulting in a critical graph Gn, and take an edge e ∈ G. If e is recoverable, then
it does not potentially intersect a minimal lens and in particular does not intersect any of the uncrossed
minimal lenses. Conversely, if e does not potentially intersect any minimal lens that was uncrossed, we
have a sequence of wye-delta transforms and series/parallel edge removals not involving e, resulting in
e being an edge in the critical graph Gn and hence recoverable. Therefore e was recoverable to begin
with. �

Remark 5.5. Corollary 5.4 allows one to use the following procedure to determine all non-recoverable
edges in a circular planar graph G. First, draw the medial graph M(G). If M(G) has no lenses, then
all edges of G are recoverable. Otherwise, let L1 be a minimal lens of M(G). Then all edges of G
intersecting L1 are non-recoverable. Uncross L1 at either pole to obtain a new graph G1. If M(G1)
has no lenses, then there are no further non-recoverable edges of G. Otherwise, let L2 be a minimal
lens in M(G1). Any edge of G intersecting L2 is then non-recoverable, so we add these to our list of
non-recoverable edges of G. Delete L2 to obtain a new graph G2, with medial graph M(G2). Repeat
this process until one arrives at a medial graph with no lenses. The resulting list of non-recoverable
edges of G is in fact the full list of non-recoverable edges, by Corollary 5.4.

Corollary 5.6. For any edge e in a circular planar graph G, if e is recoverable, then e is essential (for
both deletion and contraction).

Proof. Fix a sequence G 7→ G1 7→ ... 7→ Gn of minimal lens uncrossings of G. If e is recoverable, then
e did not intersect any of the minimal lenses that were uncrossed in this sequence. Therefore by a
sequence of wye-delta transformations and series/parallel edge removals not involving e, we were able
to reduce G to a critical graph. On this graph e is essential. Since the wye-delta transformations and
series/parallel edge removals did not affect essentiality of e, e was essential to begin with. �
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Corollary 5.7. A boundary spike or boundary edge in a circular planar graph is recoverable if and
only if it is essential.

Proof. Let e be a boundary spike or boundary-boundary edge. We just showed that if e is recoverable,
then it is essential. Conversely, if e is essential we can use the boundary spike or boundary edge
formulas of [CuMo00, Ch. 3] to recover e. �

Remark 5.8. Proving this corollary was the original motivation of the authors for looking at local
recoverability.

Remark 5.9. The statements of Corollaries 5.6 and 5.7 make sense for non-planar graphs; there are
several reasonable ways to generalize the notion of a connection to non-planar graphs. The statements
of these corollaries are both false for any of these generalizations, seemingly for several independent
reasons. Understanding the extent to which connections relate to recoverability in the non-circular
planar case is an ongoing subject of research.

6. Essentiality of e and lenses in the medial graph

Theorem 5.2 is gives a nice criterion based on the medial graph for when a given edge e ∈ G is
recoverable. There is a similar criterion for when an edge removal in G is essential. To state it we
make the following definition:

Definition 6.1. Let G be a circular planar graph, and let r be an edge removal on G. We say that r is
potentially a pole removal of a minimal lens if there exists a sequence G 7→ G1 7→ ... 7→ Gn of minimal
lens uncrossings such that r is a pole removal of a minimal lens in Gn.

We then have the following:

Theorem 6.2. Let r be an edge removal in the circular planar graph G. Then r is not essential if and
only if it is potentially a pole removal of a minimal lens.

Proof. Our proof of this is more difficult than the corresponding statement (5.2) for local recoverability;
the rest of this section is entirely devoted to its proof.

First note the following easy lemma:

Lemma 6.3. Let G be a circular planar graph with boundary, let r be an inessential edge removal, and
let s be an edge removal of some other edge in G. If s is essential in G, then s is also essential in Gr
(recall that Gr denotes the graph obtained by appliying edge removal r to G).

Proof. Suppose s breaks the (P ;Q)-connection set on G, meaning that at least one (P ;Q)-connection
exists on G but no (P ;Q)-connection exists on Gs. Since r is inessential, at least one (P ;Q)-connection
exists on Gr. But no (P ;Q)-connection exists on (Gr)s since none exists on Gs, and (Gr)s = (Gs)r is
obtained by removing one edge from Gs. �

We next prove the ‘easy’ direction in the equivalence of Theorem 6.2. Suppose that r is potentially
a pole removal of a minimal lens. Fix a sequence of minimal lens uncrossings G 7→ G1 7→ ... 7→ Gn with
r the pole removal applied at stage Gi 7→ Gi+1. Since r is a pole removal of a minimal lens in Gn, it
is inessential as an edge removal in Gn (by Corollary 3.8). Then by the contrapositive of Lemma 6.3,
r is also inessential in G, since Gn is obtained by a sequence of inessential edge removals.

We are left with proving:

(∗) If r is inessential, then r is potentially a pole removal of a minimal lens.

To get started, we need the following lemma:

Lemma 6.4. Let G be a circular planar graph, and let G = G0 7→ G1 7→ G2 7→ ... 7→ Gn be a sequence
of graphs where Gn is critical and Gi+1 is obtained from Gi by exactly one pole removal of a minimal
lens. Then the number n is independent of the sequence of uncrossings which was performed.
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Proof. (of lemma) Indeed, each Gi 7→ Gi+1 is corresponds to one of the following operations on the
graph:

(1) Deletion or contraction of an edge leading to a hanging interior vertex, or deletion of a self-loop
(the possible outcomes of uncrossing a 1-pole lens).

(2) A composition of wye-delta transformations, followed by a single series/parallel edge removal,
followed by more wye-delta transformations.

Thus n is the number of edge removals of inessential edges used in this sequence to transform G into
a critical circular planar graph with the same connection set as G. By [CuMo00, Thm 9.5], all critical
circular planar graphs with the same connection set as G are Y -∆ equivalent, and in particular have
the same number of edges. This shows that the number n is independent of the sequence of minimal
lens uncrossings. �

For any circular planar graph G with medial graph M , let the n = n(G) be the number defined
in Lemma 6.4. We call n(G) the uncrossing number of G. Fix an inessential edge removal r, and let
e(r) be the edge removed by r. To prove (∗), we proceed by induction on the uncrossing number. The
case n = 0 is vacuous, since in this case G has no inessential edge removals by Theorem 1.4. For the
induction we proceed by a case-by-case analysis of the location of the edge removal r relative to lenses
in the medial graph M of G.

Case 1. Suppose that r is a pole removal of a minimal lens in M . In this case we are done.

Case 2. Suppose that there exists a minimal lens L such that e(r) does not intersect L. Let G′ be
the graph obtained by uncrossing L at one of its poles. Then by Corollary 3.8, r remains inessential
on G′. By induction, we may assume that r is potentially a pole removal of a minimal lens on G′, and
hence also on G.

If r does not fit into cases 1 or 2, then e(r) must intersect some minimal 2-pole lens L. There are
three possibilities for the location of e(r) in L, comprising cases 3-5:

Case 3. Suppose that e(r) is one of the poles of L. If r is not a pole removal of L, then r must
correspond to the operation seen in the upper half of Figure 24. More precisely, if L is defined by
geodesic fragments α = a0a1...am and β = b0b1...bn, then in Gr, α and β are replaced by

α′ = ...a0a1...am−1bn−1...b1b0... and

β′ = ...am+2am+1bn+1bn+2...

with all other geodesics remaining the same. Let p = e(r), let q be the other pole of L, and let s be the
pole removal of pole q (as in the lower half of Figure 24). Recall that by Corollary 3.8, s is inessential.

Lemma 6.5. Let Gr be the graph obtained by applying edge removal r to G. Then s remains inessential
on Gr.

Proof. (of lemma) Notice that on Gr, s is the pole removal of a 1-pole lens L′. If L′ is empty, then s is
obviously inessential. If L′ is not empty, then it is not minimal, so we must be more careful in showing
that s is inessential since Corollary 3.8 does not apply. Because the original lens L on G is a minimal
lens, it is possible to remove all interior crossings of L via a series of arc switches never using either
pole of L (as in the proof of Lemma 3.6). The same sequence of arc switches on L′ will remove all
interior crossings from L′, so we may assume L′ is as in Figure 25. Let N be the unique minimal lens of
L′, defined by the geodesic γ passing through L′ furthest away from the pole q. After uncrossing N at
either pole, we get a new configuration L′′ where s is the pole of a minimal 2-pole lens, and is therefore
inessential, as in Figure 25. This implies that s is inessential on Gr as well, since Y -∆ transformations
and series/parallel edge removals not involving edge q = e(s) do not change the essentiality of s. �

We can now show that r is potentially a pole of a minimal lens as follows. Since r is inessential on
G and s is inessential on Gr, we get that (Gr)s has the same connections as G. Since (Gr)s = (Gs)r,
we conclude that r is inessential on the graph Gs. But s was a pole removal of a minimal lens, so
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Figure 24. The edge removals r and s appearing in the proof of Case 3
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Figure 25. Figure referred to in Lemma 6.5

n(Gs) = n(G)− 1; therefore by the induction hypothesis, r is potentially a pole removal of a minimal
lens on Gs, and hence also on G. This completes Case 3.

Case 4. Suppose that e(r) is a crossing on the boundary of a minimal 2-pole lens L. To fix notation,
let p and q be the poles of L. Let N and S be the two arc fragments forming the lens L, and let A
be the other arc fragment defining edge e(r). The edge removal r is then shown in Figure 26 (together
with some extra geodesics). Let s be the pole removal of pole p. Since L is minimal, s is inessential on
G. However, p might not be the pole of a minimal lens in Gr, as happens in Figure 26. Nevertheless
we claim the following:

Lemma 6.6. Let Gr be the graph obtained by applying edge removal r to G. Then s remains inessential
on Gr.

Proof. (of lemma) The proof is very similar to that of Lemma 6.5. Notice that on Gr, s is the pole
removal of a 2-pole lens L′ defined by arc fragments S and the new arc fragment obtained from parts
of N and A, but this 2-pole lens is not necessarily minimal (as in Figure 26). To argue that s is
nevertheless inessential, consider first the original lens L seen in the upper left of Figure 26. The proof
of Lemma 3.9 shows that L can be emptied of all interior crossings by a sequence of arc switches never
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Figure 26. The edge removal of Case 4

using edge e(r) or the poles p or q. The same sequence of arc switches in L′ will transform L′ into a
minimal 2-pole lens with pole removal s. This implies that s is an inessential edge removal on Gr, since
s can be made a pole removal of a minimal lens by a sequence of arc switches never using e(s). �

We can then show that r is potentially a pole of a minimal lens on G in much the same way as we
handled Case 3. Namely, the above lemma shows that the graph (Gr)s has the same connections as
G, since r is inessential on G and s is inessential on Gr. Since (Gr)s = (Gs)r, this implies that r is
inessential as an edge removal on Gs. By the induction hypothesis, r is potentially a pole removal of
a minimal lens on Gs, and therefore also on G.

Case 5 The only remaining case is that e(r) is in the interior of every minimal lens, and therefore
in the interior of every lens. We will show that this contradicts r being inessential; every edge which
appears in the interior of every minimal lens in G must in fact be essential for both deletion and
contraction. To show this we first we need to study the configuration of the geodesics defining the
crossing e(r). We do this via a sequence of lemmas. All of these lemmas are under the hypothesis that
e(r) is in the interior of every minimal lens.

Lemma 6.7. The medial graph M(G) has no 0-pole or 1-pole lenses.

Proof. Suppose to the contrary that M(G) has at least one 0-pole or 1-pole lens. Let L be such a lens
which does not properly contain any 0-pole or 1-pole lens. By assumption e(r) must be in the interior
of L. Let α be one of the geodesics defining e(r). Define two geodesics fragments α1, α2 as follows.
At the crossing e(r), there are two tangent directions (anti-parallel to each other) which lie on the
curve α. Let α1 and α2 be the sub-fragments of α obtained by following α along these two tangent
directions until one hits the boundary of the lens L. Note that both α1 and α2 must eventually hit the
boundary of L without ever intersecting themselves: the only other possibility is that α1 or α2 forms
a loop (0-pole or 1-pole lens) in the interior of L, and L was assumed to not contain any proper 0-pole
or 1-pole lens.

Now let α̃ be the geodesic fragment obtained by concatenating α1 and α2. Then α̃ and part of
the boundary geodesic of L form a 2-pole lens L′ with e(r) appearing on the boundary of L′. This
contradicts the assumption that e(r) appears in the interior of every lens in M(G). �

Lemma 6.8. Let α be one of the geodesics defining the crossing e(r). Then any other geodesic γ
intersects α at most once.

Proof. Suppose to the contrary that α and γ intersect at distinct points p and q. Let α̃ and γ̃ be the
geodesic fragments of α and γ joining p to q. Because α and γ cannot have any self-intersections by
the previous lemma, α̃ and γ̃ form a 2-pole lens L′, and e(r) must be either disjoint from L′ or on its
boundary. This contradicts the assumption on e(r). �

To complete the proof of Case 5 (and hence of Theorem 6.2), we need to review the statement of
the Cut-Point Lemma [CuMo00, Lemma 9.1]. Let G be a circular planar graph with boundary, and
let M be its medial graph. Let X and Y be two distinct points on the boundary circle. We say that
X and Y are cut-points for M if neither point is an endpoint of any geodesic in M . We let X̂Y denote
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Figure 28. Set-up for showing that r is essential via Cut-Point Lemma

the clockwise arc along the boundary circle from X to Y , and ˆY X the clockwise arc on the boundary
circle from Y to X. We refer to [CuMo00, p. 152] for definitions of the following terms:

• m(X,Y ) = the maximum integer k such that there exists at k-connection in the medial graph
M which respects the cut-points X and Y .

• r(X,Y ) = the number of re-entrant geodesics in the arc X̂Y .

• n(X,Y ) = the number of black intervals in M which are entirely within the arc X̂Y .

The Cut-Point lemma the reads as follows:

Lemma 6.9. (Cut-Point lemma). Let G be a circular planar graph with boundary such that M(G) is
lensless. With n(X,Y ), m(X,Y ) and r(X,Y ) defined as above,

m(X,Y ) + r(X,Y )− n(X,Y ) = 0.

Proof. See [CuMo00, Lemma 9.1]. �

We use the Cut-Point Lemma as follows (this use of the cut-point lemma is nearly identical to the
use on p.166 of [CuMo00]). Let α and β be the geodesics which cross to form the edge e(r). Consider
an arc A (not a geodesic in M) placed as in Figure 28, so that A intersects both β and α exactly once,
very close to e(r). By Lemma 6.8, by placing A close enough to geodesic α we may assume that no
geodesic crosses A more than once. Let X and Y be the endpoints of A. Let N and S be the two halves
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Figure 29. The edge removal r

of the unit disc D defined by the arc A. By Lemmas 6.7 and 6.8, every lens in M must be a 2-pole lens
and must have one pole in each of N and S. Therefore if we let N and S be the medial graphs obtained
by restricting M to N and S, respectively, then N and S have no lenses, and no re-entrant geodesics
on the boundary interval A. We let m(X,Y ;N ) and m(X,Y ;S) be the maximum integer k such that
there exists a k-connection respecting the cutpoints X and Y on N and S, respectively. Similarly,
let n(X,Y ;N ) = n(Y,X;S) be the number of black intervals entirely contained in the interval ˆY X.
Because no geodesic intersects B twice, we have

m(X,Y ;N ) = m(X,Y ;S) = n(X,Y ;M).

In other words, the maximum k-connection on both N and S respecting X and Y is equal to the
largest possible value, namely, the number of black intervals entirely contained in X̂Y (in N , which

equals the number of black intervals in ˆY X on S). Pasting these two connections together, we get a
connection on the original graph M of the same size respecting the cutpoints X and Y . Now consider
the edge removal shown in Figure 29. Notice that the number of black intervals on X̂Y decreases by
one on applying this edge removal. Therefore the maximum possible size of a connection respecting
the cutpoints X and Y decreases by 1, and hence this edge removal must break a connection.

An essentially identical argument, replacing B with an analogous arc placed along geodesic β as
in Figure 30, will show that the other edge removal of e is essential. We have shown that if an edge
appears in the interior of every lens in M , then that edge is essential for both deletion and contraction.
Therefore Case 5 cannot occur, and we have completed the proof of Theorem 6.2. �
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